
CONTINUOUS FAMILIES OF CURVES 

BRANKO GRUNBAUM 

1. The present paper is an attempt to find the unifying principle of results 
obtained by different authors and dealing—in the original papers—with area-
bisectors, chords, or diameters of planar convex sets, with outwardly simple 
planar line families, and with chords determined by a fixed-point free involu­
tion on a circle. The proofs in the general setting seem to be simpler and are 
certainly more perspicuous than many of the original ones. The tools required 
do not transcend simple continuity arguments and the Jordan curve theorem. 
The author is indebted to the referee for several helpful remarks. 

Let C be a simple closed curve in the plane and D the bounded component 
of the complement of C. A family 8 = \L) of simple open arcs will be called a 
continuous family of curves (in D) provided : 

(i) Each L G 8 is contained in D, its end points are different and belong to C. 
(ii) Each point P G C is an end point of one and only one curve L = L (P) 

belonging to 8. 
(iii) If L\ and L2 are different curves in 8, then L\ C\ L2 is a single point. 
(iv) The curve L(P) depends continuously on P G C. 

Using standard continuity arguments and the Jordan curve theorem, it is 
easily seen that each continuous family of curves 8 has also the following 
properties : 

(v) For different Lu L2 G 8, the end points of L\ separate on C those of L2. 
(vi) A continuous involution is defined on C by assigning to each P G C 

the other end point P* of L(P). 
(vii) The point L\ Pi L2 depends continuously on Lu L2 G 8. 
A point X G D will be called a multiple point {triple point) of 2 provided X 

belongs to at least two (three) different curves in 8; the set of all multiple 
points of 8 will be denoted by M(8), that of all triple points by T(8). 

The following simple result is the source of many well-known properties of 
convex sets. 

THEOREM 1. Let 2 be a continuous family of curves. With at most one exception, 
each curve in 2 contains a triple point. 

Proof. Let L0 = L(P0) be a curve in 8, and let X(P) = L0 H L(P) be the 
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continuous mapping of an open arc A = (P0, Po*) of C into L0. Then clearly 
one of the following three cases arises : 

(a) X(P) is a strictly monotone function of P 6 A. 
(b) X(P) is a monotone, but not strictly monotone, function of P 6 A. 
(c) X(P) is not a monotone function of P Ç A 
In case (a), we have a homeomorphism between A and the arc 

{X(P)\PCA} CLo, 

and through each point of L0 passes at most one curve L Ç ? different from 
LQ. In case (b), there exists a closed arc [Pi, P2] C A such that X{P) is 
constant for P £ [Pi, P 2 ] ; thus there exists a point X(P\) € Lo through which 
pass all the curves L(P) for P G [Pi, P 2 ] . Incase (c), there exists an open arc 
(Xi, X2) C £0 such that each X 6 (Xi, X2) is the image of at least two different 
points P f i ; thus a continuum of points of L0 are triple points of ?. 

In order to establish the theorem we have to prove that 8 contains at most 
one curve of type (a). Assume, on the contrary, that L0 = L(Po) and 

U = L(Pi) 

are both of type (a). Let P 2 be a point of A not belonging to the set 

{Po,Po*,Pi ,Pi*}; 

thus L2 = L{Pi) is different from both L0 and L\. Without loss of generality 
we may assume that the notation is as indicated schematically in Figure 1. 

FIGURE 1 

Now consider a point P belonging to that open arc (Po*, Pi*) of A that does 
not contain P2 . Since L0 is of type (a), the point L0 O L(P) belongs to the 
open arc (P0, Z) of L0; similarly the point L\ C\ L(P) belongs to the open arc 
(Pi, Z) of L\. But this is impossible since (by the Jordan curve theorem) 
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L(P) must intersect the closed subarc of L0 U L\ containing P0*, V, Z, W, Pi* 
and thus either L0 H L(P) or Li P\ L(P) would consist of at least two points. 

This completes the proof of Theorem 1. 

It is to be noted that 8 may indeed contain one exceptional curve L0 of 
type (a), even if all the curves in 8 are straight-line segments and D is convex. 
For example (see Figure 2), let C be a circle, Lo = L(P0) a diameter of C, 

FIGURE 2 

(Xi, X2) any open subinterval of L0, and <j> any homeomorphism of the open 
half-circle (Po, Po*) onto {X\, X2). Then L0 and the chords of C determined 
by the segments [P, <£(P)] for P £ (Po, Po*) yield a continuous family of 
curves (segments) such that L0 is of type (a). 

Denoting the empty set by 0 and the closure of a set A by Â, we have the 
following easy consequences of Theorem 1 : 

COROLLARY l . L H P(8) T* 0/or ev^ry L G 8. 

COROLLARY 2. i / P(S) consists of a single point T, then T belongs to each 
curve in 2, and M (?) = T(2). 

COROLLARY 3. 7X8) contains either a point through which pass X different 
curves of 8, or X different points. 

2. Many examples of continuous families of curves have been considered in 
the literature in connection with properties of planar convex sets. 

If D is a non-empty bounded open convex set in the plane, the family of 
all chords of D that bisect the area of D, as well as the family of all chords 
that bisect the perimeter of D, are continuous families of curves. Corollary 2 
implies that if the set of triple points of the family of (area, or perimeter) 
bisectors is reduced to a single point P, then all of them pass through T. The 
fact that T is the centre of symmetry of D is then easily established for either 
of the two familes. This characterization of centrally symmetric convex sets 
by area-bisectors is due to Zarankiewicz (14); other proofs were given by 
Menon (9) and Piegat (10). 

https://doi.org/10.4153/CJM-1966-052-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-052-4


532 BRANKO GRUNBAUM 

If D is, moreover, smooth and strictly convex, the mid-points of parallel 
chords of D form a simple curve; the totality of these curves (corresponding 
to chords of different directions) form a continuous family. In this case, 
Corollary 2 implies at once that if the set of triple points is reduced to a single 
point, the set D is centrally symmetric. This sharpens a result of Viet (13, 
Satz 2). 

For a smooth and strictly convex D, the (unique) longest chords of various 
directions form a continuous family; the carrier-lines of those chords are the 
outwardly simple line families of Hammer and Sobczyk (7). For additional 
examples of continuous families of curves defined by geometric properties of 
convex sets see Zindler (15) and Grunbaum (6). Corollary 3 implies for all 
these families the same type of alternative established by Steinhaus (12) in 
some related problems. 

3. We turn now to a more detailed study of the sets M(2) and T(2) of 
multiple and triple points of a continuous family 2. We shall consider only 
non-trivial families, i.e., families 2 for which T(2) is not reduced to a single 
point. The structure of the sets M(2) and T(2) is, in general, rather compli­
cated; varied examples have been given by Ceder (2), Goldberg (5), Hammer-
Sobczyk (7), and Smith (11). 

Let a continuous family 2 be given ; we shall call triangle any open domain 
whose boundary consists of arcs of three different curves of 2, or of arcs 
of two different curves of 2 and an arc of the boundary of D\ those arcs are 
the sides of the triangle. The vertices of a triangle are the end points of the 
three sides; we shall denote a triangle by its three vertices. Thus the four 
triangles in Figure 3 are (P0,Pi,X), (P0,Pi*,X), (P 0 *,P i ,^ ) ,and (P0*,Pi*,X). 

LEMMA 1. Let L(P0) and L(Pi) be different curves in 2, let 

x = L ( P o ) n i ( P i ) , 

FIGURE 3 
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and let (P0, Pi) be the arc of C with end points P0 and Pi which does not contain 
Po* and Pi*. Then the triangle (P0, Pi , X) is contained in the set 

^P6(P0,Pl) L(P). 

Proof. Let F G (P0, Pi , X). Consider the non-empty set 5 consisting of all 
P G (Po, Pi) such that F G (Po, P , L(P0) Pi P(P)) . Since £ is continuous, 5 
is an open subset of (P0, Pi) and P 0 $ S. Let R (I 5, P G S. Then 

F G b d ( P o , p , P ( P o ) n p ( P ) ) , 

since otherwise R would belong to S. Thus Y G P(P) and the proof of Lemma 
1 is completed. 

Lemma 1 clearly implies the two-dimensional case of a theorem of Forrester 
(4) on fixed-point free involutions. 

LEMMA 2. If L0, Pi, L2 G 2 are different and do not have a point in common, 
then, in the notation of Figure 4, the triangle (X0, Xi, X2) is contained in P(£), 
while its sides belong to M(%). 

FIGURE 4 

Proof. By Lemma 1, each F G (X0, Xi, X2) is on a curve L(Ro) with 
Po G (Pi, P2*), on another L(Ri) with P i G (P2, Po*), and on a third P(P2) 
with P 2 G (Po, Pi*)- These lines are clearly different and thus 

(x0,Xiyx2) c r(g). 
Note that L(R0) meets the arc (Xi, X2) C Po, and similarly for L(Ri) and 
L(R2). Again by Lemma 1, any point of Po that is between Xi and X2 belongs 
to some L(R0) with P 0 G (Pi, P2*) besides being on L0. This clearly implies 
that the sides of (X0, Xi, X2) are contained in M(L). 
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The particular case of Lemma 2, in which 8 is the family of area-bisectors 
of a convex domain D, was established by Piegat (10). The case in which 8 
is the family of longest chords of D is due to Hammer and Sobczyk (7). For the 
curves formed by the mid-points of parallel chords, Lemma 2 was proved by 
Ceder (3) even without the restriction that the convex set D be smooth and 
strictly convex. 

LEMMA 3. Each X Ç M(2) is in the boundary of a triangle formed by curves 
in 8 {and thus, by Lemma 2, is contained in T(2))) thus M(2) C T(2). 

Proof. Let L\, L2 be distinct lines through X and let P be a point of C such 
that X (? L(P). Then Li, L2, and L(P) determine a triangle having X as 
a vertex. 

Let ^ denote set-difference, and M the 2-dimensional Lebesgue measure. 

THEOREM 2. For any continuous family of curves 8, /z(M(8) ~ r (8)) = 0; 
if 8 is non-trivial, then int T(2) ^ 0. 

Proof. Let T denote the union of all the triangles determined by curves in 
8; if 8 is non-trivial, such triangles exist and T 9e id. By Lemma 2, T C T{%) ; 
on the other hand, by Lemma 3, f Z) M(8) D T(2). Since T is open, we have 
n(T) = M ( ? ) and int T(?) ^ 0, while bd T D (M(8) ~ T(?)) implies that 
M ( M ( 8 ) ~ r(8)) = 0. If 8 is trivial, then Af (8) = T(8) is a single point. This 
completes the proof of Theorem 2. 

If 8 is the family of longest chords of a convex domain (their extensions 
forming an outwardly simple line family), Theorem 2 is a special case of a 
result of Hammer and Sobczyk (7) stating that the set of points contained 
in an even number or in infinitely many different members of 8 has measure 0. 
It may be conjectured that this result remains valid for general continuous 
families of curves. 

In the statement and proof of the next result we need some additional 
notions. 

Let K C D\ we shall say that K is %-convex if L O K is connected (or empty) 
for each L Ç 8. K is polygonally %-connected provided that for each pair X, Y 
of points in K there is a curve in K consisting of a finite number of arcs of 
curves in 8 connecting X and Y. If the minimal necessary number of arcs is 
less than or equal to n for each X, Y G K, we shall say that K is an Ln(8)-set; 
see Horn-Valentine (8) for the corresponding generalization of convex sets to 
Z^-sets and Bruckner-Bruckner (1) for additional results and references. 
Note that a polygonally 8-connected set is connected; an 8-convex set is not 
necessarily connected. 

A triangle is maximal provided it is not properly contained in another 
triangle. Clearly any triangle determined by curves in 8 is contained in a 
maximal triangle of the same type. 
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THEOREM 3. ilf (8) is 2-convex and an L2(2)-set; T(%) is a polygonally 8-
connected set. 

Proof. If X, Y e L Pi M(8), let U and L2 be curves in 8 different from L 
and containing X and F respectively. The 8-convexity of M(2) follows at once 
from Lemma 2 applied to the triangle (X, F, Lx C\ L2). Now let X0, Xi 6 M(%). 
In order to show that M(%) is an L2(8)-set, we may assume that Xt is on 
Li G 8, where Xt $ Zi_*, i = 0, 1. Let X = L0 H Li. Since Af (8) is 8-convex, 
the arc (Xi9 X) of Lt is in M(8). This shows that M(8) is an L2(8)-set. (This 
proof is similar to the proof of Theorem 3.3 of Horn and Valentine (8).) 

In order to show that r (8) is polygonally 8-connected, it is sufficient, in 
view of Lemmas 2 and 3, to prove the polygonal 8-connectedness of the set 
T C 2"(8), T being, as above, the union of all the triangles determined by 
curves in 8. We shall prove the polygonal 8-connectedness of T by establishing 
the following two lemmas. 

LEMMA 4. Any two maximal triangles determined by curves in 8 have a non­
empty intersection. 

LEMMA 5. Any triangle determined by curves in 8 is an L2(8)-^/. 

We shall first prove Lemma 5, using the notation indicated in Figure 5. Let 

FIGURE 5 

F G (Xo, Xi, X2) C T be on the curves L<°>, L(1), L(2) (not shown in Figure 
5), which, according to Lemma 2, intersect the three sides of (Xh X2l Xz) in 
points P , P i , and P2 respectively. If another point Z Ç (X0, Xlf X2) is on one 
of these curves, there is nothing to prove. Otherwise, consider the three 
domains into which (X0, Xi, X2) is divided by the arcs (F,P*) of L(f). Each 
of these domains is adjacent to two of the sides of the triangle (X0, Xi, X2). 
The curve L (dotted in Figure 5) that contains Z and passes through a point 
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of that side of the triangle not adjacent to the domain containing Z must, by 
the Jordan curve theorem, intersect one of the arcs (F, P%). This completes 
the proof of Lemma 5. 

Lemma 4 may be proved by deriving a contradiction from the assumption 
that there exists a pair of mutually disjoint maximal triangles formed by 
curves in 2. In doing so one has to distinguish several different cases, according 
to the mutual position of the triangles. Since the procedure is similar in all the 
cases, we refrain from listing them all, and illustrate the idea by considering 
one of the possible configurations (Figure 6). Each of the two triangles (shaded) 

FIGURE 6 

has one side on a certain curve in 8, the two triangles being on the same side 
of that curve. If the extensions of the sides (indicated by the dotted lines) 
intersect, neither of the original triangles is maximal; if they do not intersect, 
then the dashed extensions must intersect, and the triangles are again not 
maximal. 

Eliminating in this fashion all the possibilities, we prove Lemma 4, and 
with it also Theorem 3. 

It should be noted that the above proof yields more information about 
T(£) than claimed in Theorem 3; in fact, the set T is an L±{2)-set, and T{2) is 
an L-(2)-set. 

It may be conjectured that T(2) is even an L2(8) set. 
Theorem 3 is a stronger version of Theorem 7 of Ceder (2), which deals 

with outwardly simple line families; it overlaps with Ceder's main result (3). 
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