
1 Introduction

In this chapter we introduce the motivation for studying Cognition and
Intractability. We provide an intuitive introduction to the problem of intractabil-
ity as it arises for models of cognition using an illustrative everyday problem as
running example: selecting toppings on a pizza. Next, we review relevant back-
ground information about the conceptual foundations of cognitive explanation,
computability, and tractability. At the end of this chapter the reader should have
a good understanding of the conceptual foundations of the Tractable Cognition
thesis, including its variants: The P-Cognition thesis and the FPT-Cognition
thesis, which motivates diving into the technical concepts and proof techniques
covered in Chapters 2–7.

1.1 Selecting Pizza Toppings

Imagine you enter a pizzeria to buy a pizza. You can choose any
combination of toppings from a given set, e.g., {pepperoni, salami,
ham,mushroom,pineapple, . . . }. What will you choose?

According to one account of human decision-making, your choice will be
such that you maximize utility. Here utility, denoted by u(.), is to be understood
as the subjective value of each possible choice option (e.g., if you prefer salami
to ham, then u(salami) > u(ham)). Since you can choose combinations of
toppings, we need to think of the choice options as subsets of the set of all
available toppings. This includes subsets with only one element (e.g., {salami}
or {olives}), but also combinations of multiple toppings (e.g., {ham,pineapple}
or {salami,mushrooms,olives}). On this account of human decision-making,
we can formally describe your toppings selection problem as an instance of the
following computational problem:

Generalized Subset Choice
Input: A set X = {x1,x2,...,xn} of n available items and a value
function u assigning a value to every subset S ⊆ X.
Output: A subset S ⊆ X such that u(S) is maximized over all possible
S ⊆ X.

3

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


4 Introduction

Note that many other choice problems that one may encounter in everyday life
can be cast in this way, ranging from inviting a subset of friends to a party or
buying groceries in the grocery store to selecting people for a committee or
prescribing combinations of medicine to a patient.

But how – using what algorithm – could your brain come to select a subset
S with maximum utility? A conceivable algorithm could be the following:
Consider each possible subset S ⊆ X, in serial or parallel (in whatever way we
may think the brain implements such an algorithm), and select the one that has
the highest utility u(S). Conceptually this is a straightforward procedure. But it
has an important problem. The number of possible subsets grows exponentially
with the number of items in X. Given that in real-world situations one cannot
generally assume that X is small, the algorithm will be searching prohibitively
large search spaces.

Stop and Think
These days pizzerias may provide for 30 or more different toppings.
How many distinct pizzas do you think can be made with 30 different
pizza toppings?

If n denotes the number of items in X, then 2n expresses the number of
distinct possible subsets of X. In other words, with 30 toppings one can
make 230 > 1,000,000,000 (a billion) distinct pizzas. Of course, in practice
pizzerias typically list 20–30 distinct pizzas on their menus. But consider that
some pizzerias also provide the option to construct your own pizza, implicitly
allowing a customer to pick any of the billion pizza options available.

Stop and Think
Imagine that the brain would use the exhaustive algorithm described
earlier for selecting the preferred pizza. Assume that the brain’s algo-
rithm would process 100 possible combinations, in serial or parallel,
per second. How long would it take the brain to select a pizza if it
could choose from 30 different pizza toppings? What if it could choose
from 40 different toppings?

You may be surprised to find that the answer is 4 months. That is the time it
takes in this scenario for your brain to consider all the distinct pizzas that can be
made with 30 toppings in order to find the best tasting one (maximum utility).
If the choice would be from 40 toppings, it would even take 3.5 centuries.
Evidently, this is an unrealistic scenario. The pizzeria would be long closed
before you would have made up your mind!

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.1 Selecting Pizza Toppings 5

There is an important lesson to draw from our pizza example: Explaining
how agents (human or artificial) can make decisions in the real world,
where time is a costly resource and choice options can be plentiful, requires
algorithms that run in a realistic amount of time. The exhaustive algorithm
that we considered in our pizza scenario does not meet this criterion. It is an
exponential-time algorithm. The time it takes grows exponentially with the
input size n (i.e., grows as cn for some constant c > 1). Exponential time
grows faster than any polynomial function (a function of the form nc for some
constant c), and is therefore also referred to as non-polynomial time. Another
example of non-polynomial time is factorial time (grows as n!). An example
of a factorial-time algorithm would be an algorithm that exhaustively searches
all possible orderings of n events or actions in order to select the best possible
ordering. Consider, for instance, planning n activities in a day: going to the
hairdresser, doing the laundry, buying groceries, cooking food, washing the
dishes, posting a letter, answering an email, watching TV, etc. Even for as
few as 10 activities, there would be 3.6 million possible orderings, and for 20
activities there would be more than 1018 possible orderings. Planning one’s
daily activities by exhaustive search would be as implausible as selecting pizza
toppings by exhaustive search.

Table 1.1 illustrates why non-polynomial time (e.g., exponential or factorial)
algorithms generally are considered intractable for all but small input sizes n,
whereas polynomial-time algorithms (e.g., linear or quadratic) are considered
tractable even for larger input sizes. Informally, intractable means that the

Table 1.1 Illustration of the running times of polynomial time versus super-polynomial time
algorithms. The function t(n) expresses the number of steps performed by an algorithm
(linear, quadratic, exponential, or factorial). For illustrative purposes it is assumed that 100
steps can be performed per second.

Input size Polynomial time Non-polynomial time

n t(n) = n t(n) = n2 t(n) = 2n t(n) = n!

5 50 ms 250 ms 320 ms 1 sec
10 100 ms 1 sec 10 sec 10.1 hr
20 200 ms 4 sec 2.9 hr 7.7× 106 centuries
30 299 ms 9 sec 4.1 months 8.4× 1020 centuries
40 400 ms 16 sec 3.5 centuries 2.6× 1036 centuries
50 500 ms 25 sec 3.6× 103 centuries 9.6× 1052 centuries

100 1 sec 1.7 min 4.0× 1018 centuries 3.0× 10146 centuries
500 5 sec 41.7 min 1.0× 10139 centuries 4.0× 101124 centuries

1,000 10 sec 2.8 hr 3.4× 10289 centuries 1.3× 102558 centuries

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


6 Introduction

algorithm requires an unrealistic amount of computational resources (in this
case, time) for its completion. This intractability is the main topic of this
book. In this book we explore formal notions of (in)tractability to assess the
computational-resource demands of different (potentially competing) scientific
accounts of cognition, be they about decision-making, planning, perception,
categorization, reasoning, learning, etc. Even though brains are quite remark-
able, their speed of operation is limited, and this fact can be exploited to assess
the plausibility of different ideas scientists may have about “what” and “how”
the brain computes.

For illustrative purposes, Table 1.1 assumed that the listed algorithms could
perform 100 steps per second. To see that this assumption has little effect on
the large difference between polynomial and non-polynomial running times
perform the next practice.

Practice 1.1.1 Recompute the contents of Table 1.1 under the assumption
that the algorithms can perform as many as 1,000 steps per second.

Let us return to our pizza example. We saw that the exhaustive algorithm
(searching all possible subsets) to maximize utility of the chosen subset of
toppings is an intractable algorithm. Does this mean that the idea that humans
maximize utility in such a situation is false? Possibly, but not necessarily. Note
that the trouble may have arisen from the specific way in which we formalized
the maximum utility account of decision-making for subset choice. In the
Generalized Subset Choice problem we allowed for any possible utility
function u that assigned any possible value to every subset X. As a result, there
is only one way to be sure that we output a subset with maximum utility: We
need to consider each and every subset.

The situation would be less dire if somehow there would be regularity in
one’s preferences over pizza toppings. This regularity could then perhaps be
exploited to more efficiently search the space of choice options. For instance, if
subjective preferences would be structured such that the utility of a subset could
be expressed as the sum of the value of its elements (i.e., u(S) = ∑

x∈S u(x)),
then we could change the formalization as follows:

Additive Subset Choice
Input: A set X = {x1,x2,...,xn} of n available items and a value
function u assigning a value to every element x ∈ X.
Output: A subset S ⊆ X such that u(S) = ∑

x∈S u(x) is maximized
over all possible S ⊆ X.

If the pizza selection problem would be an instance of this formal problem,
then the brain could select a maximum utility subset by using the following

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.1 Selecting Pizza Toppings 7

simple linear-time algorithm: Consider each item x ∈ X, and if u(x) ≥ 0 then
add x to the subset S, otherwise discard the option x. Since each item in X has
to be considered only once, and the inequality u(x) ≥ 0 checked for each item
only once, the number of steps performed by this algorithm grows at worst
linearly with the number of options in X. As can be seen in Table 1.1, such a
linear-time algorithm is clearly tractable in practice, even when you have larger
numbers of toppings to choose from.

The maximum utility account of decision-making would thus be saved from
intractability, if indeed real-world subset choice problems could all be cast as
instances of the Additive Subset Choice problem. But is this a plausible
possibility?

Stop and Think
Consider selecting pizza toppings for your pizza using the linear-time
algorithm described earlier? Why may you not be happy with the actual
result?

If you would use the linear-time algorithm to select your pizza top-
pings, you would always end up with all positive valued toppings on your
pizza. Besides that this may make for an overcrowded pizza, it also fails
to take into account that you may like some toppings individually but
not in particular combinations. For instance, each of the items in the set
{pepperoni,salami,ham,mushroom,pineapple} could have individually posi-
tive value for you, in the sense that you would prefer a pizza with any one of
them individually over a pizza with no toppings. Yet, at the same time, you may
prefer {ham,pineapple} or {salami,mushrooms,olives} over a pizza will all the
toppings (e.g., because you dislike the taste of the combination of pineapple
with olives). In other words, in real-world subset choice problems, there may
be interactions between items that affect the utility of their combinations.
This makes u(S) = ∑

x∈S u(x) an invalid assumption. From this exploration,
we should learn an important lesson: Intractable formalizations of cognitive
problems (decision-making, planning, reasoning, etc.) can be recast into
tractable formalizations by introducing additional constraints on the input
domains. Yet, it is important to make sure that those constraints do not make
the new formalization too simplistic and unable to model real-world problem
situations.

A balance may be struck by introducing the idea of pair-wise interactions
between k items in the choice set. Then we can adapt the formalization as
follows:

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


8 Introduction

Binary Subset Choice
Input: A set X = {x1,x2,...,xn} of n available items. For every item
x ∈ X there is an associated value u(x), and for every pair of items
(xi,xj ) there is an associated value δ(xi,xj ).
Output: A subset S ⊆ X, such that u(S) = ∑

x∈S u(x) +∑
x,y∈S δ(x,y) is maximum.

If situations allow for three-way interactions, this model may also fail as a
computational account of subset choice. It is certainly conceivable that three-
way interactions can occur in practice (see, e.g., van Rooij, Stege, and Kadlec,
2005). Leaving that discussion for another day, we may ask ourselves the
following question: Would computing this Binary Subset Choice problem
be in principle tractable? It is not so easy to tell as for Generalized Subset
Choice, because the utility function is constrained. But is it constrained
enough to yield tractability of this computation? Probably not. Using the tools
that you will learn about in this book, you will be able to show that this problem
belongs to class of so-called NP-hard problems. This is the class of problems
for which no polynomial-time algorithms exist unless a widely conjectured
inequality P �= NP would be false. This P �= NP conjecture, although
formally unproven (and perhaps even unprovable), is widely believed to be
true among computer scientists and cognitive scientists alike (see Chapter 4
for more details). Likewise, we will adopt this conjecture in the remainder of
this book.

1.2 Conceptual Foundations

In our pizza example we have introduced many of the key scientific concepts
on which this book builds. For instance, we used the distinction made in
cognitive science between explaining the “what” and the “how” of cognition,
the notion of “algorithm” as agreed upon by computer scientists, and the idea
that “intractability” can be characterized in terms of the time complexity of
algorithms. In this section, we explain the conceptual foundations of these
concepts in a bit more detail.

1.2.1 Conceptual Foundations of Cognitive Explanation

One of the primary aims of cognitive science is to explain human cognitive
capacities. Ultimately, the goal is to answer questions such as: How do humans
make decisions? How do they learn language, concepts, and categories? How

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.2 Conceptual Foundations 9

do they form beliefs, based on reasons or otherwise? In order to come up
with answers for such “how”-questions it can be useful to first answer “what”-
questions: What is decision-making? What is language learning? What is
categorization? What is belief fixation? What is reasoning?

This distinction between “what is being computed” (the input-output map-
ping) and “how it is computed” (the algorithm) is also reflected in the
influential and widely used explanatory framework proposed by David Marr
(1981). Marr proposed that, ideally, theories in cognitive science should explain
the workings of a cognitive system (whether natural or artificial) on three
different levels (see Table 1.2). The first level, called the computational level,
specifies the nature of the input-output mapping that is computed (we will
also refer to this as the cognitive function).1 The second level, the algorithmic
level, specifies the nature of the algorithmic process by which the computation
described at the computational level is performed (cognitive process). The third
and final level, the implementation level, specifies how the algorithm defined
at the second level is physically implemented by the “hardware” of the system
(or “wetware” in the case of the brain) performing the computation (physical
implementation of the cognitive process/function).

Hence, in David Marr’s terminology, the description of a cognitive system
in terms of the function that it computes (or problem that it solves)2 is called a
computational-level theory. We already saw examples when we discussed the
pizza example: i.e., Generalized, Additive, and Binary Subset Choice
were three different candidate computational-level theories of how humans
choose subsets of options. Since one and the same function can be computed by

1 We should note that Marr also intended the computational-level analysis to include an account
of “why” the cognitive function is the appropriate function for the system to compute, given its
goals and environment of operation. This idea has been used to argue for certain
computational-level explanations based on appeals to rationality and/or evolutionary
selection – i.e., that specific functions would be rational or adaptive for the system to compute.
The intractability analysis of computational-level accounts as pursued in this book are neutral
with respect to such normative motivations for specific computational-level accounts, in the
sense that tractability and rational analysis are compatible, but the former can be done
independent of the latter (see Section 8.5).

2 Since the words “function” and “problem” refer to the same type of mathematical object (an
input-output mapping) we will use the terms interchangeably. A difference between the terms is
a matter of perspective: the word “problem” has a more prescriptive connotation of an
input-output mapping that is to be realized (i.e., a problem is to be solved), while the word
“function” has a more descriptive connotation of an input-output that is being realized (i.e., a
function is computed). The reader may notice that we will tend to adopt the convention of
speaking of “problems” whenever we discuss computational complexity concepts and methods
from computer science (e.g., in Chapters 2–7), and adopt the terms “function” or
“computational-level theory” in the context of applications and debates in cognitive science
(e.g., in Chapters 8–12).

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


10 Introduction

Table 1.2 Marr’s levels of explanation: What is the type of question asked at each level, what
counts as an answer (the explanans), and labels for the thing to be explained (explanandum)
per level.

Level Question Answer Label

Computation What is the
nature of the
computational
problem solved?

An input-output
mapping F : I → O

Cognitive
function

Algorithm How is the
computational
problem solved?

An algorithm A that
computes F

Cognitive
process

Implementation How is the
algorithm
implemented?

A specification of how
the computational steps
of A are realizable by
the relevant “stuff”
(e.g., neuronal
processes)

Physical
implementation

many different algorithms (e.g., serial or parallel), we can describe a cognitive
system at the computational level more or less independently of the algorithmic
level. Similarly, since an algorithm can be implemented in many different
physical systems (e.g., carbon or silicon), we can describe the algorithmic level
more or less independently of physical considerations.

David Marr, in his seminal 1981 book, illustrated this idea with the example
of a cash register, i.e., a system that has the ability to perform addition
(see Figure 1.1). A computational-level theory for a cash register would
be the Addition function F (a,b) = a + b. An algorithmic-level theory
could, for instance, be an algorithm operating on decimal numbers or an
algorithm operating on binary numbers. Either algorithm would compute the
function Addition, albeit in different ways. The implementational-level theory
would depend on the physical make-up of the system. For instance, different
physical systems can implement algorithms for Addition: cash registers, pocket
calculators, and even human brains. An implementational-level theory would
specify by some sort of blueprint how the algorithm could be realized by that
particular physical system.

Practice 1.2.1 Study the cash-register example in Figure 1.1. Can you come
up with different computational-, algorithmic- and implementational-level

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.2 Conceptual Foundations 11

F3f(a,b)=a+bF1 F2 ...

A2 A4 ...

P3 ... P6 ...

dec_add bin_add

Computational level

Algorithmic level

Implementational level

Figure 1.1 An illustration of the three levels of analysis by Marr, using Addition.

F1 F2 F3 F4 F5 F6 ...

A1 A2 A3 A4 A5 A6 ...

P1 P2 P3 P4 P5 P6 ...

Computational level

Algorithmic level

Implementational level

Figure 1.2 An illustration of the underdetermination of lower levels of explanation
by higher levels of explanation in the Marr hierarchy.

theories for another example? For example, for the pizza topping example
or for the example of scheduling activities throughout the day.

Stop and Think
Study the relationship between the levels of Marr in Figure 1.1.
Why is it that a given computational-level theory can, in principle,
be consistent with different algorithmic-level explanations? And why
can a given algorithmic-level explanation be consistent with different
implementational-level explanations?

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


12 Introduction

Note that in Figure 1.2 there is underdetermination of lower-level expla-
nations in the Marr hierarchy by higher-level explanations. By this we mean
that even if a cognitive scientist hypothesizes a particular computational-level
theory F , he or she can remain agnostic about the nature of the exact algorithm
A by which the system under study computes F . What the scientist does need
to commit to is that, in principle, there can exist an algorithm that computes
F . Similarly, hypothesizing a particular algorithmic-level explanation A for
function F , the scientist can remain agnostic about the nature of the exact
implementation P ,3 but she will have to commit to the in principle possibility
of realizing and running the algorithm on the relevant hardware or wetware.
Figure 1.2 gives the general picture.

David Marr argued for the usefulness of top-down analyses for purposes
of reverse engineering natural cognitive systems. The idea of such a top-
down approach is that it is best to start by developing a computational-level
theory and then work down toward the algorithmic- and implementational-
levels theories. He believed this was the best way to make progress in cognitive
science, because in his opinion:

an algorithm is likely to be understood more readily by understanding the
nature of the problem being solved than by examining the mechanism (and the
hardware) in which it is embodied. (Marr, 1981, p. 27; see also Marr, 1977).

This book is written to help cognitive scientists interested in adopting this
top-down approach by providing useful formal tools for computational-level
theory development.4 This is not to say that we think other approaches are
not to be pursued as well. In fact, we think that cognitive science can benefit
from pluralism in approaches, including bottom-up approaches (starting at the
implementational level) and middle-out (starting at the algorithmic level). This
book merely aims to add useful formal tools to the cognitive scientist’s toolbox,
not to promote one approach over the other.

3 We use P for Physical implementation instead of I for Implementation to not confuse with our
notation for inputs I .

4 Even theories that are often seen as being formulated at the algorithmic level – such as
connectionist or neural network models (e.g., McClelland, 2009) – are not free from
computational level considerations (Klapper et al., 2018; McClelland, 2009). Also for neural
networks it is of interest to study which functions they can and cannot compute (Parberry,
1994). For instance, neural network learning is a computational task: A neural network is
assumed to learn a mapping from inputs to outputs by adjusting its connection weights. Here
the input of the learning task is given by (I ) all network inputs in the training set plus the
required network output for each such network input, and the output is given by (O) a setting of
connection weights such that the input-output mapping produced by the trained network is
satisfactory. This learning task, like any other task in the more symbolic tradition, can be
analyzed at the computational level (Blum and Rivest, 1992; Judd, 1990; Parberry, 1994).

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.2 Conceptual Foundations 13

1.2.2 Conceptual Foundations of Computability and Tractability

Given that our focus will be on the top-down approach, it’s vital to realize
that there is also another type of underdetermination at play. Namely, the
computational-level theory itself is underdetermined by empirical observations
(see Figure 1.3). By this we mean that given observations about the behavior
of a system one cannot deduce the function that it computes. At best, one
can abduce it, i.e., make an inference to the best explanation. The problem
of underdetermination of theory by data is not specific, of course, to cognitive
science but applies in general to all empirical sciences.

Stop and Think
Consider a system that computes a function F: I → O, where both
I and O denote sets of binary strings. Now imagine you could input
different strings to the system and observe for each input the string that
the system outputs. Why would this information not be sufficient to
deduce the function F : I → O that the system is computing?

Coming up with computational-level theories for human cognitive
abilities – such as decision-making, categorization, learning, etc. – is a creative
scientific process. It is not possible to deduce theories from observations of a
system’s behavior for several reasons:

1. Any finite set of input-output observations is consistent with infinitely
many different functions.

2. Inputs and outputs are usually not directly observable.
3. Psychological data are noisy (due to context variables not under the control

of the experimenter).
4. Commitment is usually to the informal theory, not the specific formaliza-

tion.

All four points can be illustrated with our earlier pizza topping example.
Let’s say we give a person 20 different sets of toppings to choose from

and observe which pizza toppings they choose per set. Then there will be,
in principle, multiple set-to-subset functions consistent with the observations,
each making a different prediction about what the person would choose if we
would make a new, 21st topping, and add that to the set of toppings for them
to choose from (point 1 in the previous list). Note, furthermore, that if our
computational-level theory is based on the idea that human decision-makers
maximize utility, then both the choice options and the final choice set must

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


14 Introduction

F1 F2 F3 F4 F5 F6 ...

A1 A2 A3 A4 A5 A6 ...

P1 P2 P3 P4 P5 P6 ...

D1

Computational level

Algorithmic level Computability

TractabilityImplementational level

D2 D1 D2D3 D4 D5 D6 D7 D8 D9 D10

Theory is underdeter-
mined by data

F1 F2 F3 F4 F5 F6

? ? ? ? ? ?

? ? ? ? ? ?

D3 D4 D5 D6 D7 D8 D9 D10

Theory is underdeter-
mined by data

Figure 1.3 An illustration of the underdetermination of computational-level theories
by data (left) and the lower-level constraints on computational-level
theories (right).

have associated utilities. These utilities are aspects of the input and output that
are not directly observable; they are a property of the person’s inner mental
states, in this case preferences (point 2). Furthermore, even if we would be
able to devise procedures to try and estimate those unobservable states, then
our measurements would always have some noise and measurement errors that
we cannot fully control as scientists. Hence, if the observed behavior of the
person would not match exactly with the predictions made by our theory we
do not know for sure that it is the theory that is incorrect or that we may have
misestimated the person’s utilities (point 3). Lastly, even if based on the noisy
and partial input-output observations so far, we would be able to rule out some
particular Subset Choice functions that may not be sufficient to falsify the idea
that human decision-makers are utility maximizers, because there could exist
functions based on alternative formalizations of this informal idea that could
be consistent with the observations made to date (point 4).

It seems, thus, that it would be useful if cognitive scientists could appeal to
some theoretical constraints on the type of computational-level theories they
could come up with. If we reconsider the Marr hierarchy we can see that
indeed such constraints are available. Namely, a cognitive scientist postulating
a particular F as a candidate hypothesis for the “what” of some aspect of
cognition is committing that there exists some physically feasible “how”-
answer. In other words, the function should be computable and tractable –
computable, because there should be at least one algorithm A that can compute
F ; and tractable, because it must be possible to run A using a realistic amount
of resources (time and space) on a physical mechanism P . We will refer to the
first requirement as the “computability constraint” and the second requirement
as the “tractability constraint” (see Figure 1.3).

In order to be able to assess which functions meet the computability
constraint, a precise definition of computation is required. Informally, when

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.2 Conceptual Foundations 15

we say a system computes a function or solves a problem, F: I → O, we
mean to say that the system reliably transforms every i ∈ I into F (i) ∈ O in a
way that can be described by an algorithm. An algorithm is a step-by-step finite
procedure that can be performed, by a human or machine, without the need for
any insight, just by following the steps as specified by the algorithm.

In 1936, Alan Turing presented his machine formalization as a way of
making the intuitive notions of “computation” and “algorithm” precise. Turing
proposed that every function for which there is an algorithm – which is
intuitively computable – is computable by a Turing machine (for more
details on this machine formalization we refer the reader to Appendix A). In
other words, functions that are not computable by a Turing machine are not
computable in principle by any machine. To support his thesis, Turing showed
that his formalization is equivalent to a different formalization (λ-calculus),
which was independently proposed by Church (1936). The thesis that both
Turing’s and Church’s respective formalizations capture the intuitive notion
of algorithm is now known as the Church-Turing thesis. Further, Turing’s and
Church’s formalizations have also been shown equivalent to all other accepted
formalizations of computation (such as based on neural networks, cellular
automata, and even quantum computers), by which the thesis has gained more
support.5 The Church-Turing thesis has a direct implication for cognitive
science: Computational-level theories of cognitive abilities are theoretically
constrained to be Turing-computable functions (see Figure 1.4).

Even though the computability constraint can help rule our computationally
infeasible computational-level theories, for practical purposes it seems like
a too liberal constraint. For instance, we saw that Generalized Subset
Choice could be computed by an exhaustive search algorithm, hence the
problem is computable. Yet, such an algorithm seems to be intractable. Here,
like computability before Turing and others’ formalization of the term, the
term “intractability” is an informal notion in need of formalization if we are
going to use it to constrain computational-level theories. In this book we will
pursue two possible formalizations of tractability: one grounded in what is
known as classical complexity theory and one grounded in what is known as
parameterized complexity theory.

5 Note that the Church-Turing thesis is not a mathematical conjecture that can be proven right or
wrong. Instead the Church-Turing thesis is a hypothesis about the state of the world. Even
though we cannot prove the thesis, it would be in principle possible to falsify it; this would
happen, for example, if one day a formalization of computation were developed that (a) is not
equivalent to Turing computability, and that, at the same time, (b) would be accepted by (most
of) the scientific community. For now the situation is as follows: Most mathematicians and
computer scientists accept the Church-Turing thesis, either as plainly true or as a reasonable
working hypothesis. In this book, we will also adopt the Church-Turing thesis.

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


16 Introduction

Cognitive
functions

Computable functions

All functions

Figure 1.4 According to the Church-Turing thesis, cognitive functions are a subset
of all computable functions.

Cognitive
functions

Polynomial-time

computable
functions

All functions

Figure 1.5 According to the P-Cognition thesis, cognitive functions are a subset of
the polynomial-time computable functions.

In classical complexity theory a function F is considered tractable if there
exists an algorithm A that computes F and A runs in so-called polynomial
time (i.e., time that grows on the order of nc when n is the input size and
c ≥ 1 is some constant). Given this formalization of the notion of “tractability,”
the tractability constraint would prescribe that computational-level theories are
constrained to be polynomial-time computable functions. This thesis is called
the P-Cognition thesis (see Figure 1.5).

The classical definition of tractability as polynomial-time solvability is
widely adopted in computer science (to be reminded of its merit, you may want
to revisit Table 1.1). For instance, Garey and Johnson write the following:

Most exponential time algorithms are merely variations on exhaustive search,
whereas polynomial time algorithms generally are made possible only through

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.2 Conceptual Foundations 17

the gain of some deeper insight into the nature of the problem. There is wide
agreement that a problem has not been “well-solved” until a polynomial time
algorithm is known for it. Hence, we shall refer to a problem as intractable, if it
is so hard that no polynomial time algorithm can possibly solve it. (Garey and
Johnson, 1979, p. 8)

Accordingly, many cognitive scientists have adopted the P-Cognition thesis,
leading them to reject functions that cannot be computed in polynomial
time (such as NP-hard functions) as viable computational-level theories. For
instance decision-making reseacher Gigerenzer and colleagues write:

The computations postulated by a model of cognition need to be tractable in the
real world in which people live, not only in the small world of an experiment
with only a few cues. This eliminates NP-hard models that lead to computational
explosion (...). (Gigerenzer, Hoffrage, and Goldstein, 2008, p. 236)

The emphasis in this quote that tractability should hold beyond the small world
of an experiment is to underscore that real-world inputs cannot generally be
assumed to be small enough to make non-polynomial time algorithms feasible.
Recall, for instance, that even though selecting a maximum utility pizza using
exhaustive search from five possible toppings could be done within a few
minutes, it would take months or centuries when selecting from 30 or 40
toppings. The polynomial-time requirement hence seems to be no luxury for
real-world decision making.

Despite the widespread adoption of the P-Cognition thesis in cognitive
science, an argument has been made that the thesis may be a bit too strict as a
formalization of the tractability constraint on computational-level theories. For
instance, van Rooij (2008) noted that the P-Cognition thesis:

(...) overlooks the possibility that exponential-time algorithms can run fast,
provided only that the super-polynomial complexity inherent in the computation
be confined to one or more small input parameters. (van Rooij, 2008, p. 973)

This concern is based on an important insight from the newer branch
of complexity theory called parameterized complexity theory. That is, the
insight that some NP-hard functions can be computed by algorithms that run
in so-called fixed-parameter tractable time (formally, a time proportional to
g(k1, . . . ,ki)nc, where g can be any (computable) function of the parameters
k1, . . . ,ki). In fixed-parameter tractable algorithms the non-polynomial time
complexity is confined to a function g depending solely on the parameters
and not on the overall input size n. Since the running time is polynomial in n,
albeit non-polynomial in the parameters, fixed-parameter tractable algorithms
can run fast even for large inputs, provided only that the parameter remains
relatively small. To see this for yourself, perform Practice 1.2.2.

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


18 Introduction

Practice 1.2.2 Reconsider Table 1.1, and add two new columns to the table
for the function for the function 2kn, with k = 8, one time assuming 100
steps per second and one time assuming 1,000 steps per second.

In fixed-parameter tractable algorithms the bulk of the time-complexity
depends on the parameters, whereas the size of the input has much less effect
on the overall complexity of the running time. For an illustration, perform
Practice 1.2.3.

Practice 1.2.3 Reconsider the two new columns you made in Practice 1.2.2.
What happens when you increase n from 5 to, say, 100? What would happen
if you would increase k from 5 to 100?

Fixed-parameter tractable algorithms generally run considerably faster for a
parameter k � n than algorithms that require more than fixed-parameter
tractable time (e.g., on the order of nk steps). For an illustration, perform
Practice 1.2.4.

Practice 1.2.4 Reconsider the new columns from Practices 1.2.2 and 1.2.3,
and now add two new columns for the function nk , one assuming 100 steps
per second and one assuming 1,000 steps per second, with k = 8.

Given that cognitive input domains are typically characterized by many
different input parameters of widely varying ranges, the younger branch
of computation theory—called parameterized complexity theory—may better
serve cognitive scientists in characterizing the computational resource require-
ments of different computational-level theories than classical complexity
theory. Reconsider, for example, the pizza topping selection problem again.
In real world settings, the number of toppings we may be able to choose may
simply be bounded by our budget. If each topping adds an additional $1 to the
cost, then on a fixed budget we may be able to not add more than, say, eight
different toppings. This does not reduce the overall input size of the problem,
which may still contain 40 different toppings to choose from. However, it
would matter a lot for the time needed to find a maximum utility pizza within
this budget constraint if we can find it using an algorithm that runs in a time
proportional to, say, 2kn, as opposed to having to search all nk subsets.

In general, functions that are fixed-parameter tractable are efficiently com-
putable when the relevant parameters are constrained to relatively small sizes.
If the parameters k1, . . . ,ki are small then the resource demands of computing
the (potentially exponential or worse) problem F does not explode and hence
the function can be computed effectively in polynomial time. Under param-
eterized complexity, the set of computationally plausible cognitive theories

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.2 Conceptual Foundations 19

Cognitive
functions

Fixed-parameter

tractable
functions

All functions

Figure 1.6 According to the FPT-Cognition thesis, cognitive functions are a subset
of all fixed-parameter tractable functions.

is a subset of all fixed-parameter tractable time computable functions (see
Figure 1.6). This thesis is called the FPT-Cognition thesis.

With the FPT-Cognition thesis we do not mean to argue that NP-hardness
results are of no significance to cognitive science. On the contrary, the FPT-
cognition thesis, like the P-Cognition thesis, recognizes that an NP-hard
function F cannot be practically computed in all its generality. If the system
is computing F at all, then it must be computing some “restricted” version
of it, denoted F ′. The crux is, however, what is meant by “restricted.” The P-
Cognition thesis states that F ′ must be polynomial-time computable, whereas
the FPT-cognition thesis states that F ′ must have problem parameters that are
in practice “small” and that F ′ must be fixed-parameter tractable for (a subset
of) those parameters.

On the one hand, the FPT-Cognition thesis loses in formality by allowing
an undefined notion of “small” parameter in its definition. On the other hand,
this allowance is exactly what may bring the FPT-Cognition thesis in closer
agreement with cognitive reality. In practice, real-world cognitive inputs seem
to have parameters that are of qualitatively different sizes. Ignoring these
qualitative differences, and treating the input always as one big “chunk,”
would risk making complexity analysis in cognitive science practice vacuous.
The FPT-Cognition thesis, then, should not be seen as a simple litmus test
for distinguishing feasible from unfeasible computational-level theories. On
the contrary, the FPT-Cognition thesis is probably best seen as a stimulans
for actively exploring how the inputs of computational-level theories are
parametrically constrained in order to guarantee tractability in real-world
situations.

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


20 Introduction

The following chapters will cover proof techniques for assessing whether
or not a given function (or problem) F is computable in polynomial time
and/or fixed-parameter tractable time. These techniques can then be used to
assess whether or not a given computational-level theory meets the tractability
constraint, be it formalized as the P- or FPT-Cognition thesis.

1.3 Exercises

In this chapter you learned about the conceptual foundations of the tractability
constraint on computational-level theories of cognition. To consolidate your
newly gained knowledge you can quiz yourself with the following exercises.

Exercise 1.3.1 We used Subset Choice as a running example. Consider now
a cognitive capacity of special interest to you. Imagine going through the
same process of first defining the most general input-output mapping for this
capacity and then working toward one that may be tractable. What kinds of
input-output mappings would you come up with?

Exercise 1.3.2 Different cognitive scientists have a preference to start the-
orizing at one or more of Marr’s levels of explanation. What benefits and
drawbacks do you see for starting at the computational level, the algorithmic
level, or the implementational level? Try to come up with at least one benefit
and drawback for each option.

Exercise 1.3.3 Search for a few cognitive science articles that use the word
“intractability.” What is the meaning of the word used in those articles? (Hint:
the term “intractability” is often used informally in the cognitive science
literature. Regularly, it means “computational intractability,” as we use it
throughout this book, but not always. For instance, sometimes it means
something like unmanageable, uncontrollable, very difficult, or analytically
unsolvable.)

Exercise 1.3.4 Just as the Church-Turing thesis provides a definition of
computability independent of the Turing-machine formalization, both the P-
Cognition and FPT-Cognition thesis intend to use definitions of tractability
that are independent of the Turing-machine formalization. This is afforded
by the so-called Invariance thesis, which states that two reasonable com-
puting machines can simulate each other with at most polynomial-time
overhead. Read the Turing-Machine Objection in Chapter 9, and answer the
following question: Why does the Invariance thesis, if true, guarantee that
the P-Cognition and FPT-Cognition theses apply to computational-level
theories regardless the nature of brain computation?

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


1.4 Further Reading 21

1.4 Further Reading

The Tractable Cognition thesis and its formalizations in the form of the
P-Cognition thesis and the FPT-Cognition thesis were first coined by van
Rooij in her PhD thesis in 2003. She built, however, on pioneering work of
Edmonds (1965), Cobham (1965), and Frixione (2001). Edmonds and Cobham
formulated a polynomial-time variant of the Church-Turing thesis, now known
as the Cobham-Edmonds thesis. Frixione translated the Cobham-Edmonds
thesis to the cognitive domain: He argued that tractability—conceived of as
polynomial-time computability—is a constraint that applies to computational-
level theories of cognition in general. This thesis, proposed by Frixione, is
what van Rooij coined the P-Cognition thesis. Prior to 2000 the P-Cognition
was already tacitly entertained in several subdomains of cognitive science, for
instance, in work by

• Cherniak (1986) and Levesque (1989) in the domain of reasoning

• Tsotsos (1990) in the domain of vision

• Simon (1988, 1990) and Martignon and Schmitt (1999) in the domain of
decision-making

• Thagard and Verbeurgt (1998) and Millgram (2000) in the domain of belief
fixation

• Oaksford and Chater (1993) and Oaksford (1998) in the domain of common-
sense

• Parberry (1997) in the domain of knowledge

Work exploring the FPT-Cognition thesis is much younger, given that it
was not conceived prior to 2003. The compendium in Appendix C gives an
overview of fixed-parameter (in)tractability analyses of computational-level
theories to date.

https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003


https://doi.org/10.1017/9781107358331.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107358331.003

