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HANDLEBODY DECOMPOSITIONS FOR G-MANIFOLDS

M.J. F I E L D

We construct handle-bundle decompositions of compact G-manifolds,

G a compact Lie group, that are particularly well adapted to the

orbit structure of the group action.

1. Introduction

Let G be a compact Lie group of transformations acting smoothly
OO

(that is C ) on the compact manifold M . In this note we show how to

construct a particularly nice handlebody decomposition of M , invariant

under the action of G . Our result has interesting implications for the

stability theory of equivariant dynamical systems; most notably for a

generalisation of the C isotopy approximation theorems of Shub and Sma I e

[6], [S] to equivariant maps and we intend to pursue these matters

elsewhere.

2. Generalities on G-actions

For the general theory of G-manifolds see Bredon [I]. We follow the

notational conventions of Field [4], [5]. Thus if M is a G-manifold and

x € M , we let G{x) denote the G-orbit through x and G denote the
oc

isotropy subgroup of G at x . We say x, y € M are of the same orbit

type if G , G are conjugate subgroups of G . Equivalence of orbit typex y

partitions M into points of the same orbit type. If M is compact, this

partition is finite and we may write
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N
M = U M.

where the M. are the equivalence classes of points of the same orbit

type. We may label orbit types in such a way that if M. n M. # 0 then
0 i-

•i < o . We say M. is a minimal orbit type if there are no M. such that
3 i

M. n M. £ 0 . Necessarily M. will be a closed submanifold of M . We
0 i* 3

call Mj, the principal orbit type and recall that M~ is an open, dense

subset of M (we assume here, as elsewhere in this paper, that M is

connected).

If 5 is a riemannian metric on M we may average § over G using

Haar measure to obtain an equivariant riemannian metric on M . We call

M , together with an equivariant riemannian metric, a riemannian

G-manifold.

3. G-Morse functions

Let / : M -*• IR be a smooth G-invariant function on the compact

riemannian ff-manifold M . We let grad(/) denote the associated

gradient vector field of f and set crit(f) = {x € M : grad(f)(x) = 0} .

Necessarily, crit(/) is a union of G-orbits. We say that a G-orbit

a € crit(/) is generic if it is non-degenerate in the sense of Morse

theory for grad(/) . That is, if we let $, denote the flow of

grad(/) , then the induced flow N$, on the normal bundle Na of a has

spectrum disjoint from the unit circle (see also Field [3, p. 193]). We

say that / is a G-Morse function if crit(/) consists of a, necessarily

finite, set of generic G-orbits. We recall from Wasserman [9] that every

G-manifold admits a G-Morse function. Suppose that f is a G-Morse

function and let a be a G-orbit in crit(/) . We let ^(a) and w"(a)

denote the stable and unstable manifolds of grad(/) through a

respectively. It is shown in Field [5] that if / is a G-Morse function

we can always find a perturbation /' of f , equal to / on some

neighbourhood of crit(/) , such that the stable and unstable manifolds of

elements of crit(/') meet G-transversally. (An elementary description

of G-transversality may be found in Field [3]; see also Field [2]. As we
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shall be able to avoid using the deeper results of the theory of

G-transversality in the proof of our main result, we refrain from further

elaboration of the theory here.)

DEFINITION. Let / be a G-Morse function on the compact riemannian

G-manifold M . We say that / is excellent if for a l l G-orbits

a, 3 € cr i t ( / ) , v"(a) ffi (v (̂3) and (^(a) ffi M. if a € M. .
3 3

PROPOSITION. Every compact riemannian G-manifold M admits an

excellent G-Morse function.

Proof. Our proof goes by induction on orbit type. As in §2, we write

M = M u ... u M~ . Suppose that we have constructed an open G-invariant

neighbourhood U of Mu ... u M , r < N , and smooth G-invariant

function / : V -*• R such that

(1) crit(fr) cM u ... u M^ and no critical orbit of grad(/^)

is degenerate,

(2) w{ct) meets M. transversally for every G-orbit
3

a € crit {fj n M 1 5 j 5 r .

Certainly / is defined on a neighbourhood of %M in M . Let

g . denote an equivariant smooth extension of f \MU ... u M to a

neighbourhood ^r+1 of Af u ... u M such that g = / on a

neighbourhood of M u ... u M contained in U . . Certainly,

g . = f on some neighbourhood of 'dM in M . By Wasserman's

approximation theorem [9], we may assume that all critical orbits of g

are non-degenerate and hence that 9r+-,
 h a s only finitely many critical

orbits on M u ... u ̂ r+1 ' We mSi^ clearly do this without changing g

on a neighbourhood of Mu ... u M. Let a € M n crit[g ) .

Choose a smooth G-invariant positive bump function 6 on M satisfying

(a) supp(6) c Wr+± ,

(b) 9 = 1 on some neighbourhood of a ,
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(c) supp(9) is disjoint from AL u ... u M and the remaining

critical orbits of 9r+-, °
n M

r

For A € R , a; € W define

where d[x, M .) denotes the riemannian distance of x from ^r

Certainly g . is smooth on some neighbourhood of Af. <J ... u # . For

9'r+-Lsufficiently large negative values of A , 9'r+-L will have a nondegenerate

critical orbit at a such that the stable manifold of a for gradU,

meets M
r+-, transversally. Observe that 9r+1, 9r+x have the same

critical orbits on tf u .., u ^r+1 ' though of course we may introduce new

critical orbits outside M u .. . u Mp . Modifying gr+1 in a

neighbourhood of each of the critical orbits in ^r+ 1 in the manner

indicated above, we obtain a smooth G-invariant function /_.-. defined on

some neighbourhood of M u ... u W , such that the critical orbits of

fp -, on M u . .. u Mp... are non-degenerate and condition (2) of the

indictive hypothesis is satisfied. Now choose a neighbourhood # r + 1 of

M u ... u M which is G-invariant and such that

crit (/.) c M. u ... u M ^ . The inductive step is completed. Now

although /„ may not be an excellent G-Morse function we may,'by Field

[5], perturb /„ to obtain a G-Morse function f on M which is equal

to fN on a neighbourhood of crit[f) and such that the stable and

unstable manifolds of critical elements of grad(/) are G-transversal.

But condition (2) guarantees that the stable and unstable manifolds for f

are actually transversal. Alternatively, notice that we may use standard

transversality theory to perturb f to a G-Morse function / such that

the stable and unstable manifolds of grad(/) are transversal within the
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orbi t type components M. . Again condition (2) implies tha t the s table
3

and unstable manifolds of f are transversal. //

REMARK. In general a G-Morse function cannot be approximated by an

2
excellent G-Morse function. As an example take the Zp-action on S

defined by the reflection in the (x, y)-plane. The equator of S is

then the fixed point set of the 2Z--action. Now choose any Zp-invariant

smooth function f on S which has precisely two non-degenerate critical

points on the equator, both of index 1 . The resulting saddle-link cannot

be removed by perturbing f .

4. Handle-bundle decompositions of a G-manifold

DEFINITION. Let a be a non-degenerate critical orbit of the

G-Morse function / . The index of a , ind(a; /) , is defined to be the

dimension of » (a) .

THEOREM. Let M be an m-dimensional compact riemannian G-manifold.

There exists a G-Morse function f on M such that

(1) f > 0 ,

(2) /~ ([0, j]) is a closed neighbourhood of M u ... u M. 3
l 0

1 < 3 < N ,

(3) /~1([«7, J+1] n C j <=M.+1 , j > 0 [Cf denotes the set of

critical values of f ),

(U) if a is a critical orbit for f lying in M. , then
3

f(a) = j - 1 + (fe+l)/(m+2) , where k = ind(a; f) .

Before giving the proof of the result, we point out some consequences.

If we set W. = f ([0, j]) , we see that W. is a G-invariant sub-
d . d

manifold of M containing M \J ... u M. . Thus {W. : j = 1, . .. , N\
1 J 3

give a filtration of M compatible with the orbit structure of the group

action. We obtain W. from W. by attaching handle-bundles, all of
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which are associated to critical orbits of grad(/) lying in M. (see

Wasserman [9, Theorem U.6]). As in non-equivariant handlebody theory we

attach handle-bundles of lowest index first and then successively attach

handle-bundles of higher index. Here, of course, we do this process for

each o , 1 - 3 - N •

Proof of theorem. Our proof follows Smale [7] closely and we only

indicate the modification necessary to perform an induction over orbit

type. Choose an excellent G-Morse function F on M . For the first

step of the induction we restrict attention to critical orbits of F lying

in M . Exactly as in Smale [7] we construct a neighbourhood W of M

which is a union of handle-bundles associated to the critical orbits of F

in M . In particular, W will be a G-invarlant submanifold of M

with smooth boundary, grad(-F) will be transversal to %W and W will

not contain any critical orbits lying in M. , j > 2 . For the next step
J

of the induction we add handle-bundles to V , associated to critical

orbits in M , to construct a neighbourhood W of M u M containing

only critical orbits lying in M u M . The induction proceeds in the

obvious way ending with the addition of handle-bundles associated to

critical orbits in W« . Once we have this handle-bundle decomposition of

M , we construct / satisfying the conditions of the theorem as in Smale

[7]. //

EXAMPLE. Let S1 * TL^ act on R3 by rotation about the 3-axis and

reflection in the (x, J/)-plane. The action clearly extends to action on

S with two fixed points. In the figure below we have taken a section of

R by the (x, a)-plane and have drawn the level surfaces f (j) ,

3=1, 2, 3 for a function / satisfying the conditions of the theorem.

We also indicate the critical orbits of / . In this example there are 1|

critical orbits for grad(/) . We have indicated a point on each critical

orbit. The corresponding critical values are given by:

= \ ; fib) = i| ; f{e) = 22- ; ftd) = 3i .
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