HANDLEBODY DECOMPOSITIONS FOR G-MANIFOLDS

M.J. FIELD

We construct handle-bundle decompositions of compact G-manifolds, G a compact Lie group, that are particularly well adapted to the orbit structure of the group action.

1. Introduction

Let G be a compact Lie group of transformations acting smoothly (that is C^{∞}) on the compact manifold M. In this note we show how to construct a particularly nice handlebody decomposition of M, invariant under the action of G. Our result has interesting implications for the stability theory of equivariant dynamical systems; most notably for a generalisation of the C^{0} isotopy approximation theorems of Shub and Smale [6], [8] to equivariant maps and we intend to pursue these matters elsewhere.

2. Generalities on *G*-actions

For the general theory of *G*-manifolds see Bredon [1]. We follow the notational conventions of Field [4], [5]. Thus if *M* is a *G*-manifold and $x \in M$, we let G(x) denote the *G*-orbit through x and G_x denote the isotropy subgroup of *G* at x. We say $x, y \in M$ are of the same orbit type if G_x , G_y are conjugate subgroups of *G*. Equivalence of orbit type partitions *M* into points of the same orbit type. If *M* is compact, this partition is finite and we may write

Received 27 July 1981.

$$M = \bigcup_{i=1}^{N} M_{i}$$

where the M_i are the equivalence classes of points of the same orbit type. We may label orbit types in such a way that if $\overline{M}_j \cap M_i \neq \emptyset$ then i < j. We say M_j is a minimal orbit type if there are no M_i such that $\overline{M}_j \cap M_i \neq \emptyset$. Necessarily M_j will be a closed submanifold of M. We call M_N the principal orbit type and recall that M_N is an open, dense subset of M (we assume here, as elsewhere in this paper, that M is connected).

If ξ is a riemannian metric on M we may average ξ over G using Haar measure to obtain an equivariant riemannian metric on M. We call M, together with an equivariant riemannian metric, a riemannian G-manifold.

3. G-Morse functions

Let $f: M \to \mathbb{R}$ be a smooth G-invariant function on the compact riemannian G-manifold M. We let grad(f) denote the associated gradient vector field of f and set $\operatorname{crit}(f) = \{x \in M : \operatorname{grad}(f)(x) = 0\}$. Necessarily, crit(f) is a union of G-orbits. We say that a G-orbit $\alpha \in \operatorname{crit}(f)$ is generic if it is non-degenerate in the sense of Morse theory for $\operatorname{grad}(f)$. That is, if we let ϕ_t denote the flow of $\operatorname{grad}(f)$, then the induced flow $N\phi_{\pm}$ on the normal bundle Nlpha of lpha has spectrum disjoint from the unit circle (see also Field [3, p. 193]). We say that f is a G-Morse function if crit(f) consists of a, necessarily finite, set of generic G-orbits. We recall from Wasserman [9] that every G-manifold admits a G-Morse function. Suppose that f is a G-Morse function and let α be a *G*-orbit in crit(*f*). We let $W^{S}(\alpha)$ and $W^{\mathcal{U}}(\alpha)$ denote the stable and unstable manifolds of grad(f) through α respectively. It is shown in Field [5] that if f is a G-Morse function we can always find a perturbation f^\prime of f , equal to f on some neighbourhood of $\operatorname{crit}(f)$, such that the stable and unstable manifolds of elements of crit(f') meet G-transversally. (An elementary description of G-transversality may be found in Field [3]; see also Field [2]. As we

shall be able to avoid using the deeper results of the theory of G-transversality in the proof of our main result, we refrain from further elaboration of the theory here.)

DEFINITION. Let f be a *G*-Morse function on the compact riemannian *G*-manifold *M*. We say that f is excellent if for all *G*-orbits $\alpha, \beta \in \operatorname{crit}(f)$, $W^{\mathcal{U}}(\alpha) \wedge W^{\mathcal{S}}(\beta)$ and $W^{\mathcal{S}}(\alpha) \wedge M_{i}$ if $\alpha \in M_{i}$.

PROPOSITION. Every compact riemannian G-manifold M admits an excellent G-Morse function.

Proof. Our proof goes by induction on orbit type. As in §2, we write $M = M_1 \cup \ldots \cup M_N$. Suppose that we have constructed an open *G*-invariant neighbourhood U_r of $M_1 \cup \ldots \cup M_r$, r < N, and smooth *G*-invariant function $f_r : U_r \neq \mathbb{R}$ such that

- (1) $\operatorname{crit}(f_r) \subset M_1 \cup \ldots \cup M_r$ and no critical orbit of $\operatorname{grad}(f_r)$ is degenerate,
- (2) $W^{S}(\alpha)$ meets M_{j} transversally for every *G*-orbit $\alpha \in \operatorname{crit}(f_{r}) \cap M_{j}$, $1 \leq j \leq r$.

Certainly f_{p} is defined on a neighbourhood of ∂M_{p+1} in M_{p+1} . Let g_{p+1} denote an equivariant smooth extension of $f_{p}|M_{1} \cup \ldots \cup M_{p}$ to a neighbourhood W_{p+1} of $M_{1} \cup \ldots \cup M_{p+1}$ such that $g_{p+1} = f_{p}$ on a neighbourhood of $M_{1} \cup \ldots \cup M_{p}$ contained in W_{p+1} . Certainly, $g_{p+1} = f_{p}$ on some neighbourhood of ∂M_{p+1} in M_{p+1} . By Wasserman's approximation theorem [9], we may assume that all critical orbits of g_{p+1} are non-degenerate and hence that g_{p+1} has only finitely many critical orbits on $M_{1} \cup \ldots \cup M_{p+1}$. We may clearly do this without changing g_{p+1} on a neighbourhood of $M_{1} \cup \ldots \cup M_{p}$. Let $\alpha \in M_{p+1} \cap \operatorname{crit}(g_{p+1})$. Choose a smooth G-invariant positive bump function θ on M satisfying

- (a) $supp(\theta) \subset W_{n+1}$,
- (b) $\theta \equiv 1$ on some neighbourhood of α ,

(c) $\operatorname{supp}(\theta)$ is disjoint from $M_1 \cup \ldots \cup M_r$ and the remaining critical orbits of g_{r+1} on M_{r+1} .

For $\lambda \in \mathbb{R}$, $x \in W_{n+1}$ define

$$g_{r+1}^{\lambda}(x) = \lambda \Theta(x) d\{x, M_{r+1}\}^2 + g_{r+1}(x)$$

where $d(x, M_{r+1})$ denotes the riemannian distance of x from M_{r+1} . Certainly g_{r+1} is smooth on some neighbourhood of $M_1 \cup \ldots \cup M_{r+1}$. For sufficiently large negative values of λ , g_{r+1}^{λ} will have a nondegenerate critical orbit at α such that the stable manifold of α for $grad \left(g_{r+1}^{\lambda}\right)$ meets M_{r+1} transversally. Observe that g_{r+1} , g_{r+1}^{λ} have the same critical orbits on $M_1 \cup \ldots \cup M_{n+1}$, though of course we may introduce new critical orbits outside $\stackrel{M}{_{1}} \cup \ldots \cup \stackrel{M}{_{r+1}}$. Modifying g_{r+1} in a neighbourhood of each of the critical orbits in M_{n+1} in the manner indicated above, we obtain a smooth G-invariant function f_{n+1} defined on some neighbourhood of $M_1 \cup \ldots \cup M_{n+1}$ such that the critical orbits of f_{r+1} on $M_1 \cup \ldots \cup M_{r+1}$ are non-degenerate and condition (2) of the indictive hypothesis is satisfied. Now choose a neighbourhood U_{r+1} of $M_1 \cup \ldots \cup M_{r+1}$ which is G-invariant and such that $\operatorname{crit}(f_{n+1}) \subset M_1 \cup \ldots \cup M_{n+1}$. The inductive step is completed. Now although f_N may not be an excellent G-Morse function we may, by Field [5], perturb f_N to obtain a G-Morse function f on M which is equal to f_N on a neighbourhood of $\operatorname{crit}(f_N)$ and such that the stable and unstable manifolds of critical elements of grad(f) are *G*-transversal. But condition (2) guarantees that the stable and unstable manifolds for fare actually transversal. Alternatively, notice that we may use standard transversality theory to perturb f_N to a G-Morse function f such that the stable and unstable manifolds of grad(f) are transversal within the

https://doi.org/10.1017/S0004972700005025 Published online by Cambridge University Press

32

orbit type components M_j . Again condition (2) implies that the stable and unstable manifolds of f are transversal. //

REMARK. In general a *G*-Morse function cannot be approximated by an excellent *G*-Morse function. As an example take the \mathbb{Z}_2 -action on S^2 defined by the reflection in the (x, y)-plane. The equator of S^2 is then the fixed point set of the \mathbb{Z}_2 -action. Now choose any \mathbb{Z}_2 -invariant smooth function f on S^2 which has precisely two non-degenerate critical points on the equator, both of index 1. The resulting saddle-link cannot be removed by perturbing f.

4. Handle-bundle decompositions of a G-manifold

DEFINITION. Let α be a non-degenerate critical orbit of the G-Morse function f. The index of α , $ind(\alpha; f)$, is defined to be the dimension of $W^{\mathcal{U}}(\alpha)$.

THEOREM. Let M be an m-dimensional compact riemannian G-manifold. There exists a G-Morse function f on M such that

(1)
$$f \ge 0$$
,

- (2) $f^{-1}([0, j])$ is a closed neighbourhood of $M_1 \cup \ldots \cup M_j$, $1 \le j \le N$,
- (3) $f^{-1}([j, j+1] \cap C_f) \subset M_{j+1}$, $j \ge 0$ (C_f denotes the set of critical values of f),

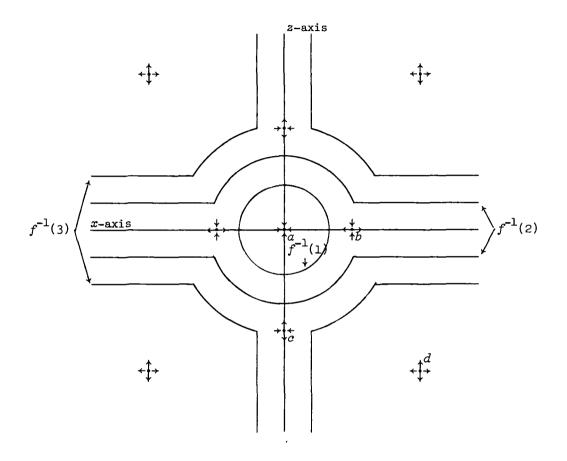
(4) if
$$\alpha$$
 is a critical orbit for f lying in M_j , then
 $f(\alpha) = j - 1 + (k+1)/(m+2)$, where $k = ind(\alpha; f)$.

Before giving the proof of the result, we point out some consequences. If we set $W_j = f^{-1}([0, j])$, we see that W_j is a *G*-invariant submanifold of *M* containing $M_1 \cup \ldots \cup M_j$. Thus $\{W_j : j = 1, \ldots, N\}$ give a filtration of *M* compatible with the orbit structure of the group action. We obtain W_{j+1} from W_j by attaching handle-bundles, all of which are associated to critical orbits of $\operatorname{grad}(f)$ lying in M_{j+1} (see Wasserman [9, Theorem 4.6]). As in non-equivariant handlebody theory we attach handle-bundles of lowest index first and then successively attach handle-bundles of higher index. Here, of course, we do this process for each j, $1 \leq j \leq N$.

Proof of theorem. Our proof follows Smale [7] closely and we only indicate the modification necessary to perform an induction over orbit type. Choose an excellent G-Morse function F on M. For the first step of the induction we restrict attention to critical orbits of F lying in M_1 . Exactly as in Smale [7] we construct a neighbourhood W_1 of M_1 which is a union of handle-bundles associated to the critical orbits of Fin M_1 . In particular, W_1 will be a *G*-invariant submanifold of *M* with smooth boundary, grad(F) will be transversal to ∂W_1 and W_1 will not contain any critical orbits lying in M_j , $j \ge 2$. For the next step of the induction we add handle-bundles to W_1 , associated to critical orbits in M_2 , to construct a neighbourhood W_2 of $M_1 \cup M_2$ containing only critical orbits lying in $M_1 \cup M_2$. The induction proceeds in the obvious way ending with the addition of handle-bundles associated to critical orbits in M_N . Once we have this handle-bundle decomposition of M, we construct f satisfying the conditions of the theorem as in Smale [7]. //

EXAMPLE. Let $S^1 \times \mathbb{Z}_2$ act on \mathbb{R}^3 by rotation about the z-axis and reflection in the (x, y)-plane. The action clearly extends to action on S^3 with two fixed points. In the figure below we have taken a section of \mathbb{R}^3 by the (x, z)-plane and have drawn the level surfaces $f^{-1}(j)$, j = 1, 2, 3 for a function f satisfying the conditions of the theorem. We also indicate the critical orbits of f. In this example there are 4 critical orbits for $\operatorname{grad}(f)$. We have indicated a point on each critical orbit. The corresponding critical values are given by:

$$f(a) = \frac{1}{5}$$
; $f(b) = 1\frac{3}{5}$; $f(c) = 2\frac{2}{5}$; $f(d) = 3\frac{4}{5}$.



References

- [1] Glen E. Bredon, Introduction to compact transformation groups (Pure and Applied Mathematics, 46. Academic Press, New York and London, 1972.
- [2] M.J. Field, "Transversality in G-manifolds", Trans. Amer. Math. Soc. 231 (1977), 429-450.
- [3] M.J. Field, "Stratifications of equivariant varieties", Bull. Austral. Math. Soc. 16 (1977), 279-295.
- [4] M.J. Field, "Resolving actions of compact Lie groups", Bull. Austral. Math. Soc. 18 (1978), 243-254.
- [5] M.J. Field, "Equivariant dynamical systems", Trans. Amer. Math. Soc. 259 (1980), 185-205.

- [6] Michael Shub, "Structurally stable diffeomorphisms are dense", Bull. Amer. Math. Soc. 78 (1972), 817-818.
- [7] Stephen Smale, "On gradient dynamical systems", Ann. of Math. 74 (1961), 199-206.
- [8] Steve Smale, "Stability and isotopy in discrete dynamical systems", Dynamical systems, 527-530 (Proc. Sympos. University of Bahia, Salvador, Brasil, 1971. Academic Press [Harcourt Brace Jovanovich], New York, (1973).
- [9] Arthur G. Wasserman, "Equivariant differential topology", Topology 8 (1969), 127-150.

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales 2006, Australia.