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Let O be the circumcentre of the triangle ABC, and R the
circumcentre of APQ. Then RO has equal projections on AB and
AC (each being 4BP); and hence RO is parallel to the bisector of
the angle BAC. Therefore the locus of R is a straight line through
O, parallel to the bisector of the angle BAC; and thus the circum-
circle of APQ always passes through a fixed point A’, which is the
image of A in RO. Hence, by the proposition stated above, PQ
envelopes a parabola of which A’ is the focus, and which touches
AB and AC.

It is obvious from the above also that if any circle through A
and A’ meets AB and AC in P and Q, then BP=BQ; and the
following more general theorem may also be proved very easily :—

If a series of circles pass through two fixed points A and A’, and
if two straight lines APQR ... and AP'QR’ ... meet these Eircles
in the points P, Q, R, ... and P, Q, R/, ..., then PQ: QR : ...
=PQ:QR': ..

This theorem may also be got by inversion ; it may in fact be
got by inverting the theorem that the anharmonic ratio of a pencil
is constant, by taking the particular case of a number of concurrent
transversals.
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R. E. ALLarpIGE, Esq., President, in the Chair.

On the Heating of Conductors by Electric Currents, and the
Electric Distribution in Conductors so heated.

By Joux M‘Cowax, M.A., B.Sc.

The solution of the equation.
J{@=-a)z- 8} + JHz-c)(z-d)} =e
By J. D. HamivroN Dickson, M.A.
1. IfP=a+b-c~-d, and K =cd - ab, the solution of the equation

Je-ae@-b)+ J{E-9@-d}=c .. ()
may be most readily found by putting (x - a)(x - b)=2'; whence
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