
ON CERTAIN EXTENSIONS OF FUNCTION RINGS 

BERNHARD BANASCHEWSKI 

1. Introduction. The present note is concerned with the existence and 
properties of certain types of extensions of Banach algebras which allow a 
faithful representation as the normed ring C(E) of all bounded continuous 
real functions on some topological space E. These Banach algebras can be 
characterized intrinsically in various ways (1); they will be called function 
rings here. A function ring E will be called a normal extension of a function 
ring G if E is directly indecomposable, contains C as a Banach subalgebra 
and possesses a group G of automorphisms for which C is the ring of in­
variants, that is, the set of all elements fixed under G. G will then be called 
a group of automorphisms of E over C. If E is a normal extension of C 
with precisely one group of automorphisms over C, which is then the in­
variance group of C in E, then E will be called a Galois extension of C. Such 
an extension will be called finite if its group is finite. 

The discussions below prove, for any directly indecomposable function 
ring, the existence of normal extensions with arbitrarily prescribed group and 
give a characterization of all finite Galois extensions of a function ring 
C = C(£) , E completely regular, which fully decompose all maximal ideals 
in C, in terms of regular quasi-covering spaces of E. In the special case, for 
instance, where E is normal and the union of finitely many simply connected 
open sets, the result is that any extension E of the considered type is a G(X) 
given by a regular covering space (X, <j>, E) whose Poincaré group induces 
isomorphically the group of E over C. 

The proofs for these statements are obtained through arguments relating 
to fibre spaces which will then be interpreted for function rings via the well-
known relations of the automorphisms and subrings of such rings to the 
underlying spaces or their Stone-Cech extensions. As it seems advisable, for 
the sake of clarity, to treat these two different aspects of this subject quite 
separately, all the topological material needed here will be presented first, 
whereas the transition to function rings will be left to the latter part of the 
paper. This transition will be based on the following familiar facts: 

(1) Any function ring C is the C(5) of a unique compact 5, its maximal 
ideal space, and the automorphisms of C are all induced by space automor­
phisms of S. 

(2) If C = G(E) with non-compact completely regular E, then 5 = /3E, 
the Stone-Cech compactification of E. 
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(3) If the directly indecomposable function ring E is an extension of C 
and X and E are the respective maximal ideal spaces, then X is mapped 
continuously onto E by $: 3ft —> !DÎ P\ C, 9DÎ the maximal ideals of E. 

2. Automorphisms of fibre spaces. A fibre space is a triple (X, </>, E) 
consisting of two spaces X and E together with a continuous mapping <j> :X-+E. 
Although usually not required, <j>X = E will always be assumed here. The 
base of (X, <£, E) is E, the fibre above x £ E is the set # -1x, and the group 
G(<t>) of (X, <t>, E) is the group of all space automorphisms of X which trans­
form each fibre into itself. 

If X is any space and s an automorphism of X, then 5 induces an auto­
morphism s in C(X) by means of the formula (sf)x = /(s~V). Thus, in a 
fibre space (X, 0, E) the group G(<t>) induces a group G(0) of automorphisms 
in C(X) ; 5 —* s is a homomorphism and may, but need not be an isomorphism. 

For any fibre space (X, #, E) the functions/ Ç C(E) determine functions 
/ * =/</> on X. By a known theorem (4, ch. I, §9) these are precisely those 
g Ç C(X) which are constant on each fibre. The transition /—>/* imbeds 
isomorphically the function ring C(E) into the function ring C(X); the im­
bedded ring will be denoted by C(E)*. 

The first topological fact needed later on concerns the existence of certain 
fibre spaces. It will be assumed that any space occurring contains more 
than one point. 

LEMMA 1. If E is a connected completely regular space and G any given group, 
then there exists a fibre space (X, <£, E) with connected completely regular X such 
that G is {isomorphic to) a subgroup of G(</>) acting transitively on each fibre. 

Proof, Regard G as a discrete space. Then the product space F = G X E 
has G as a group of automorphisms if the action of 5 £ G be defined by 
s(tyX) = (st,x). Now, take a fixed a Ç E, identify all (s, a) (E F, call the 
resulting quotient space X and let 6 be the natural mapping F —» X. Since E 
is connected, the sets Es = {5} X E C F and 0ES ÇZ X are also connected, 
and therefore X = W 0ES is connected because P\ 6ES is non-void. 

The continuous mapping (s, x) —> x induces a continuous mapping </>:X —» E 
with <£X =* E. Also, any s (z G induces a mapping 5* of X onto itself by 
s*d(ty x) = 6(st, x), continuous because (t, x) —> 6(st, x) is a continuous map­
ping of F onto X, constant on the set of all (t, a), t G G. Furthermore, since 
(st)* = 5*/*, any 5* has a continuous inverse and is thus an automorphism 
of X. Finally, the mapping s —> s* is an isomorphism since s*0(t, x) = d(st, x) 
7* 6(t, x) for all x 9^ a if 5 is not the unit transformation. Obviously, these 5* 
map each fibre of (X, 0, E) onto itself and their totality acts transitively on 
each fibre. 

It remains to prove that X is completely regular. For this it is sufficient 
to show that it can be imbedded in some compact space. Let K be a compact 
space containing F, which exists by the complete regularity of E, and identify 
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in K all the points of the closure of the set of all (s, a), s £ G. The quot ient 
space L thus obtained is again compact and contains X as a subspace (4, 
ch. I, §9). This completes the proof. 

Remark. Obviously, any permutat ion p of G gives rise to an automorphism 
of Y and hence to an automorphism p* of X. If E — {a} is connected, then 
the group G(</>) of (X, <j>, E) consists precisely of these p* since the set of all 
points in 6ES other than d(s, a) which an element of G(<l>) maps into the 
same 6Et is open-closed in 6ES — {6(s, a)}. 

Lemma 1 will be employed in connection with the following s ta tements 
about a fibre space (X, 0, E) and its group G = G(<£). 

LEMMA 2. If G(E) separates the points of E, then any automorphism s of X 
whose s leaves each g £ C ( J E ) * fixed belongs to G. If G(X) separates the points 
of X, then G is isomorphic to G under s —> s. If H C G acts transitively on each 
fibre, then C ( E ) * is the ring of invariants of H. If H Ç G does not act transitively 
on each fibre and if the functions on the orbit space X/H separate points, then 
the ring of invariants of H is greater than C(E)* . 

Proof. Suppose 5 is an automorphism of X not belonging to G, t h a t is, 
4>a 7e (/>(5_1a) for some a (E X. Then, if / Ç C(E) separates these two points 
one obviously has sf* 7*f* and thus s does not leave all g Ç C(E)* fixed. 
Next, consider, for any s £ G which is not the unit transformation, an a Ç X 
such t ha t s~*a y£ a which exists since G acts effectively by definition. Then, 
if / Ç G(X) separates s~~*a from a one has sf 9^ f and thus s is not the unit 
transformation, either. Further , if / Ç C(X) satisfies sf = f for all s £ H 
where H acts transitively on each fibre, then / is constant on each fibre 
and hence belongs to C(E)* . Finally, if H does not act transitively on each 
fibre one has X/H ^ E and there exist distinct points a and b in X/H which 
have the same image c under the mapping X/H-+E induced by </>. A function 
g G G(X/H) separating a from b then gives a g* G G(X) with sg* = g* for all 
s £ H which is, however, not constant on the fibre above c. 

3. Quas i -cover ing spaces . By a quasi-covering space is mean t a fibre 
space (X, <f>, E) with the property t ha t each x Ç E has an open neighbourhood 
V whose 4>~lV is the union of disjoint open V on which <t>\ V, the restriction 
of </> to V, is a homeomorphism onto V. An open set V with this property 
will be called evenly covered by (X, 4>, E). T o emphasize the role of E, 
(X, </>, E) will also be called a quasi-covering space of E. If E should be 
locally connected and X connected, this reduces to the usual definition of 
a covering space (3, ch. I I , §VI). 

A quasi-covering space (X, $, E) will be called regular if its group G(<t>) 
acts transitively on each fibre. Then, if X is connected, any 5 G G(0) other 
than the unit transformation has no fixed points. For if V is the par t of 
</>-1 V belonging to x' 6 <$>~lx, V assumed to be an evenly covered open neigh-
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bourhood of x, and sxf =•• x'', then sV C\ V is a neighbourhood of x' consisting 
of points fixed under 5, whereas if and V" belongs to x", then 

s~l (sV r\ V") is a neighbourhood of x' consisting of points moved by s; 
hence the sets of the two different kinds of points are both open and if X is 
connected, one of them must be void and the other X. 

From the special type of Galois extensions of function rings to be considered 
below there arise fibre spaces (X, #, E) with completely regular X and E and 
finite G = G(4>) such t h a t (i) each fibre consists of as many points as G has 
elements and (ii) G has C ( E ) * as its ring of invariants . In this si tuation one 
has 

LEMMA 3. (X, 0, E) is a regular quasi-covering space. 

Proof. First, the orbit space X/G is again completely regular. This follows 
from the fact t ha t X/G is a subspace of the compact pX/G', G the continuous 
extension of G to 0X, wrhich in tu rn is a consequence of a known theorem on 
quot ient spaces (4, ch. I, §9). Now, the functions on X/G certainly separate 
points, and as the ring of invar iants of G is C(E)* , Lemma 2 implies t h a t G 
acts transit ively on each fibre. An immediate consequence of this and the 
hypothesis on the number of points in each fibre is t h a t no s £ G o ther than 
the unit has any fixed points. Fur ther it follows t h a t the mapping <j> is open 
since E = X/G and for any open 0 Ç I 0* = U sO, s G G, is again open. 

Now, suppose there exists a c f X on none of whose neighbourhoods 
V <j>\ V is one-to-one. This means there are dist inct points xv and yv in each 
V and an sv G G such t ha t svxv = yv. Then for some s € G the collection of 
those V for which sv = s must be cofinal in the neighbourhood filter of c, 
t h a t is, any neighbourhood U of c contains some V with sv = s. Call these 
neighbourhoods W. Since the two (Moore-Smith) sequences xw and yw both 
converge to c, one has sc = s(\\mxw) = lim sxw = lim yw = c. However, 
sc = c only holds for the uni t of G which contradicts the assumption t h a t all 
xv and yv are distinct. Therefore, any x G X has a neighbourhood V which is 
mapped one-to-one. V can be taken as open, and as <t> is cont inuous and 
open <j>\ V is a homoemorphism. Finally, 4>\sV is also a homeomorphism for 
each s Ç G, U = </>Fis an open neighbourhood of <t>x Ç E and <t>~lU = U sV. 
This completes the proof. 

The next item to be considered is the construction of a quasi-covering 
space of a completely regular E from a quasi-covering space of its f3E. In 
this, the following notion will be employed. If ( F, ^ , W) is a fibre space and 
E a dense subspace of W, then the fibre space (X, </>, E), where X = \(/~lE 
and <t> = \[/\X, will be called the restriction of ( F, ^, W) to the base E. The 
group G(\p), since it transforms X into itself, induces a subgroup of G((f)) by 
restriction to X. Obviously, if G(\f/) acts transit ively on each fibre, then G(<f>) 
does too. 
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LEMMA 4. / / ( F, \f/, (3E) is a regular quasi-covering space with compact F, 
then its restriction (X, 0, E) to the base E is again a regular quasi-covering 
space, with fiX — Y and G(0) induced by G($). 

Proof. Let U be an evenly covered open neighbourhood in fiE of x £ E 
and U' the disjoint open sets into which \[/~lU then splits. For the neigh­
bourhood V = U r\ E of x m E one then has <j>~lV = ^V = (^~lU) H X, 
and this is the union of the disjoint open U' C\ X in X each of which is mapped 
homeomorphically onto V by 0. Hence (X, 0, E) is a quasi-covering space 
and thus, of course, a regular one. 

To obtain 0X = F, use will be made of completely regular filters. A filter 
31 on a space S is called completely regular if for any A (E 21 there exsits 
some / e C(5) such that 0 < / < 1, f~l{0} £ 21 and / = 1 outside A. If K 
is a compact space containing 5 densely, then each z £ K — S determines a 
filter X(z) on 5, its trace filter, consisting of the sets V r\ S where V ranges 
over the neighbourhoods of z in K. These X(z) are completely regular filters 
and K = (3S holds exactly if they are all maximal completely regular (4, 
ch. 9, §1). In this case, the X(z) will be precisely the non-convergent maximal 
completely regular filters on S, the convergent ones just being the neigh­
bourhood filters of the points of 5. 

Now, let U be an open neighbourhood oi u (~ Y — X such that \j/\ U is 
one-to-one. Because U C\ X and (ypU) C\ E correspond to each other, the trace 
filter X(u) of u on X is mapped by 0 onto the trace filter X(\//u) of \pu on E. 
Hence, for any completely regular filter 9? 3 Ï W on X one has 09? 2 Xtyu). 
However, 09? is again completely regular: for any A £ 09? take a B 6 9? 
such that its closure in X lies in U C\ X and cj)B Q A, and then some/ G G(X) 
with 0 < / < l , / - l{0} Ç 9? a n d / = 1 outside 5 . With this / , define g on £ by 

= / 1 if x i tyU) H £ 
gX \fz iix = 4>z,x £ (f(J) C\ E. 

This g is continuous, has value 1 outside <j>B and hence outside A, and satisfies 
0 < g < 1 and g-1}0} Ç 09?. Thus, 09? is completely regular. But now, X(\pu) 
is maximal completely regular because the extension of E considered is fiE; 
therefore, 09? = Xtyu) = <j>X{u) and as X{u) contains a set on which 0 is 
one-to-one, this gives 9? = X{u). Since J! 2 Ï W was arbitrary completely 
regular, X(u) is hereby seen to be maximal and this shows f$X = Y. 

Finally, any s Ç G(<j>) can be uniquely extended to an automorphism s' of 
F = fiX and from s'u = s'(lim X(u)) = lim sX(u) for any u G F — X one 
obtains \f/(sfu) = i/'W, that is, s' Ç G ^ ) . Hence, G(0) is the restriction of 
G(^) to X, and this completes the proof. 

There is a partial converse to Lemma 4. If (X, 0, E) is a fibre space with 
completely regular X and E, then 0 has a unique continuous extension \//: 
pX - > £ £ with tf'GMO = /3E (7). The fibre space (pX,$,PE) will be called 
the extension of (X, 0, E) to the base (3E. Each 5 Ç G(0) has an extension 
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to an automorphism of pX which, by the same a rgument as in the last para­
graph, belongs to Gty) such tha t G(<t>) induces a subgroup of G(\p). A good 
deal more can be said if further conditions are assumed for (X, </>, E). 

LEMMA 5. If (X, </>, E) is a finite regular quasi-covering space with connected 
X such that each non-convergent maximal completely regular filter on E contains 
an evenly covered open set, then its extension (PX, \j/, PE) to the base f3E is again 
a regular quasi-covering space and G(yf) is induced by G (</>). 

Proof. If G denotes the continuous extension of G = G(<£) to pX, then ' 
since G Ç G(\f/), \f/ induces a continuous mapping of the compact orbit space 
PX/G onto PE such t h a t E, which is also a subspace of PX/G' (4, ch. I, §9) 
remains pointwise fixed. Therefore PX/G = f3E by the maximali ty of PE 
and thus Gf acts transit ively on each fibre of (PX, yp, PE). Next , no s' £ G' 
other than the unit has any fixed point. Such a point would have to be a 
u 6 PX — X and if s'u = u, s' Ç G' and not the unit, it would have arbi­
trarily small neighbourhoods U with s'U = U, since s' is of finite order, and 
hence its trace filter X(u) on X would have a basis of sets V with sV = V. 
However, by cont inui ty one has %(^/u) C $X(u), and by hypothesis %(\f/u) 
contains an evenly covered open W. Then, <jrlW Ç X(u) where 4>~lW = \JW/: 

with finitely many disjoint open Wk such t ha t 4>\W]c is a homeomorphism; it 
follows t ha t Wk Ç X(u) for some k (2), bu t of course there is no V Ç ^ 
with sV = V. This contradict ion proves s'u ^ w. 

One now obtains, by the same a rgument as in the proof of Lemma 3, t h a t 
(I3X, \f/, f$E) is a quasi-covering space; since G C G (if/) is t ransit ive on each 
fibre this implies regularity, and since X is connected one has G — G{\p). 

Remark. If (X, cf>, E) satisfies the hypothesis in Lemma 5, then, by this 
lemma, E is the union of finitely many evenly covered sets since fiE is com­
pact. Conversely, this condition implies the hypothesis in Lemma 5, a t least 
if E is a normal space since for such E any finite open covering of E is induced 
by one of /3E. In particular, therefore, if E is normal and the union of finitely 
many simply connected open sets (in the sense of Chevalley) then, for any 
finite regular covering space (X, </>, E) the extension (fiX, \f/, f$E) is a regular 
quasi-covering space, with G(yp) induced by G(<j>). More generally, the same 
holds if E, not necessarily normal, has any compact extension K such t h a t 
each u (z K — E has an open neighbourhood for which V = U f^ E is simply 
connected, for then any maximal completely regular filter on E will converge 
to some such u and hence contain the corresponding V which in turn will be 
evenly covered by any quasi-covering space (X, </>, E). Similarly, the above 
s ta tement concerning (&X, \p, PE) is t rue if £ is a finite dimensional separable 
metric space, for according to (6) X then contains a finite number of open 
Wi such t ha t <t>\Wt is a homeomorphism and E = \J <f>Wt, and thus E is 
normal and the union of finitely many evenly covered open sets, the lat ter 
because ttrl<t>Wi = \J sWu s G G(<t>). 
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4. Extensions of function rings. Let C denote any directly indecom­
posable function ring and G an arbitrary group. 

PROPOSITION 1. There exists a normal extension E of C which has G as a 
group of automorphisms over C. 

Proof. If E is the maximal ideal space of C and (X, <j>, E) the fibre space of 
Lemma 1, then, since E and X are both completely regular, Lemma 2 shows 
that E = G(X) has the required properties if one identifies C with G(E)*. 

An immediate consequence of Proposition 1 is that any directly indecom­
posable function ring C possesses directly indecomposable extensions E such 
that each element of E is algebraic over C, for to obtain such extensions one 
only has to take a normal extension of C with some finite group. In other 
words, there is no such thing as algebraic closure in the class of all directly 
indecomposable function rings. 

Another observation that can be made here is that if a directly indecom­
posable function ring C contains a maximal ideal which is not the sum of 
two closed ideals whose intersection is the zero ideal, then for any natural 
number n there exists a normal extension E of C such that the invariance 
group of C in E is isomorphic to the symmetric group Sn of n objects. First, 
the condition for the maximal ideals stated means that the maximal ideal 
space E of C contains a point a such that E — {a} is connected. Then the 
remark following the proof of Lemma 1 shows that for (X, </>, E), constructed 
with any group of order n, one has G(<j>) = Sn and since X is compact here, 
(1) in §1 implies that C(E)* = G has G{<t>) = Sn as its invariance group 
in E = G(X). 

The extensions obtained from Lemma 1 are normal but not Galois. Examples 
for the latter arise from regular quasi-covering spaces (X, <£, E) with con­
nected X. There, G(<t>) is the only group H CZ G(4>) acting transitively on 
each fibre and if X (and thus E) is compact or, for instance, completely 
regular and satisfying the first axiom of countability, then by Lemma 2, by 
(1) or (2) in §1 and by (5) G(0) is the invariance group of C(E)* in C(X) 
and no proper subgroup of (?(<£) has C(E)* as its ring of invariants. In other 
words, G(X) is then a Galois extension of C(E)* with group G(4>) which is, 
furthermore, isomorphic to G(</>). 

If a Galois extension E of C = C(E) is given, in the manner just described, 
by some regular quasi-covering space (Xy <£, E) it will be called the Galois 
extension of C associated with {X, <j>, E). The finite Galois extensions of this 
type have a certain property which can best be formulated by means of the 
following concept, borrowed from the ideal theory of algebraic number fields: 
a finite Galois extension E of C is said to decompose fully the maximal ideal 
m in C if there are exactly as many maximal ideals ffl 2 nt in E as the group 
of E over C has elements. It is clear that all Galois extensions of C (E) associated 
with finite regular quasi-covering spaces (X, </>, E) fully decompose each fixed 
maximal ideal of C(E). However, not all finite Galois extensions of C(E) 
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with this latter property are associated with regular quasi-covering spaces 
of E. Take, for instance, E to be an open annular region in the plane, (X, t/s E) 
its regular covering space with group of order 2, and Xi and ï 2 two maximal 
completely regular filters on F above the same maximal completely regular 
filter on E. Now, let E be the ring of a l l / Ç C(F) with l i m / î i = l im/£ 2 . E 
is then a Galois extension of C = C(E)*, its group also being of order 2. 
However, it is not associated with any regular quasi-covering space of E 
since this would have to have group of order 2, and (F, \//, E) is the only 
such quasi-covering space whereas E 9e C(F) . 

This observation suggests that in order to describe at least a class of finite 
Galois extensions of G(E) associated with regular quasi-covering spaces of 
E by means of simple algebraic conditions one has to assume full decom­
position for all maximal ideals. With this, the following characterization can 
be obtained. 

PROPOSITION 2. Let E be a connected completely regular space. Then, a 
Galois extension E of C = C(E) has finite group and fully decomposes each 
maximal ideal in C if and only if it is associated with a finite regular quasi-
covering space (X, 0, E), with connected X, in which each non-convergent maximal 
completely regular filter on E contains an evenly covered open set. 

Proof. In the case of compact E, in which there are no non-convergent 
maximal completely regular filters, this is obvious from (3; 1) and Lemma 3. If 
E is not compact, one can first use the proposition for f3E since C(E) = C(pE). 
Hence, any extension E of the kind stated is associated with a regular quasi-
covering space ( F, \p, /3E) to which Lemma 4 can be applied ; this gives a 
regular quasi-covering space (X, <t>, E) with which E is also associated, and 
because of its origin and F = fiX, (X, <£, E) has the additional propreties 
concerning the maximal completely regular filters. Also, X is connected since 
F = (3X is. Conversely, if (X, </>, E) satisfies all the conditions listed, then 
Lemma 5 shows that each maximal ideal in C(E)* is contained in precisely 
as many maximal ideals of C(X) as G{<t>) has elements. This means the 
extension of C = C(E) associated with (X, 0, E) fully decomposes each 
maximal ideal of C. 

The condition for (X, </>, £) concerning the maximal completely regular 
filters on E prevents Proposition 2 from giving a complete description of the 
Galois extensions of C(£) which are associated with finite regular quasi-
covering spaces of E. However, the remark following Lemma 5 shows that 
for certain types of spaces this condition is redundant. Hence one has: 

COROLLARY 1. If E possesses a compact extension K such that each u £ K — E 
has an open neighbourhood U for which U C\ E is simply connected or if E is a 
finite dimensional separable metric space, then the extensions of C = C(E) 
associated with finite regular quasi-covering spaces of E are precisely the finite 
Galois extensions of C which fully decompose each maximal ideal of C. 
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In Proposition 2, a t tent ion is paid to the way in which the function ring C 

is concretely represented on some space. Independent of such representation 

of C one has : 

COROLLARY 2. If the finite Galois extension E of C fully decomposes each 
maximal ideal of C, then its group G permutes the maximal ideals of E above 
each maximal ideal of C transitively and E is finitely generated over C. 

Proof. E is associated with a regular quasi-covering space (X, 4>f E) where 
X and E are the maximal ideal spaces of E and C. The first par t follows 
immediately from this. For the second part , one observes first t h a t E is the 
union of finitely many evenly covered Vt and the par ts Vik into which the 
(j>~lVi split form an open covering of X. Then, \etfik Ç C(X) be a decompo­
sition of the unity, subordinate to this open covering, t h a t is, 0 K ftk < 1, 
fik = 0 outside Vik and ] £ / « = 1 (4, ch. IX , §4) and take hik such t ha t 
hilc

2 = / , * . Now, for any g Ç C(X) pu t gik = £ s(ghik), s Ç G(0) ; one then 
has gikhik = ghik

2 and hence g = £ gifcArt where g,* G C ( £ ) * . Thus , the hik 

generate G(X) over C(E)* . 

5. C o n c l u d i n g remarks . In view of Corollary 1 of Proposition 2 one 
might ask whether the restriction on (X, <f>, E) in this proposition is not, in 
fact, always redundant , in which case one would have a simple algebraic 
characterization of all Galois extensions of a function ring C ( J E ) which are 
associated with finite quasi-covering spaces of E. This question is equivalent 
with the following problem: if G is a finite group of automorphisms of a 
connected completely regular X such tha t no s £ G other than the unit has 
any fixed points, does the continuous extension of G to 0X have the same 
property? In order to show tha t the answer is positive it would be sufficient 
to prove, for any such X and G, the existence of some compact extension 
of E onto which G can be continuously extended without losing its part icular 
proper ty ; however, whilst this can be done for various special types of spaces, 
we do not know whether it is possible in general. 

Quite apa r t from this problem, a certain "external" characterization of the 
Galois extensions of C = C(E) which are associated with finite regular 
quasi-covering spaces of E can be given in the following way: the methods 
in §3 readily show tha t any Galois extension E of C which has finite group 
G and decomposes fully each fixed maximal ideal of C can be represented 
as the ring of (some) functions on a regular quasi-covering space (X, <£, E) 
such t ha t G is induced isomorphically by G(<j>). Therefore, a finite Galois 
extension E of C is associated with a regular quasi-covering space if and 
only if it fully decomposes each fixed maximal ideal of C and is not contained 
in any larger Galois extension of C with the same property whose group 
isomorphically induces the group of E. 

Another question arising from Proposition 2 is whether a similar t r ea tment 
be possible in the case of infinite groups. For this the concept of full decom-
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position of a maximal ideal has to be extended first, and it is natural to do 
this by calling a maximal ideal m in C fully decomposed by the Galois extension 
E of C with the group G if for any maximal ideal 90? 2 m in E sWl, s £ G, 
ranges over all maximal ideals above in such that styfl ̂  ttyfl if s 9e t. However, 
a Galois extension E of C = C(E) associated with a regular quasi-covering 
space (X, </>, E) whose G(</>) is infinite cannot even fully decompose any fixed 
maximal ideal of C, for each fibre <jrlx, x £ E, of the extension (fiX, \f/, @E) 
must contain points from f3X — X since otherwise </>-1x = \//~1xJ which would 
mean </>-1x is closed in pX besides being discrete and thus finite. Therefore, 
the concept of full decomposition of maximal ideals is useless for the descrip­
tion of the infinite Galois extensions of a function ring C(E) which are 
associated with regular quasi-covering spaces of E, whereas, on the other 
hand, such extensions do exist for suitable E. 
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