
22

Instantons of QCD

In Chapter 5 we saw that solutions of the classical equations of motion, which are
characterized by a topological number, play an important role in two-dimensional
QFT. Derick’s theorem (5.36) forbids scalar field soliton solutions in higher than
two-dimensional space-time. However, for gauge fields one can bypass the theo-
rem, and indeed, as we have seen in Chapter 21, there are solitons in the form of
magnetic monopoles in four-dimensional gauge theories. The topic of this chap-
ter will be solutions of the Yang–Mills theory defined on a Euclidean space-time
which have finite action and are topological in their nature, the instantons. We
will start with a description of the basic properties of one instanton solution
including the topological charge that characterizes it. We then describe the con-
struction of multi-instanton solutions and the moduli space of instantons includ-
ing its dimension, complex nature, singularities and symmetries. When Wick
rotated to Minkowski space-time the instanton describes a tunneling process
between different vacua. We will elaborate on this phenomenon in the context of
the four-dimensional YM theory. Various properties of QCD and hadron physics
were thought to be related to instantons. In certain cases like confinement, the
relation to instantons is still a mystery. One case where the role of instantons
is clear is the U(1A ) problem. This will be described in the last section of this
chapter.

The one instanton solution was derived in [32]. The basic properties of instan-
tons were worked out by many authors including [125], [57]. The instantons of
SU(N) gauge symmetry were derived in [218]. There are several review papers
such as [65], [208] and [189] and books [182] and [188] that describe the basic
instanton solutions.

22.1 The basic properties of the instanton

The action of the four-dimensional YM theory in Euclidean space-time can be
rewritten in the following form,

S =
1

2g2

∫
d4xTr [Fμν Fμν ] =

1
4g2

∫
d4xFaμν F a

μν

S =
1

2g2

∫
d4x

[
±Tr [Fμν ∗Fμν ] +

1
2

Tr [(Fμν ∓ ∗Fμν )(Fμν ∓∗ Fμν )]
]

, (22.1)
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390 Instantons of QCD

where as usual Fμν = Fa
μν T a 1 and ∗Fμν = 1

2 εμνρσFρσ is the dual field strength,
and g is the YM coupling. The first term in the second line is a topological
invariant, or a topological charge2 since,

Q =
1

16π2

∫
d4xTr [Fμν ∗Fμν ] =

∫
d4x∂μKμ =

∮
dσμKμ, (22.2)

where,

Kμ =
1

8π2 εμνρσ Tr
[
Aν

(
∂ρAσ +

3
2
AρAσ

)]
. (22.3)

In fact Q is the Pontryagin index or the winding number of maps from the
sphere at space-time infinity to the SU(2) group manifold which is also the
three sphere, namely S3

s → S3
g . This topological invariant is the homotopy π3(S3)

which is an integer π3(S3) ∈ Z. This can be shown as follows. Since the self-dual
field is asymptotically a pure gauge, namely on σμ Aμ = U∂μU−1 and Fμν = 0
hence,

Q =
1

24π2

∮
dσμεμνρσ Tr [Aν AρAσ ]

Q =
1

24π2

∮
dσμεμνρσ Tr [(∂ν U)U−1(∂ρU)U−1(∂σU)U−1 ]. (22.4)

If we take for U the following ansatz that will be shown below to correspond
to the one instanton solution,

U(x) = x̂μσμ = x0 + ixiσi, (22.5)

we found,

Q =
∮

dσμKμ = − 1
24π2

∫
dσμ

(
−12xμ

|x4 |

)
=

1
2π2

∫
dΩxμ |x|2

xμ

|x|4 =
1

2π2

∫
dΩ = 1. (22.6)

Thus we have shown that Q is indeed the winding number that measures how
many times we wind S3

g when we integrate over S3
s .

Let us now return to (22.1). Since it is a sum of a topological charge and a
positive semi-definite quantity, it is clear that it is minimized when the latter
vanishes namely,

Fμν = ±∗Fμν . (22.7)

The corresponding gauge fields Aμ (with a + sign) will be referred to as instanton
or self-dual gauge field and those with a − sign as anti instanton or anti self-dual

1 In this chapter we denote the SU (N ) adjoint indices with a = 1, . . . , N 2 − 1 whereas in
Chapter 19 we used A and not a.

2 Recall in analogy the topological charge defined in two-dimensional scalar field theories (5.3).
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22.1 The basic properties of the instanton 391

gauge field. It is straightforward to show that the self-duality condition implies
the equation of motion,

DμFμν = 0. (22.8)

A solution of the equation of motion is not necessary self-dual but it can be shown
that the non-self-dual configurations are saddle points and not local minima of
the action.

Comparing the expression of the action (22.1) and the topological charge (22.2)
it is clear that a (anti) self-dual configuration that carries an instanton number
(Q = −k), Q = k has an action of,

S =
8π2

g2 |k|. (22.9)

One can add the topological charge as an additional term to the action. To be
more precise one adds a θ term,

Sθ = i
θ

16π2

∫
d4xTr [Fμν ∗Fμν ] = iθk. (22.10)

Whereas the ordinary YM action is the same for the instanton and anti-instanton,
the θ term obviously distinguishes between them by assigning opposite charges
to them. We will further discuss the theta term in Section 22.5. For the self-dual
solution up to a constant the action is equal to the topological charge which by
definition does not depend on the metric. This exhibits the topological nature of
the instanton. Another indication of this nature is the fact that it has vanishing
energy-momentum tensor as follows from,

Tμν = − 2
g2 Tr

[
FμρFνρ −

1
4
δμν Fαβ Fαβ

]
= 0. (22.11)

This clearly implies that instantons do not curve the space-time they
reside in.

The one instanton solution for the SU(2) can be constructed from U(x) given
in (22.5) via,

Aa
μ(x) = U−1∂μU

ρ2

(x−X)2 + ρ2 , (22.12)

which yields the explicit form,

Aa
μ(x) = 2

ηa
μν (x−X)ν

(x−X)2 + ρ2 , (22.13)

where ηa
μν is the ’t Hooft antisymmetric symbol defined by,

ηa
μν = εa

μν μ, ν = 1, 2, 3 ηa
μ4 = −ηa

4μ = δa
μ

η̄a
μν = εa

μν μ, ν = 1, 2, 3 η̄a
μ4 = −η̄a

4μ = −δa
μ . (22.14)
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392 Instantons of QCD

It is easy to check that ηa
μν and η̄a

μν are self-dual and anti self-dual respectively.
The corresponding field strength takes the form,

Fa
μν = −4ηa

μν

ρ2

[(x−X)2 + ρ2 ]2
. (22.15)

Obviously since ηa
μν is self-dual so is Fa

μν .
The one instanton solution is characterized by eight parameters, four corre-

spond to the center of the instanton Xμ , one to the size of the instanton ρ and
three to three global SU(2) gauge transformations. Recall that fixing a guage
we fix only the local gauge transformations. The space of parameters of the k

instanton solutions will be further addressed in Section 22.3 where it will be
shown that in general for SU(N) the dimension of the moduli space is 4kN .

The instanton solution (22.13) falls off asymptotically as 1
x and hence it con-

tributes a finite amount to the integral of the topological charge (winding num-
ber) which is of the form

∫
A3x3dΩ. The field strength falls off as 1/x4 such

that indeed the corresponding action is finite. However due to the 1
x asymptotic

behavior it is difficult to form square integrable expressions that contain it. For
that purpose one can use the following singular gauge transformation,

U =
σ†

μ(x−X)μ

|x−X| , (22.16)

which renders the instanton to have a 1
x3 fall off as can be seen from,

Aa
μ =

1
g

2ρ2(x−X)ν η̄a
νμ

(x−X)2 [(x−X)2 + ρ2 ]
. (22.17)

The singular instanton is obviously singular at the location of the instanton
xμ = Xμ . This singularity is not physical and can be removed by a gauge trans-
formation or by puncturing the Euclidean space with the singular point being
removed.

Instantons of SU(N) gauge theory can be constructed by embedding SU(2)
instantons in SU(N) for instance,

ASU (N )
μ =

(
0 0
0 A

SU (2)
μ

)
, (22.18)

where the instanton is the 2× 2 matrix on the lower right. The most general
SU(N) one instanton configuration can be derived from (22.18) by the following
transformation,

ASU (N )
μ = U†

(
0 0
0 A

SU (2)
μ

)
U U ∈ SU(N)

SU(N − 2)× U(1)
. (22.19)

Operating with U ∈ SU(N − 2)× U(1) obviously leaves the basic configuration
invariant and thus only transformations with elements of the coset are relevant.
This is in accordnace with the fact that for a k instanton solution the stability
group is S(U(N − 2k)× U1)) as will be shown in Section 22.3. The dimension
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22.1 The basic properties of the instanton 393

of the coset is N 2 − 1− ((N − 2)2 = 4N − 5. Together with the 5 parameters
of the location and the size we have 4N collective coordinates. Indeed in Sec-
tion 22.3 we will see that in general the dimension of the moduli space is
4Nk for instanton number equals k solution. To demonstrate this counting con-
sider the case of SU(3) for which the generators are the Gell–Mann matrices
{λa}, a = 1, . . . , 8. The first three generators λa, a = 1, 2, 3 form the SU(2)
k = 1 instanton. λ4 , . . . , λ7 form two doublets under this SU(2) so they can gen-
erate new solutions while λ8 commutes with the SU(2) and hence leaves the
basic SU(2) solution invariant.

One can express the instanton solution in terms of quaternionic notation. This
will turn out to be convenient for the ADHM construction of multi-instanton
solutions (see Section 22.2). The idea is to make use of the representations of
the covering group SU(2)L × SU(2)R of the Lorentz group of four-dimensional
Euclidean space-time rather than the SO(4) Lorentz group itself. In particular we
represent any four vector of SO(4) as a (2, 2) representation of SU(2)L × SU(2)R ,
for instance the four vector xμ is denoted by xαα̇ or xα̇α defined as follows,

xαα̇ = xμσμ
αα̇ xα̇α = xμσ̄α̇α

μ , (22.20)

where σμ
αα̇ is a 2× 2 matrix of (i�σ, 1) and σ̄μ

α̇α = (σμ
αα̇ )†. In terms of the quater-

nionic notation the one instanton solution (22.13) for SU(2) gauge theory is
given by,

Aμ =
1
g

2(x−X)ν Σνμ

(x−X)2 + ρ2 , (22.21)

where Σμν , which were introduced in Section 17.1, are the part of the Lorentz
generators that do not act on the space-time coordinates but only on the internal
degrees of freedom. Here using the SU(2)L × SU(2)R notation we define them
as follows,

Σμν =
1
4
(σμσ̄ν − σ̄ν σμ) Σ̄μν =

1
4
(σ̄μσν − σν σ̄μ). (22.22)

The self-duality property of the instanton configuration follows trivially from the
fact that Σμν is self-dual, namely,

Σμν =
1
2
εμνλρΣλρ Σ̄μν = −1

2
εμνλρΣ̄λρ . (22.23)

The corresponding field strength reads,

Fμν =
1
g

4ρΣμν

((x−X)2 + ρ2)2 . (22.24)

As was discussed above, the instanton solution (22.21) falls off asymptotically as
1
x and hence it is difficult to form square integrable expressions that contain it.
The solution in the singular gauge now reads,

Aμ =
1
g

2ρ2(x−X)μ Σ̄νμ

((x−X)2(x−X)2 + ρ2)
. (22.25)
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394 Instantons of QCD

22.2 The ADHM construction of instantons

The vacua of the YM theory is given by pure gauge configurations (which can
be written in terms of a double index notation,

Aμ
ij =

1
g
U†l

i∂
μUlj , (22.26)

where i, j, l = 1, . . . , N . It is straightforward to check that this gauge field obeys
the self-duality condition. The idea of the ADHM construction3 is to generalize
this configuration also to the k instanton case by taking now the matrices U to
be of the form UIi where I = 1, . . . , N + 2k with the orthonormality condition,

U†I
i UIj = δij . (22.27)

The U matrices are the basis vectors of a null space,

Δ†α̇I
I UIi = 0 = U†I

i ΔII α̇ , (22.28)

where I = 1, . . . , k and ΔII α̇ is a (N + 2k)× 2k complex valued matrix which is
taken to be linear in the space-time coordinate xμ , namely takes the form,

ΔII α̇ = aII α̇ + bα
II xαα̇ Δ†α̇I

I = a†α̇I
I + xα̇αbIIα , (22.29)

and with Δ†α̇I
I ≡ (ΔII α̇ )∗.

The ADHM k instanton solution of the form (22.26) is self-dual if one further
requires that ΔII α̇ obeys the following condition,

Δ†α̇I
I ΔIJ β̇ = δα̇

β̇
(f−1)IJ , (22.30)

where f is an arbitrary x-dependent k × k dimensional Hermitian matrix. Since
fIJ (x) is arbitrary there are three “ADHM constraints” on a, a†, b and b†,

a†α̇I
I aIJ β̇ =

(
1
2
a†a

)
IJ

δα̇
β̇

a†α̇I
I bII β̇ = b†

βI
I aα̇

IJ

b†
I
αI b

β
II =

(
1
2
a†a

)
IJ

δβ
α . (22.31)

It is straightforward to realize that the ADHM construction is invariant under,

Δ→ AΔB−1 U → AU f → BfB†, (22.32)

where A ∈ U(N + 2k) and B ∈ GL(k, C). Thus by construction there is a redun-
dancy in a and b. One can choose a simple canonical form for b and a as follows,

bβ
IJ =

(
0

δβ
αδIJ

)
b†

I
βJ = (0 , δα

β δji)

aIJ α̇ =
(

α̂iJ α̇

(a′
αα̇ )IJ

)
a†α̇I

J = (âα̇
J i , (a′†α̇al

)IJ ). (22.33)

where I = i + Iα.

3 Multi-instanton solutions were presented in [220], [132] and other papers. Our discussion of
the construction of multi-instanton is based on the paper of ADHM [20]. This approach was
further discussed in [70]. We follow the description of the construction given in [81].
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22.2 The ADHM construction of instantons 395

In this parametrization the third ADHM constraint is automatically obeyed
while the other two take the form,

�σα̇
β̇
(a†β̇

aα̇ ) = �σα̇
β̇
((̂a†)

β̇
âα̇ + a′†β̇

a′
α̇ ) = 0, (22.34)

where we made use of the fact that a′ must be Hermitian. In this canonical
parametrization the matrix f reads,

f = 2((â†)
α̇
âα̇ + (a′

μ + xμ1[k ]×[k ])2)−1 . (22.35)

The field strength Fμν that corresponds to the ADHM k instanton configura-
tion (22.26) can be written in the following form,

Fμν = ∂μAν − ∂ν Aμ + g[Aμ,Aν ] =
1
g
∂[μ(U†∂ν ]U) +

1
g
(U†∂[μU)(U†∂ν ]U)

=
1
g
∂[μU†(1− U†U)∂ν ]U) =

1
g
∂[μU†ΔfΔ†∂ν ]U

=
1
g
U†∂[μΔf∂ν ]Δ†U =

1
g
U†bσ[μ σ̄ν ]fb+U = 4

1
g
U†bσμν fb+U, (22.36)

where we have made use of,

PJ
I ≡ UIiU

†J = δJI −ΔII α̇ fIJ Δ†α̇J
J . (22.37)

To get an explicit expression for Aμ we make use of the decomposition

UIi =
(

Ûij

(U ′
α )I i

)
ΔIJ α̇ =

(
âiJ α̇

(Δ′
αα̇ )IJ

)
. (22.38)

From the completeness condition (22.37) Û can take the form,

U =
√

(i[N ]×[N ] − âα̇ f(â)†α̇ ) U ′ = Δ′
α̇ f(â)†

α̇
(û)†

−1
. (22.39)

We next show that for the particular case of k = 1 the ADHM solution (22.26)
is identical to (22.25). For k = 1 we have to drop the indices I, J . One can verify
that in that case the parameters a′

μ can be identified with the center of the
instanton Xμ . From the ADHM constraint (22.34) we get that,

(â†)
β̇
âα̇ = ρ2δβ̇

α̇ , (22.40)

and,

f =
1

(xμ −Xμ)2 + ρ2 , (22.41)

where ρ will naturally be the size of the instanton.
From the relation (22.39) we deduce that,

Û = 1[N ]×[N ] +
1
ρ2

(√
(x−X)2

(x−X)2 + ρ2 − 1

)
(â†)β̇ âα̇ ,

U ′ = − (x−X)αα̇ (â†)α̇

|x−X|
√

(x−X)2 + ρ2
. (22.42)
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396 Instantons of QCD

Plugging these expressions into U we finally get the singular form of the one
instanton solution (22.25).

In general for k 	= 1 one can show that the gauge configuration given in (22.36)
indeed carries an instanton of charge k. To derive this result one makes use of
the following relation,

g2 Tr [F 2
μν ] = ∂μ∂μtrk [log f ]. (22.43)

This relation can be proven by expanding the two sides of the equations using
the explicit expression for Fμν (22.36). Upon integrating (22.43) over the whole
Euclidean space-time divided by 1

16π2 and making use of the fact that asymp-
totically f(x)→ 1

x2 , we find that indeed it is equal to the instanton charge k.

22.3 On the moduli space of instantons

The moduli space of instantons4 M is the space of inequivalent self-dual Yang–
Mills configurations. The notion of moduli space of solutions is an important tool
in general and in particular for instantons. We have encountered it in the context
of magnetic monopoles in (21.10). We will elaborate in this section about the
basic properties of the moduli space of instantons such as its dimension, complex
structure, metric, symmetries, and singularities.

Consider a small fluctuation δAμ(x) around an instanton solution Aμ(x) which
is also a self-dual solution of the YM equation, namely, it obeys to linear in
δAμ(x),

DμδAν −Dν δAμ = εμνρσDρδAσ , (22.44)

where Dμ is the covariant derivative in the instanton background. In terms of
the quateronic notation this equation reads,

�σα̇
β 	D†β̇α

δAαα̇ = 0, (22.45)

where 	D = σμDμ . Next we would like to guarantee that the fluctuation is not a
local gauge transformation. This can be done by requiring that the fluctuation
be orthogonal to any gauge transformation, namely,∫

d3xTr[δAμDμΛ] = 0 → DμδAμ = 0, (22.46)

where we have made use of an integration by parts to derive the last expression.
In the quaternionic notation this condition takes the form of 	D†α̇α

δAαα̇ = 0
which combined with (22.45) is given by,

	D†α̇α
δAαβ̇ = 0. (22.47)

4 The properties of the moduli space of instantons were discussed by many authors. In partic-
ular [155], [141] and [80]. The review about the moduli space that we are using is [81].
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22.3 On the moduli space of instantons 397

The fluctuation that obeys this equation is referred to as a zero mode since it is
a physical fluctuation that does not change the action. Note that this is exactly
the equation of motion of a Weyl spinor in the background of the instanton
Aμ(x). The zero modes defined by (22.47) are the collective coordinates of the
instantons.

Since the YM instantons are characterized by the topological charge defined
in (22.2) so is the corresponding moduli space. We thus discuss the moduli space
of instantons of charge k which we denote byMk .

It can be proven that the moduli space of instantons is a manifold. In fact we
will see below thatMk has some conical singular points associated with zero size
instantons. The coordinates on the moduli space are the collective coordinates
that were just shown to be equivalent to the zero model (22.47). We denote by Xn

the collective coordinates where n = 1, . . . ,dimMk . A trivial set of coordinates
are the space-time coordinates of the center of the instanton Xμ accordingly the
moduli space is a product of the form,

Mk = R4 × M̂k . (22.48)

The collective coordinates Xμ follow from the fact that the instanton solu-
tion breaks the symmetry of the action under space-time translations. There are
other collective coordinates that associate with symmetries of the theory that the
instanton configuration breaks. However, not all symmetries yield non equivalent
collective coordinates and not all the coordinates associate with broken symme-
tries.

From the ADHM construction it follows that the moduli space is identified
with the variable aα̇ subject to the ADHM constraints (22.31) quotiented by the
residual U(K) symmetry transformation (22.32) with,

A =
(

1[N ]×[N ] 0
0 C1[2]×[2]

)
, B = C C ∈ U(k), (22.49)

which preserve the canonical form of b (22.33) and transform a as follows,

âiI α̇ → âα̇C a′
μ → C†a′

μC. (22.50)

Thus the dimension of the moduli space is,

dimMk = 4k(N + K)− 4 dim U(k) = 4k(N + k)− 4k2 = 4NK. (22.51)

This result can be derived also by using an index theorem that counts the zero
modes at a point in the moduli space. In fact as we will see shortly the spaceMk

is a hyper-Kahler quotient of the flat space R4k(k+N ) by the U(k) group. The
one instanton solution of SU(2) is indeed characterized by the four coordinates
of its center, its size and three global SU(2) gauge transformations.

The moduli space is a complex manifold. A complex manifold is an even-
dimensional manifold that admits a complex structure I a linear map of the
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tangent space to itself such that I2 = 0. There are always local holomorphic
coordinates (Zi, Z̄i), i = 1, . . . , n (see Section 1.1) for which,

I =
(

iδī
j̄

0
0 −iδi

j

)
g = gij̄ dZ

idZ̄j̄ w = igij̄ dZ
i ∧ dZ̄j̄ . (22.52)

where g is an Hermitian metric and w is referred to as the fundamental 2 form.
In the case that the fundamental 2 form is closed namely dw = 0 it is called the
Kähler form and the associated manifold is a Kähler manifold. The latter is also
characterized by the fact that the complex structure is covariantly constant and
the Kähler metric can be derived from a Kähler potential,

∇μI = 0 gij̄ = ∂i∂j̄K. (22.53)

The moduli space of instanton is not only a Kähler manifold but in fact a hyper
Kähler manifold which means that it admits three linearly independent complex
structures, I(c) , c = 1, 2, 3 that satisfies the algebra

I(c)I(d) = −δcd + εcdeI(e) . (22.54)

The four-dimensional Euclidean space R4 is hyper Kähler and the three complex
structures are,

I(c)
μν = −ηc

μν (�I · x)αα̇ = ixαβ̇�σβ̇
α̇ , (22.55)

where ηc
μν is the ’t Hooft η symbol defined in (22.14) and the expression in the

left-hand side is the quaterionic formulation. Now recall that by the definition
of the zero modes (22.47), if δnAαα̇ is a zero mode so is also δnAαα̇Cβ̇

α̇ for any
constant matrix C and in particular also to �σ and hence if δnAαα̇ so is also
(�I · δnA)αα̇ = iδnAαα̇�σβ̇

α̇ . Since the zero modes form a complete set there must
exist �In

m such that,

(�I · δm A)αα̇ = δnAαα̇
�In

m , (22.56)

from which it implies that �In
m satisfies the algebra (22.54).

The Kähler potential which is common to the three complex structures of the
moduli space of instantons takes the form,

K = −g2

4

∫
d4xx2 TrFμν Fμν . (22.57)

Using the form of I(c) on R4 given in (22.52) for instance I(3) associated with
the complex coordinates on R4 ix3 + x4 and ix1 − x2 , we find that,

(I(c) · ∂Z i A)αα̇ = i∂Z i Aαα̇ , (22.58)

for instance for I(3) we get ∂Z i Aα2 = ∂Z̄ ī Aα1 = 0. Furthermore the derivative
with the respect to the holomorphic and anti-holomorphic coordinates of the
gauge fields obey the equations of zero modes namely,

δiAμ ≡ ∂Z i Aμ δ̄īAμ ≡ ∂Z̄ ī Aμ . (22.59)
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It further follows that ∂Z̄ j̄ ∂Z i Aμ = 0 and hence,

∂Z̄ j̄ ∂Z i Tr [F 2
μν ] = ∂μ∂μ Tr [δiAμ δ̄j̄Aμ − 2∂μ∂ν ] Tr δiAμ δ̄j̄Aν . (22.60)

Upon integrating by parts twice we find the metric on the moduli space,

∂Z̄ j̄ ∂Z i K = −2g2
∫

d4xTr δiAμ δ̄j̄Aμ = gij̄ . (22.61)

Next let us now discuss the symmetries of the moduli space, in particular the
realization of symmetries of the gauge theory which are broken by the instanton
configuration. We start with the four-dimensional conformal group (see Section
17). In the quaternionic formulation the basic variable of the ADHM construction
Δ is transformed as follows,

x→ x′ = (Ax + B)(cX + D)−1 det
(

AB

CD

)
= 1

Δ(x; a, b) → Δ(x′; a, b) = Δ(x; aD + bB, aC + bA)(Cx + D)−1 (22.62)

In fact the term (Cx + D)−1 in the right-hand side of the last equation is irrele-
vant since the gauge field depends on U and U† defined in (22.26) is redundant.

We can now use transformations of (22.32) that keeps the canonical structure
of b (22.33). Upon applying this transformation a goes into,

a→ A(aD + bB)B−1 . (22.63)

A particular example of transformations which belong to the conformal group
are the translations. For this case,

Δ(x; a, b)→ Δ(x; a + bε, b), (22.64)

from which it follows that,

a′
μ → a′

μ + εμ1[k ]×[k ] âα̇ → âα̇ . (22.65)

It is thus clear that indeed the components a′
μ are proportional to the coordinates

of the center of the instanton,

trka′
μ = kXμ. (22.66)

Global gauge transformations act non trivially on the ADHM variables if N ≤
2k, while if N ≥ 2k there are transformations that leave the instantons fixed.
This is the stability group of the instanton. One can embed the k instanton
solution in an SU(2k) subgroup of SU(N) and show that the stability group is
S(U(N − 2k)× U(1)).

The moduli space M̂k is in fact not a smooth manifold due to certain singu-
larities. However, these singularities do not signal any pathology of the moduli
space and integrals over the moduli space are well defined. It can be shown that
M̂k is a cone. For the moduli space of single instanton k = 1 the apex of the
cone is the point ρ = 0 where the instanton has a zero size. This structure can
be generalized also to the k 	= 1 instantons.
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Topological characteristics of the moduli space can be described by a topologi-
cal field theory where the observables of the theory are the topological invariants.
This is beyond the scope of this book and we refer the interested reader to the
list of references for this chapter.

22.4 Instantons and tunneling between the vacua of the
YM theory

The vacua of the YM theory in Minkowsi space-time are defined to be the gauge
configurations for which the energy vanishes. Using the temporal gauge A0 = 0,
the Hamiltonian of the theory is

H =
1

2g2

∫
d3xTr [E2 + B2 ]. (22.67)

Thus a classical vacuum has a vanishing field strength,

Fμν = 0 → Ai(x, t) = iU(x, t)∂iU(x, t)†. (22.68)

Thus the vacuum gauge configuration is that of a pure gauge. Prior to a dis-
cussion of how to tunnel between two vacuum states, we have to classify and
enumerate the vacua namely following (22.68) the group elements U(x). This
translates to the equivalence classes of maps from S3 to the SU(N) group man-
ifold. This is done by the topological charge or winding number or Pontryagin
number defined in (22.2). Since this step is very essential in the discussion of the
tunneling let us clarify this point. Let us analyze the tunneling between a vacuum
state Ai(x, t1) at t = t1 into another vacuum state Ai(x, t2) at t = t2 . On top of
fixing A0(x, t) = 0 we can use the residual gauge symmetry to set Ai(x, t1) = 0.
Next we consider a path in the space of gauge configurations that connects the
two vacua points and has a finite energy H (in Minkowski space-time). Finite
energy implies that for large |�x| → ∞ it has to be a pure gauge,

Aμ →|x|→∞ U∂μU†. (22.69)

Since A0 = 0, U(x, t) = U(x) is time independent. Because U(x, t1) = 1 we
obtain that for all t and |x| → ∞, U = 1 and hence also Ai(x, t2) −→|x|→∞ 0. The
fact that asymptotically in |�x| all Ai = 0 allows us to compactify the spacelike
hypersurface at fixed t into S3 . The following Fig. 22.1 describes the situation.

On the boundary of hyper-cylinder the gauge fields Ai vanish apart from on
the hyper-disk at t = t2 where Ai is a pure gauge. Consider now the topological
charge which we have seen (22.2) is in fact a surface term. Since on the boundary
Fμν = the contribution to the surface integral takes the form,

Q =
1

24π2 εμνρσ

∮
dσμTr [Aν AρAσ ]

=
1

24π2 ε0ijk

∫
d3xr[U∂iU

†U∂jU
†U∂kU†], (22.70)
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Aj = e–α
j eα

t = t2

t = t1

Aj = 0

Aj = 0

Fig. 22.1. Compactification of the space coordinates on S3 at fixed t.

where in the last expression the integration is over the three sphere at t = t2
since at all other parts of the surface of the hyper-cylinder Ai = 0. Thus
the configurations in Minkowski space-time that connect a vacuum state at
t = t1 to one at t = t2 are classified by the winding number of the maps of
S3(space)→ S3(group) just as the maps of instanton in Euclidean space-time.5

In the latter case S3(space) is the boundary of R4 whereas in the former it is a
compactification of R3 at t = t2 .

It is easy to realize that there is no way to interpolate a vacuum at t = t1 of
zero winding number with a one at t = t2 with non vanishing winding number
with a configuration of zero energy. The latter corresponds to a pure gauge
configuration which has Fμν = 0 everywhere and hence also vanishing topological
number. Thus the energy of the tunneling configuration as a function of time
should look as in Fig. 22.2.

To identify the configuration that has the largest tunneling rate we consider a
family of gauge configurations characterized by the collective coordinates asso-
ciated with a coordinate transformation from t to λ(t) such that,

A
(λ)
i (x, t) = Ai(x, λ(t)), (22.71)

with the requirement that λ(t1) = t1 and λ(t2) = t2 . Next we compute the elec-
tric and magnetic fields,

Ei = Fi0 = −∂0A
(λ)(x, t) =

∂Ai

∂λ
(x, λ(t))λ̇

Bi =
1
2
εijkFjk =

1
2
εijk (∂jAk (x, λ(t)) + Aj (x, λ(t)(Ak (x, λ(t))− (j ↔ k) (22.72)

5 The role of instantons in tunneling between different vacua was proposed in [131]. It was also
discussed in [26], [40] and [44]. This topic is reviewed in [185] and in [209]. We follow the
latter.
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H (t)

t1 t2

t

Fig. 22.2. The energy of the tunneling configuration as a function of time.

and substitute them into the Lagrangian L =
∫

d3xL =
∫

d3x[− 1
g 2 Tr [E2 −B2 ]]

which can be written in the following form,

L = −1
2
m(λ)(λ̇)2 − V (λ),

m(λ) =
2
g2

∫
d3xTr

(
∂Ai

∂λ

)2

≥ 0,

V (λ) = − 1
g2

∫
d3xTr (Bi)2 ≥ 0. (22.73)

The Lagrangian (22.73) is the Lagrangian of a particle that moves from one
vacuum at t = t1 where V (λ) = m(λ) = 0 to a vacuum at t = t2 , where again
V (λ) = m(λ) = 0. The quantum mechanical tunneling rate is proportional to
e−2R where R is given by,

R =
∫ λ2

λ1

dλ
√

2m(λ)(V (λ)− E)

=
∫ λ2

λ1

dλ

√√√√[( 1
g2

∫
d3xTr

(
∂Ai

∂λ

)2
)(

1
g2

∫
d3xTr (Bi)2

)]

=
2
g2

∫ t2

t1

dt

√(∫
d3xTr (Ei)2

)(
1
g2

∫
d3xTr (Bi)2

)
. (22.74)

Using the triangle inequality we can relate the tunneling rate to the winding or
instanton number as follows,

R ≥ 2
g2 |
∫ t2

t1

d4xTr [EiBi ]| = 8π2

g2 |k|, (22.75)
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where the instanton number is Q = k. Thus we see that the tunneling rate is
bounded by,

e−R ≤ e−
8 π 2

g 2 |k |
, (22.76)

and the bound is saturated for instanton configurations. To be more precise
the most probable tunneling paths are given by a Minkowski gauge configura-
tion with �E = ± �B which when viewed as a configuration in Euclidean space
are instantons. Conversely given an instanton AE

μ (x, t) in Euclidean space one
can construct a set of paths in Minkowski space-time AM

μ (x, λ(t)) such that

A
M,(λ)
i (x, t) = AE

μ (x, λ(t)) and A
M,(λ)
0 (x, t) = AE

4 (x, λ(t)).

22.5 Instantons, theta vacua and the UA(1) anomaly

It was shown in the previous section that the instantons connect different vacua.
This means that the vacuum of the YM theory cannot be described by any of
the states of zero energy and a specific topological charge, but instead has to be
a superposition of all these states, namely,

|θ> =
∑

k

eikθ |k> . (22.77)

The generator of large gauge transformation that changes the winding number by
one unit, namely, T |k>= |k + 1> has to be a symmetry generator that commutes
with the Hamiltonian so that T |vac>= eiϕ |vac> for some phase ϕ. Indeed for
the θ vacuum we get T |θ> =

∑
k eikθ |k + 1>= e−iθ |θ>.

The energy associated with the θ vacua given by,

E(θ) = −2K cos(θ)e−S . (22.78)

This follows from the following steps. Consider the amplitude to tunnel from a
vacuum |i> to a vacuum |j> is given by,

<j|e−H t |i>=
∑

N±
δN+ −N−−(j−i)

N+!N−!
(Kte−S )N+ +N− , (22.79)

when the instantons are sufficiently dilute and where K is the pre-exponential
factor in the tunneling amplitude, and N± are the number of instantons and anti-
instantons. We introduce the parameter θ via a representation of the Kroneker
delta function,

δN+ −N+ +(i−j ) =
1
2π

∫ 2π

0
eiθ(N+ −N+ +(i−j )) . (22.80)

Upon performing the summations over N+ and N− we get,

<j|e−H t |i>=
∫ 2π

0
eiθ(i−j )e2K t cos(θ)e−S

, (22.81)
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which implies that the energy of the θ vacuum is as given in (22.78). Note that
this does not imply that the YM theory has a continuous spectrum without mass
gap since the θ parameter is fixed for a given theory and it cannot be changed.
Fixing the value of θ can be achieved by adding a θ term to the action (22.10),

SYM =
1

2g2

∫
d4xTr Fμν Fμν → 1

2g2

∫
d4xTr Fμν Fμν +

θ

16π2

∫
d4xTr [Fμν

∗Fμν ].

(22.82)
The additional θ term is a surface term and hence does not affect the equations
of motion, however it is not invariant under CP or T transformations.6 As will be
discussed below, with no massless quarks indeed the θ term implies a strong CP

violation. The most severe restriction on CP violation comes from the electric
dipole moment of the neutron. This sets the upper bound to theta to be,

θ < 10−9 . (22.83)

The puzzle of why θ is so tiny is referred to as the strong CP problem. One
proposal to handle this problem is the introduction of the axion, χ, a pseudo
scalar field with a coupling of the form χ Tr [Fμν

∗Fμν ] so that the effective θ is
the sum of

√
< χ > and the θ term. As will be discussed below there is in fact

an even simpler mechanism to resolve the strong CP problem and that is having
a massless u quark. This brings us to the next topic which is the incorporation
of light quarks to the game.

In the presence of light quarks there is a simple physical observable
that distinguishes between the different topological vacua, the axial current.
Recall that for Nf massless quarks the theory is classically invariant under
global UL (Nf )× UR (Nf ) ≡ SUL (Nf )× SUR (Nf )× UB (1)× UA (1) symmetry.
The SU(Nf )× UV (1) symmetry group factors are realized in nature also quan-
tum mechanically. The invariance under the axial SU(Nf ) transformations is
broken spontaneously and there are N 2

f − 1 Goldstone bosons. For Nf = 2 these
are the pions. The UA (1) axial symmetry is not conserved quantum mechanically.
In analogy to the anomaly of the axial symmetry in two dimensions discussed
in Section 9.1, in four dimensions as well one can show using various different
methods that,

∂μJ5
μ =

Nf

8π2 Tr [Fμν
∗Fμν ], (22.84)

where J5
μ =

∑
i ψ̄iγμγ5ψi is the axial current and ψi i = 1, . . . , Nf are the fields of

the various flavored quarks. This resolves the so-called UA (1) puzzle, namely the
absence of the fourth Goldstone boson for Nf = 2 or the ninth one for Nf = 3.
Indeed for the former case one could associate the η pseudo-scalar meson with
the fourth Goldstone boson, however it has a mass of 478MeV whereas a current

6 A proposal for resolving the strong CP problem was proposed in [172]. The UA (1) problem
has been resolved by ’t Hooft. The mass of the η′ was proposed by Witten [221] and by
Veneziano [216]. Our discussion of this topic follows the review [185].
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algebra theorem states that it has to be lighter than
√

3mπ . The right-hand side
of (22.84) is proportional to the divergence of the topological current (22.2) ∂μKμ

so one can define a modified conserved axial current j̃5
μ = j5

μ −Nf Kμ . However,
unlike the topological charge, the topological current is not gauge invariant. A
massless pole in the correlator of Kμ does not necessarily correspond to a massless
particle. One may wonder also about the fact that the right-hand side of (22.84)
is a surface term and hence cannot have a physical significance. However, as was
emphasized above due to instantons the surface term is relevant. Let us see this
explicitly. We start by computing the change in the axial charge,

ΔQ5 = Q5(t = +∞)−Q5(t = −∞) =
∫

d4x∂μJ5
μ

= Nf

∫
d4x∂μ Tr [S(x, x)γμγ5 ], (22.85)

where S(x, y) is the fermion propagator S(x, y) =<x|(i 	D )−1 |y> that can be
determined from the eigenfunction equation i 	D ψλ = λψλ in the form S(x, y) =∑

λ
ψλ (x)ψ†

λ (y )
λ . Substituting this expression we get,

ΔQ5 = Nf

∫
d4x∂μ Tr

(∑
λ

ψλ(x)ψ†
λ (y)

λ
2λγ5

)
= 2Nf (nL − nR), (22.86)

where we have used the fact that ψλ and γ5ψλ are orthogonal so only the nL(nR)
left (right) zero modes contribute.

Integrating the left-hand side of (22.84) we get the topological charge Q which
is thus related to ΔQ5 . The latter counts the number of left-handed zero modes
minus the number of right-handed zero modes. This is obviously associated with
instantons. Each instanton contributes one unit to the topological charge and
has a left-handed zero mode, whereas an anti-instanton has a right-handed zero
mode and Q = −1. This is the way the instantons contribute to the axial anomaly
and hence to the resolution of the UA (1) problem. For the case of Nf = 3 this
implies that this would be the ninth Goldstone boson, the η′ is massive even if
the quark masses vanish. It was shown that the mass of the η′ is related to the
topological susceptibility in the following form,

2Nf

f 2
π

χtop =
2Nf

f 2
π

∫
d4x <Q(x)Q(0)>= m2

η + m2
η ′ − 2m2

K . (22.87)

The combination of masses on the right-hand side corresponds to the part of the
η′ mass which is not due to the strange quark mass.
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