A REMARK ON A PAPER OF WALTER AND ZAYED

T. F. XIE AND S. P. ZHOU

Abstract

One result concerning the series representation for the continuous Jacobi transform in Walter and Zayed [1] is improved, the same thought also can be applied to the related results in [1].

1. For any real numbers a, b and c with $c \neq 0,-1,-2, \ldots$, the hypergeometric function $F(a, b, c, z)$ is given by

$$
F(a, b, c, z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} z^{k},|z|<1,
$$

where the series converges at $z=-1$ and $z=1$ provided that $c-a-b+1>0$ and $c-a-b>0$ respectively.

The Jacobi function $P_{\lambda}^{(\alpha, \beta)}(x)$ of the first kind is defined by

$$
P_{\lambda}^{(\alpha, \beta)}(x)=\frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\alpha+1) \Gamma(\lambda+1)} F(-\lambda, \lambda+\alpha+\beta+1, \alpha+1,(1-x) / 2), x \in(-1,1]
$$

where $\alpha, \beta>-1, \lambda+\alpha+1 \neq 0,-1,-2, \ldots$, and without loss of generality, $\lambda \geqq$ $-(\alpha+\beta+1) / 2$ (cf. [1]). For integer values of $\lambda, P_{\lambda}^{(\alpha, \beta)}$ reduces to the usual Jacobi polynomial $P_{n}^{(\alpha, \beta)}(x)$ as defined in [2],

$$
2^{-\alpha-\beta-1} \int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(\alpha, \beta)}(x) d x=\delta_{n m} h_{n}^{(\alpha, \beta)}
$$

where

$$
h_{n}^{(\alpha, \beta)}=\frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{\Gamma(n+1) \Gamma(n+\alpha+\beta+1)} \frac{1}{2 n+\alpha+\beta+1} .
$$

Define further

$$
\hat{P}_{\lambda}^{(\alpha, \beta)}(n)=2^{-\alpha-\beta-1} \int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} P_{\lambda}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(x) d x,
$$

hence for $\lambda \neq n$,

$$
\hat{P}_{\lambda}^{(\alpha, \beta)}(n)=\frac{(-1)^{n} \Gamma(\lambda+\alpha+1) \Gamma(\lambda+\beta+1) \sin \pi \lambda}{\pi(\lambda-n)(\lambda+n+\alpha+\beta+1) n!\Gamma(\lambda+\alpha+\beta+1)} .
$$

Received by the editors July 13, 1989 and, in revised form, June 24, 1990.
AMS subject classification: 42C05, 44A15.
(c) Canadian Mathematical Society 1991.
G. G. Walter and A. I. Zayed [1] introduced the continuous Jacobi transform as follows. Let $f(x) \in L^{1}\left\{(-1,1), W^{\alpha \beta}(x)\right\}, W^{\alpha \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta}$, then the continuous Jacobi transform $\hat{f}^{(\alpha, \beta)}(\lambda)$ of $f(x)$ will be defined by

$$
\hat{f}^{(\alpha, \beta)}(\lambda)=2^{-\alpha-\beta-1} \int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} P_{\lambda}^{(\alpha, \beta)}(x) f(x) d x, \lambda>-(\alpha+\beta+1) / 2
$$

They gave a series representation for the continuous Jacobi transform $\hat{f}^{(\alpha, \beta)}(\lambda)$.
ThEOREM A. Let $f(x)$ be $2 p$ times continuous differentiable with support in $(-1,1)$, $2 p>\max (\alpha, \beta)+3 / 2$, then

$$
\hat{f}^{(\alpha, \beta)}(\lambda)=\sum_{n=1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n),
$$

where the series converges uniformly on any compact subset of $[0, \infty)$.
In the present paper, we indicate that the condition on Theorem A can be weakened by methods in approximation theory. One can similarly improve other results in [1] (e.g. Proposition 4.1). We will, however, omit the details.

2. Main Result And Proof.

Theorem. Let $f(x)$ be $2 p$ times continuous differentiable with support in $(-1,1)$, $2 p>\max \{\beta-1,0\}$, then

$$
\hat{f}^{(\alpha, \beta)}(\lambda)=\sum_{n=1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n),
$$

where the series converges uniformly on any compact subset of $[0, \infty)$. Furthermore,

$$
\sum_{n=[2 \lambda]+1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n)=0\left(\lambda^{-2 p-1} \omega\left(f^{(2 p)}, \lambda^{-1}\right)\right),
$$

where $\omega(f, \delta)$ is the modulus of continuity of $f \in C_{(-1,1)}$.
LEmMA 1. Let $f \in L^{2}\left\{(-1,1), W^{\alpha \beta}\right\}, E_{n}(f)$ be the nth best approximation to $f(x)$ by polynomials in $L^{2} W^{\alpha \beta}$-weight norm, then

$$
\left(\sum_{k=n+1}^{2 n}\left(\frac{1}{\sqrt{h_{n}^{(\alpha, \beta)}}} \hat{f}^{(\alpha, \beta)}(n)\right)^{2}\right)^{1 / 2} \leqq C(\alpha, \beta) E_{n}(f)
$$

Proof. It is well-known that $\left\{\left(2^{\alpha+\beta+1} h_{n}^{(\alpha, \beta)}\right)^{-1 / 2} P_{n}^{(\alpha, \beta)}\right\}$ forms an orthonomal system in $[-1,1]$ under the weight $W^{\alpha \beta}(x), \alpha, \beta>-1$. Therefore any $f \in L^{1}\left\{(-1,1), W^{\alpha \beta}\right\}$ has the expansion in Fourier-Jacobi series

$$
f(x) \sim \sum_{n=1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) P_{n}^{(\alpha, \beta)}(x) .
$$

If $f(x) \in L^{2}\left\{(-1,1), W^{\alpha \beta}(x)\right\}$, then it holds true that

$$
\int_{-1}^{1}\left(f(x)-S_{n}(f, x)\right)^{2} W^{\alpha \beta}(x) d x \leqq \int_{-1}^{1}\left(f(x)-q_{n}(x)\right)^{2} W^{\alpha \beta}(x) d x
$$

for all nth degree polynomials q_{n}, where $S_{n}(f, x)$ is the nth partial sum of the FourierJacobi series of $f(x)$. Hence

$$
\left(\int_{-1}^{1}\left(S_{2 n}(f, x)-S_{n}(f, x)\right)^{2} W^{\alpha \beta}(x) d x\right)^{1 / 2} \leqq C(\alpha, \beta) E_{n}(f)
$$

that is the required result.
Lemma 2. Let $f \in L^{2}\left\{(-1,1), W^{\alpha \beta}\right\}$. Then in any closed subinterval $[s, t] \subset$ $(-1,1)$,

$$
\sum_{n=1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) P_{n}^{(\alpha, \beta)}(x)
$$

coverges uniformly and absolutely if $E_{n}(f)=0\left(n^{-\delta}\right)$ for some $\delta>1 / 2$.
Proof. From Lemma 1,

$$
\sum_{i=2^{k}+1}^{2^{k+1}}\left|\frac{1}{h_{i}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(i)\right|=0\left(2^{k} E_{2^{k}}(f)\right),
$$

so we can get immediately

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\frac{\hat{f}^{(\alpha, \beta)}(k)}{h_{k}^{(\alpha, \beta)}}\right| & =\left|\frac{\hat{f}^{(\alpha, \beta)}(1)}{h_{l}^{(\alpha, \beta)}}\right|+\sum_{k=1}^{\infty} \sum_{s=2^{k-1}+1}^{2^{k}}\left|\frac{\hat{f}^{(\alpha, \beta)}(s)}{h_{s}^{(\alpha, \beta)}}\right|=0\left(\sum_{k=0}^{\infty} 2^{k} E_{2^{k}}(f)\right) \\
& =0(1) \sum_{n=1}^{\infty} E_{n}(f) .
\end{aligned}
$$

At same time noting that (cf. [2])

$$
P_{n}^{(\alpha, \beta)}(x)=0(1)\left\{\begin{array}{l}
\left(\frac{\left(1-x^{2}\right)^{1 / 2}}{n}+\frac{1}{n^{2}}\right)^{-\alpha-1 / 2} n^{-\alpha-1}, 0 \leqq x \leqq 1, \\
\left(\frac{\left(1-x^{2}\right)^{1 / 2}}{n}+\frac{1}{n^{2}}\right)^{-\beta-1 / 2} n^{-\beta-1},-1 \leqq x \leqq 0
\end{array}\right.
$$

with the condition $E_{n}(f)=0\left(n^{-\delta}\right)$ for $\delta>1 / 2$, we have completed the proof of Lemma 2.

Lemma 3. Let $f \in L^{2}\left\{[-1,1], W^{\alpha \beta}\right\}$. If $E_{n}(f)=0\left(n^{-s}\right), s>\beta-1$, then the series

$$
\sum_{n=1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n)
$$

converges on any compact subset of $[0, \infty)$. Furthermore

$$
\sum_{n=[2 \lambda]+1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n)=0\left(\lambda^{-1 / 2} E_{[2 \lambda]+1}(f)\right) .
$$

Proof. Using a well-known result

$$
\frac{\Gamma(x)}{\Gamma(x+\alpha)} \sim x^{-\alpha}, x \rightarrow \infty
$$

we give an estimate to $\hat{P}_{\lambda}^{(\alpha, \beta)}(n)$:

$$
\hat{P}_{\lambda}^{(\alpha, \beta)}(n)=0\left(\frac{\lambda^{-\beta} n^{\beta}}{| | \lambda-n \mid+1)(\lambda+n+\alpha+\beta+1)}\right), \lambda \geqq-\frac{\alpha+\beta+1}{2},
$$

together with Lemma 1,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|\frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n)\right|=\left|\frac{1}{h_{1}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(1) \hat{P}_{\lambda}^{(\alpha, \beta)}(1)\right|+ \\
& \sum_{k=1}^{\infty} \sum_{i=2^{k-1}+1}^{2^{k}}\left|\frac{1}{h_{i}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(i) \hat{P}_{\lambda}^{(\alpha, \beta)}(i)\right| \leqq\left|\frac{1}{h_{1}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(1) \hat{P}_{\lambda}^{(\alpha, \beta)}(1)\right|+ \\
& \sum_{k=1}^{\infty}\left(\sum_{i=2^{k-1}+1}^{2^{k}}\left(\frac{1}{h_{i}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(i)\right)^{2}\right)^{1 / 2}\left(\sum_{i=2^{k-1}+1}^{2^{k}}\left|\hat{P}_{\lambda}^{(\alpha, \beta)}(i)\right|^{2}\right)^{1 / 2} \\
& =0\left(\sum_{k=0}^{\infty} 2^{k(\beta-1)} E_{2^{k}}(f)\right)=0\left(\sum_{k=0}^{\infty} 2^{k(\beta-s-1)}\right),
\end{aligned}
$$

under the condition $s>\beta-1$, it is clear that

$$
\sum_{n=1}^{\infty}\left|\frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n)\right|<+\infty .
$$

On the other hand due to the estimate for $\hat{P}_{\lambda}^{(\alpha, \beta)}(n)$,

$$
\begin{aligned}
\sum_{n=[2 \lambda]+1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n) & =0\left(\lambda^{-\beta} E_{[2 \lambda]+1}(f) \sum_{n=[2 \lambda]+1}^{\infty} n^{\beta-3 / 2}\right) \\
& =0\left(\lambda^{-1 / 2} E_{[2 \lambda]+1}(f)\right),
\end{aligned}
$$

thus Lemma 3 is proved.
PROOF OF THE THEOREM. We only need to prove

$$
\hat{f}^{(\alpha, \beta)}(\lambda)=\sum_{n=1}^{\infty} \frac{1}{h_{n}^{(\alpha, \beta)}} \hat{f}^{(\alpha, \beta)}(n) \hat{P}_{\lambda}^{(\alpha, \beta)}(n),
$$

it follows that by the definition of $\hat{f}^{(\alpha, \beta)}(\lambda)$ we exchange the order of the integration and the sum, as it is made in [1]. Theorem is proved.

Acknowledgement. The second author should give great thanks to P. B. Borwein for his valuable concerns and discussions.

References

1. G. G. Walter and A. I. Zayed, The continuous (α, β)-Jacobi transform and its inverse when $\alpha+\beta+1$ is a positive integer, Trans. Amer. Math. Soc. 305 (1988), 653-664.
2. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. vol. 23, Amer. Math. Soc., Providence, R.I., 1974.

Department of Mathematics
Hangzhou University
Hangzhou, Zhejiang
PR China

Dalhousie University
Department of Mathematics
Statistics \& Computing Science
Halifax, NS B3H 3J5
Canada

