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Abstract. Inhomogeneous generalizations of the Kasner cosmological models have been found by Gowdy, 
and can be used to exhibit simplified models of quantized gravitational fields. One finds that a quantum 
description can be given arbitrarily near the singularity. Graviton pair creation occurs, and can be seen to 
convert anisotropic expansion rates into the energy of graviton pairs. 

1. Introduction 

What I have to present are the results of studying a particular class of cosmological 
models which provide a mathematically convenient, but highly idealized, description 
of a cosmological singularity that develops into a pair creation epoch, and terminates 
in an adiabatic expansion with redshifting particle energies. This class of models was 
found by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space 
Einstein equations describing inhomogeneous universes populated only by gravita­
tional waves. Thus the pair creation we deal with is the creation of graviton pairs, but 
for the main qualitative features of the pair creation process that are the focus of 
interest here, it is not expected that gravitons are less representative than the photons, 
electron-positron pairs, or scalar quanta treated in previous work on pair creation in 
gravitational fields (De Witt, 1953; Parker, 1969, 1972; Zel'dovich, 1970, 1972; Zel'­
dovich and Starobinsky, 1971). There are two major differences from these ground­
breaking treatments. One is that, by basing the work on exact classical solutions of 
Einstein's equations, the gravitational influences of the created pairs back upon the 
expanding universe are not ignored. The second is that, within some model of the 
quantum theory of gravity, a description of the Universe at times prior to t P i a n c k = 

= (hG/c5)1/2^ 1 0 ~ 4 3 s can be analysed. 
Berger (1972,1973) was the first to apply the Gowdy cosmological models to ques­

tions of pair creation. She used the ADM (Arnowitt, Deser, Misner) quantization 
methods, and considered a problem of the sort previously posed, namely, assuming a 
'no particle' state at some early time t0, how many particles are there at much later 
times. I subsequently rewrote this work (Misner, 1973) using superspace quantization 
methods (see Misner, 1972 for an introduction), and began asking a somewhat different 
question: for a given quantum state of the Universe at the singularity, how many 
particles are there at the later times of classical adiabatic expansion? 

Before going on to describe the results of these studies, I should give somewhat 
more detail about the model. Gowdy's T 3 metrics are Einstein-Rosen plane wave 
solutions with boundary conditions of spatial periodicity imposed to give space sec-
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tions a 3-torus topology. (Other Gowdy models have S2 x S 1 or S3 topologies.) The 
T3 metrics read 

d 5 2 = exp( - T -±A) ( - e*x dt2 + d62) + e2x{e* da2 + e d < 5 2 ) (1) 

where the metric parameters T, A, and /? are functions only of 9 and r. Each of the three 
space coordinates 9ad is treated as an independent angle to give the T 3 space topology. 
The Einstein equations include d2x/dt2 = 0, and one takes x proportional to t, excluding 
any ^-dependence, as a coordinate condition. The parameter /? satisfies a simple linear 
wave equation with a time-dependent phase velocity; explicit exact solutions can be 
written by a Fourier series for the ^-dependence leading to Bessel functions in the 
time dependence. There is a cosmological singularity at x = — oo which is of the Kasner-
like type that is described in another paper here by Belinskii et al (1974; see also 
Khalatnikov and Lifshitz 1963; Eardly et al, 1972). In this model the Khalatnikov-
Liftshitz parameter u governing the Kasner exponents is a function of 9 only, u = u(9), 
and gives the asymptotic values of dp/dx at the singularity T-> — oo. For late times 
T-> + OO a WKB solution to the wave equation for /? is valid, and one can unam-
bigously speak of gravitational waves or gravitons. In this limit the solution is the 
precise parallel of the D Z N solution (Doroshkevich et al, 1967) for unidirectional 
collisionless radiation in the Bianchi type I anisotropically expanding homogeneous 
universe, except that gravitons replace neutrinos or photons. 

2. Dissipation of Anisotropy 

One main result from studying these models is support for Zel'dovich's idea that pair 
creation will reduce expansion anisotropy. Although the solutions considered are not 
elaborate enough to evolve into Friedmann solutions, they do show energy in aniso­
tropic motions near the singularity being converted into energy of pairs. However all 
created pairs have momenta along the single preferred axis, so high anisotropy remains 
in the particle (graviton) momentum distribution. More realistic models would have 
to include particle-particle collisions that would tend to isotropize the momentum 
distribution. In other studies of the dissipation of anisotropy (Matzner and Misner, 
1972; Matzner, 1972) however, it was the conversion of anisotropy energy into particle 
energies that was most difficult to achieve, and Stewart (1969) had established limits 
on the rate at which such conversions could proceed in ideal gases of massless particles. 
(Dissipation via pair creation need not be subject to the limitations of Stewart's theo­
rem.) Once the anisotropy is changed from that of cosmological expansion rates to 
anisotropy of particle momentum distributions as illustrated in these Gowdy models, 
it can then be dissipated completely within a few particle-particle collision times, so 
that Friedmann solutions would result. Because no graviton-graviton scattering 
occurs in the Gowdy models, this second step in the isotropization process does not 
occur in them, and they shed light only on the crucial first step. 

https://doi.org/10.1017/S0074180900235651 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900235651


Q U A N T U M D E S C R I P T I O N S O F S I N G U L A R I T I E S L E A D I N G T O P A I R C R E A T I O N 321 

3. Model Quantization 

Let us now proceed to another question that these solutions help us with, namely, how 
can one describe the initial conditions of the Universe. The quantum models that can 
be based on the Gowdy cosmologies suggest that a quantum language could be 
developed in which 'the state of the Universe' a times prior to 10" 4 3 s would have a 
formal significance corresponding to well defined elements of the mathematical 
structure. The model to be described here, and some I have given earlier (Misner, 1972), 
even suggest that early states of the Universe can be chosen so they have clear asymp­
totic forms near the singularity which might be called states for the Universe at the 
singularity. The fact that the singularity is quite evident in these model quantum 
theories poses the important question: can one formulate and prove quantum singu­
larity theorems which require, even in a geometry with quantum limitations, a cos­
mological singularity of essentially the same inevitability and significance as the 
singularities in the classical Einstein theory? (For a viewpoint which can accept the 
singularity as part of physics rather than treating it as indicative of failures in physical 
theories, see the last section of Box 30.1 in MTW (Misner et al, 1973).) 

The model quantization to be described here allows one to begin to focus more 
concretely on some of these very abstract and speculative possibilities. Figure 1 

MODEL CORRECT 

general 
metric 
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Fig. 1. Model quantum theories may show the format and some physical features of a quantum theory of 
gravity, but they ignore quantum fluctuations in many modes by setting both the coordinates and momenta 

of the omitted modes to zero in violation of the uncertainty principle. 
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warns, however, of the difference between a model quantization and an approximate 
calculation within a proper quantum theory of gravity. The model quantization 
shows the methodology being developed for quantizing the gravitational field, but it 
omits quantum fluctuations in infinitely many degrees of freedom and their possible 
interactions with the degrees of freedom which are retained. (In the Gowdy models 
the amplitudes for graviton propagation in all but one direction have been discarded.) 
The model quantization of the Gowdy metrics uses methods previously employed 
(Misner, 1972 and papers cited there) for a finite number of degrees of freedom, as 
generalized by Kuchaf (1971,1973) to models like the present one with infinitely many 
degrees of freedom. The format of the quantization actually follows most closely 
Moncriefs (1972) ideas leading to a theory with a single residual constraint, rather 
than the Dirac or ADM methods modelled in earlier work. In the Dirac approach one 
has infinitely many hamiltonian constraints, one per space point, while the ADM 
approach imagines that these have all been solved prior to quantization, with a 
resultant loss in formal covariance. Moncrief showed that, as a condition on the state 
functional !F, a single linear combination of the Dirac Hamiltonian constraints 
implies all of them. This format achieves much of the close A D M parallel to elementary 
quantum mechanics without a comparable loss in formal covariance. 

In the model quantization of the Gowdy cosmologies, the single residual constraint 
that one finds is a Klein-Gordon type equation 

( • + ^ ) < F = 0 (2) 

3R3g d3x. 

The wave operator here is defined in the infinite-dimensional minisuperspace in 
which the coordinates (supercoordinates, i.e. metric parameters) may be chosen as 
T , A 0 = ( 2 T I ) - 1 j> X d0, and qn with {qH + iq-n)/y/2 = (2n)-1 $ *MP d0> " > 0 -

As indicated in Equation (2) the signature of the supermetric (metric in this mini­
superspace) is Lorentz or hyperbolic with one negative sign and all others positive. 
The concept of a metric structure in superspace (De Witt, 1967) arises from this 
equation. That is, one first writes the constraint provided by Einstein's equations, 
which in this model is 

n 

and then deduces from the form of this equation that a metric structure plays a signi­
ficant role. In this model 

d 5

2 = 2 ^ A 0 + J {6qnf (4) 
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defines the 'distance' in minisuperspace between two 3-space metrics gu and gij+Sgij9 

each of the form specified by Equation (1). (The fourier components A „ of A , other than 
A 0 , do not appear in Equation (4) and are determined by explicitly solving the mo­
mentum constraints.) The second term 0t in Equation (2) arises from the curvature of 
the 3-dimensional T = const space sections in a peculiar looking way, 

= | ( y ^ ^ ) V ^ d 3 x . (5) 

It is related to spatial coordinate in variance in a manner analyzed by Moncrief (1972), 
and is determined by the choice of the time coordinate condition. This term acts as a 
potential, or better as a variable mass term, in Equation (2). Because 0t can be both 
positive and negative in sufficiently general models, the wave propagation in this 
Klein-Gordon like equation is not normally restricted to the interior of the 'light-cones' 
of the supermetric, although this restriction does hold in the present models where 
0t<S), and appears to be typical of the dominant behaviour quite generally near the 
cosmological singularity. 

The residual constraint Equation (3) in this example can be solved by separation of 
variables. The wave functional W factors, and the factor corresponding to a single 
Fourier component q = qn of j? satisfies an equation of the form 

where some constant factors have been omitted. One sees that this equation presents 
the same mathematical problem as the Schroedinger equation of a simple harmonic 
oscillator whose spring constant is increasing exponentially in time. Two descriptions 
of states satisfying Equation (6) are then at hand. One uses the energy E and momentum 
p of the analogue oscillator mass, the other uses its excitation level quantum number N 
in the oscillator potential well. For the oscillator frequency o = e2t of Equation (6), 
the relationship between these two modes of description is given by 

E = (N+±)ha> = (N+i)e2t. (7) 

In general neither E nor N is constant, but there are limits in which one or the other is. 
In the application which led us to Equation (6) q is a Fourier component qn of the 

metric parameter /?, so the statement '^ is a state of excitation level AT is read 'there are 
N gravitons present of wavelength mode n\ and the case of constant JV corresponds to 
this notion of a graviton being well-defined. The condition for constancy is that the 
oscillator frequency changes in Equation (6) be adiabatic: 

J = _ „ ! ! J ^ _ 2 e - * « l . (8) 
'change <*> d t 

Thus for 1 the adiabatic or WKB solution of Equation (6) is valid and gravitons 
propagate preserving their number N while undergoing the usual cosmological red-
shifts. [Note: E is the energy of the analogue harmonic oscillator, but does not give 
the graviton energy.] 
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In the opposite limit, t-» — oo, the potential term in the Schroedinger Equation (6) 
vanishes, and the analogue oscillator becomes a free particle. Then p and E=\p2 

become constants, so that from Equation (7) it is clear that TV is rapidly varying. Figure 
2 shows that the time evolution of \jt (idealized in Figure 2 as its classical limit, the 
position q of the analogue oscillator mass) can be divided into three eras, the 'free 
particle' motion with constant E and p near t= — oo, a possible intermediate 'pair 
creation' stage where the potential is acting but does not change adiabatically, and 
the era r> 1 of constant graviton number N. The 'free particle' r-> — oo limit of the 
Schroedinger Equation (6) translates into a Kasner-like singularity for the metric 
of Equation (1). The model quantum theory finds no obstacles to the analysis of this 
singularity regime, and wave packet solutions of Equation (6) [with e 4 r = 0] are 
familiar. What is not appropriate is any attempt to describe this singularity era in 
terms of graviton numbers N. From Equation (7) with constant E, one sees that N 
must begin (at t = - oo) arbitrarily large and decrease rapidly, but from Figures 2 and 3 

Fig. 2. The Newtonian mechanical motion of a mass point under the influence of a time dependent 
potential V=\eXtq2 presents the same mathematical problem as the evolution of one Fourier component of 
the gravitational waves in the Gowdy universes. The figure shows schematically two possible classical 
motions confined within the potential walls ie4'tqiM = E+OD. In the typical case (full curve) the straight line 
free motion is terminated by interaction with the potential wall ('pair creation' era) at some time / < 0 when 
an adiabatic approximation is not yet valid. Classically this is an era of parametric amplifications of the 
wave amplitude q, while quantum mechanically the amplification of zero-point fluctuations (creation of 
quanta) also occurs. For t > 0 the time dependence of the potential is adiabatic, and the potential influences 
the motion for all initial conditions (i.e., for the broken curve also), but the excitation state N=Ejw 

(number of quanta) is an adiabatic invariant and remains constant. 
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Fig. 3. The oscillator potential V=je4tq2 is sketched at two different times. When the potential is 
stronger, the quantum excitation states, shown as horizontal lines, are more widely spaced. When the 
potential is too weak to have any influence, the system (gravitational wave amplitude or analogue mechan­
ical oscillator) will remain at fixed energy while the potential and the quantum levels within it change. In 
this case the evolution from one time (one side of the diagram) to another could correspond to a large 
change in TV without any change in the wave function ^, as occurs in the quantized Gowdy models near the 
cosmological singularity. Under conditions of adiabatic change in the potential, as for / - • + oo in these 
model cosmologies, the wave function changes under the influence of the potential to maintain its excitation 

level N constant. 

one sees that N is irrelevant during this 'free particle' portion of the analogue oscillators 
motion. The oscillator potential is too weak at these times to influence the wave func­
tion \//, but the level spacing of the harmonic oscillator states is rapidly changing, and 
with it the excitation level N assigned to a fixed wave packet. Only when the potential 
begins to influence the evolution of the wave function as in the 'pair creation' era 
in Figure 2, do the excitation levels N in this potential become physically meaningful. 

Unfortunately, although this model theory can be solved exactly both classically 
and quantum mechanically a good summary has not yet been formulated of the gravi­
ton pair creation which the model embodies. What seems to be lacking is a properly 
insightful measure of pair creation - a measure which would ignore the changing N 
values when momenta p are constant near the singularity, and ignore the changing 
p and E values in the late stages when N is constant, and then summarize the extent of 
the non-adiabatic work done in creating pairs in the intermediate stage. 

Another approach to the description of the quantum evolution of this model 
universe is to ask not 'how much graviton creation has occurred?' but instead 'how 
does the graviton population at late times depend on the conditions at the initial 
singularity ?' This is an S-matrix approach - relate the final state to the initial state - but 
one in which different modes of description are applicable to the two limits. Classically 
the initial states near the singularity in these cosmological models can be characterized 
by the constants p . ^ and q0 in the linear ('free particle') solution 

q=<io+p-oo? (9) 

of the Einstein equations near T = — oo. The resultant final state for T-» + oo may then 
be found to correspond to a fixed number N of gravitons. The relationship between 
the initial state and final state is the cosmological 5-matrix. In this example one finds 
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from semi-classical arguments a relationship of the form (Misner, 1973) 

JVoc[p- . ( t t ) ] 2 + ( « o ) 2 , (10) 

and Berger (1974) has given a complete and exact solution for the 5-matrix in the 
quantum model. 

In Equation (10), which refers to some fixed Fourier component qn of the gravita­
tional field amplitude /?, one of the initial conditions (q0, p_ <») is familar in the classical 
description of the Kasner-like singularity. This is the momentum P-00=p„ conjugate 
to qn, which is found to be just a Fourier component of the Khalatnikov-Lifshitz 
parameter u = u(6) describing the expansion rate anisotropy near the singularity. The 
other initial condition parameter q0 in the initial conditions for qn (Fourier component 
of ft) reflects inhomogeneities not in the expansion rates, but in the shape of the model 
universe near the singularity. Thus Equation (10) describes how inhomogenieties in 
the initial singularity appear as gravitational waves (gravitons) after the expansion 
slows and graviton production stops. But it does not suggest that any choice for the 
initial conditions (q0, /?_ ^ is more natural or appealing than any other. One lacks on 
the one hand a 'ground state' as a uniquely unexcited state among the many possible 
initial 'free particle like' wave packets, and on the other hand one lacks as well an 
energy-like controlling variable to allow statistical states of many degrees of freedom 
to be limited by a single parameter. It is possible that one or both of these simplifica­
tions in discussing the initial state of the Universe could occur in more general models. 
As Belinski et al. (1974) have described, the more typical singularity behaviour is closer 
to the mixmaster model than to the Kasner one. But Jacobs, Zapolsky and I have 
found (reported in Misner, 1972) that quantum models of the mixmaster cosmology do 
have something that could be called a ground state near the singularity, and they also 
provide an energy-like variable which is asymptotically constant near the singularity 
and limits all the q0 and p_ ̂  type initial condition variables in that problem. Thus if 
inhomogeneous universes could be studied which had mixmaster-like singularities, 
one might hope to find simpler answers than in the present model. One could then 
perhaps ask what spectrum and number of quanta result if the Universe begins in a 
'ground state singularity'; or one could ask the same questions for an initially station­
ary statistical state with a single excitation parameter governing all modes and 
wavelengths simultaneously. Although suitable techniques for approaching these 
questions are not known now, the recent progress in advancing from the homoge­
neous Kasner models first quantized only a few years ago, to their inhomogeneous 
analogues in the Gowdy models now, suggests that some effort in this direction is 
justified. 
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D I S C U S S I O N 

Icke: Are the predictions of your model only to be tested in inaccessible places like the early universe, or 
is there some hope that laboratory tests may be used? 

Misner: I am not aware that quantum gravity can be implicated in observations in any domain except, 
possibly, the early universe. Thus Novikov's report this morning is very exciting since it holds out the hope 
that some second set of measurements, not equivalent a priori to G, h and c, could point to a time of 10" 4 3 

s or smaller. Observations bearing on this prospect then have a most fundamental significance. 
Starobinsky: In the model considered by Prof. Misner, only gravitons moving in one direction are taken 

into account, so the time of isotropization of such a model need not be equal to the Planck time but 
depends upon initial conditions just as in classical solutions. Only when the excitation of all quantum 
modes in three dimensions is taken into consideration may the isotropization time be of the order of the 
Planck time for any initial conditions. 
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