
ONTARIO MATHEMATICAL MEETINGS 1968 

Four meetings were held during the year, 1968. For the f i rs t t ime, 
cent res outside Toronto were used. The details of each meeting (time, 
place and invited address) and the abs t rac ts of papers presented a re as 
follows: 

Sixth meet ing: January 20, University of Waterloo (Abstracts 68.1 to 68.8) 
P . M . Cohn (University of London, and Rutgers, the State University), 
Dependence in r ings . 

Seventh meet ing: March 30, University of Toronto (Abstracts 68.9 to 68.15) 
Abraham Robinson (Yale University), Germs and monads . 

Eighth meeting: November 2, McMaster University, Hamilton (Abstracts 
68.16 to 68.26) A. Rosenberg (Cornell University), Some recent resu l t s 
on the Brauer group of r ings . 

Ninth meeting: December 14, University of Toronto (Abstracts 68.27 to 
68.40) Marc Kac (Rockefeller University), Some mathemat ica l problems 
in s ta t is t ica l mechanics . 

68.1 G. Alexits (Hungarian Academy of Sci. Math. Research Inst, 
and Universi ty of Waterloo) 
On the Character izat ion of Classes of Functions by Best Linear 
Approximation 

For a r ea l Banach space B containing a sequence {y } , define 

the nth best {y } - approximation of x e B : 

E n ( B ) ( X j { Y V } ) = l n f { " X " ( a i y i + - - ' + a n y n ) | l B : a i G R } ' 

For a subset C of B, E ( B ) ( C , {Y } ) = sup lE^ (x, {y^} ) : xGC} . 

If ( E } is a positive non-increasing null sequence, C ({E } , {y } ) 
n (B) n V 

is the set of all those elements xeB with E (x, {y } )< E ^ n ^ l , 2, . . 
A set C C B is ( E j - charac ter izable if there exists a basis of 

— n 

approximation {y } such that C({KEn) , {y^} )Ç C Ç C({En> , {y^} ) 

for each n where K < 1 is an absolute constant. 
Assume that B is a Banach space contained in a Hilbert space such 
that the B-norm dominates the Hilbert space norm. Write {a }^{b } 

a b n n 
for two positive sequences if { n/t>n} and { / a n } a re both 
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bounded, and E ( B ) (C) - inf {E ( B ) ( C , {y } ): {y } C B} . 
n n v v "" 

THEOREM. Let {£ } be a bounded or thonormal sys tem and C 
t = v ' 

a closed set {E } - charac te r izab le by {£ } - approximation. If 

E > c E for some constant c and every n, then 
2n — n 

{E }% {E ( B )(C)} . 

This theorem can be applied to approximation by v - t imes differentiable 
functions whose r th der ivat ives satisfy a Lipschitz condition and by 
rat ional functions. 

68.2 E. Zakon (University of Windsor) 
Non-Standard Models of the Real Axis 

68.3 G . F . Duff (University of Toronto) 
On Rear rangement Identities 

For a real-valued function f e C [0 ,b] , the equ i -measurab le 
-1 

decreas ing r ea r r angemen t f* of f is defined as in where 
m(y) is the m e a s u r e of the set {x|f(x)>y} . If n(y) denotes 
the number of roots x of f(x) = y, then 

A n A 

2 I f*> (x) | k = 1 | f (x^ | 

F r o m this re la t ion we can deduce in tegra l inequalit ies such as 

J\ f*'(x) | P d x < / | f ' <X ) ' dx , p > l 
n(f (x) ) P 

Also, if we define an "equivariat ional t r ans fo rm" F of f by 
dF = n(f)df*, we can establ ish an a rc length inequality of the 
form 

j^Jl+(F1)2 dx<_ J 4l+(V)Z dx . 

Various general isa t ions involving convex functions and higher 
dimensions a re also poss ib le . 
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68.4 R.G. Stanton (York University) and J.G. Kalbfleisch (University 
of Waterloo) 
Covering Problems for Dichotomized Matchings 

Olga Taussky and John Todd have posed the following problem 
concerning an abelian group G with n base elements 
g. (i = 1, . . . , n) each of order p, where p need not be a prime. 

Let S be the set of 1 + n(p - 1) distinct powers of the base 
elements. Then one is required to determine the minimal integer 
cr(n, p) for which there exists a subset H of G, with H containing 
cr(n, p) elements, such that each element of G may be written as 
a product of an element of H and an element of S . 

In this paper, attention is restricted to the case of a(n, 2) . If the 
set H contains y. elements whose entries are made up of i ones 

and n - i zeros, then 

( n - i + l j y . ^ + y. + ( i + l ) y . + 1 > ( ° ) 

for i = 0, 1, . . . , n. Consideration of these inequalities allows one 
to determine cr(n, p) for p = 2, n = 2, . . . , 7. The values are 
2, 2, 4, 7, 12, 16. Of these, the value o~(6, 2) = 12 is new, and some 
new uniqueness properties are found. The method shows that 
cr(8, 2) is either 31 or 32, and it is announced that different 
considerations, to be published later, show that <r(8, 2) = 32. 

68.5 H.P . Heinig (McMaster University) 
An Extension of Plancher el's Theorem 

Let M denote the real line and m the Lebesgue measure 
on M . Define f# to be the equimeasurable decreasing 
rearrangement of |f | by f* (t) = inf {y > 0: \ i i (y) <_ t} , where 

\ . .(y) = m{x G M: |f(x) | > y, V Y > 0} , and f** by f**(s) = 
' ' s 

1/s f f# (t) dt, s > 0. If L (M), 1 <p< oo, 1 < q < oo is the 
0 q ' P 

class of measurable functions f on M such that 

oo 11 / p 

( q - l ) / q 2 / [f**(t)]P t p / q _ 1 d t <oo, where 
0 J 

1 q>p 

t 1 / q i 1 < p < oo, 1 < q < oo, y f II = sup t Mf**(t) < oo, 
cl' t 

L (M) = L. (M), and L, J(M) = L J ( M ) , 
00, 00 00 1 , 1 1 
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then the following extension of P l anche re l ' s theorem holds: 

THEOREM: If f e L (M), 1 < q < 2, l < p < o o then as X -* oo . 
q > p - - * 

x i x t 
f (x) = 1/N/2TT / e f(t)dt, converges in the L , - n o r m to f, 

X J_x q'.P 

called Fo.urier t r ans form of f and f , < A f , 
II M q l ) p _ l l q > p 

where q1 + q = q'q. 

COROLLARY. If 1< q < 2, q < p < q' , J | x | P / q ~ |f(x) | Pdx < oo, 
- c o 

then f converges in mean to f and for p < s < q' , 
X 

; °° / I A - \ 1 / S (CO ) 1 / p 
, / I x r ^ ^ l f t x ) ! ^ ) - < A / I x l P ^ ^ l f W l P d x 

68.6 H. H. Crapo (University of Wat erloo) 
Simplicial Geometr ies 

A geometr ic theory of combinator ia l topology may be founded upon 
the following simple observat ions concerning Betti n u m b e r s . 

For a fixed n-e lement set T , and any non-negative integer k £ n, 
let T, be the set of all k-e lement subsets of T. With each subsel 

k 
A C T , associa te the s implicial complex S(A), with s impl ices 

S (A) = T U T, u . . . U T y A . 
0 1 k-1 

Let a. (A) and (3.(A) be the total number of s impl ices , and the 

Betti number, respect ively, calculated for s implices of cardinal i ty 
i in the complex S(A). 

The integer-valued function r, defined on subsets A C T by 

r ( A ) = ( k - P - p k - i ( A ) = lAl - ^k (A) 

inc reases by at mos t one when an element is added to a set A, has 
value r(0) = 0, and satisfies the semimodular inequality 

r(A O B) + r(A 0 B) < r(A) + r(B) . 
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THEOREM. r(A) m e a s u r e s the geometric rank of the subset A 

in some geometry G(T ) of rank i. ) on the set T of , 

points . 

The latt ice of flats of a geometry G(T ) for k = 2 is the lattice 

of all part i t ions of the set T, ordered by refinement. For higher 
values of k, the simplicial geometr ies have not previously been 
studied. Two general resu l t s a re available. 

THEOREM. In a s implicial geometry G(T ), the set B of points 

(k-element simplices) containing any fixed element b e T form a 

basis for the geometry . 

THEOREM. On an n-e lement set T, the geometr ies G(T ) and 

G(T , ) a r e orthogonal, for k = 0, . . . , n. (Alexander duality) 
n - k a 

(G. C. Rota and the author a re including an exposition of these 
resu l t s in the book Trends in Lattice Theory, soon to appear in the 
Van Nostrand s e r i e s . ) 

68.7 F . P . Cass and D. Borwein (University of Western Ontario) 
Multiplication Theorems for Strong Summability 

Some theorems concerning the strong Norlund summability of the 
Cauchy product of two given ser ies are established which general ise 
known theorems about strong Cesaro summabil i ty. 

68.8 Tae Ho Chae (McMaster University) 
On Compact Topological Latt ices of Finite Dimensions 

In 1947, I. Kaplansky proved that a compact semi-s imple topological 
ring is isomorphic and homeomorphic with a car tes ian direct sum of 
finite simple r ings; this implies that any compact Boolean topological 
lattice is always totally disconnected. 

However, in the proof of his theorem, Kaplansky utilized duality 
theorem in the sense of a topological group. Professor A.D. Wallace 
had suggested the possibili ty of a proof of the latter theorem (Boolean 
ring case) which is independent of the duality theorem. In this 
connection, we show, without using the duality theorem, that any 
compact Boolean topological lattice of finite dimension is always 
totally disconnected. 

With the use of duality theorem, this theorem can be generalised 
as follows: a locally compact and locally convex Boolean topological 
lattice is totally disconnected. And we show: If L is a compact 
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complemented modular topological lattice and if a/\L = F(aAL) 
(the boundary of aAL) for all non-zero elements a of L and 
dually, then L is totally disconnected. A .D . Wallace conjectured 
that the center of a compact connected topological latt ice L of 

codimension n contains at mos t 2 e lements . L. W. Anderson 
showed that if L is dis tr ibut ive, then Wallace 's conjecture is t rue . 
in the second section, we prove that the conjecture is always t r u e . 
It is also shown that if L is a topological lat t ice with 0 and 1 
with codimension n, then L is iseomorphic with the n-ce l l if 
and only if L satisfies (i) L is dis t r ibut ive and contains 
n-independent elements x . . . . , x over 0 whose union is 1. 

1 n 
(ii) each X . A L is separable , connected and locally compact . 

68.9 A. Tsutsumi (University of Toronto) 
On a Generalised Goursat P rob lem 

We consider the equation 

d 
at. 7r~ u(t , . . . , t ,x) 

ot ) 1 m 
m 

> y P y 
(t, , . . . , t ,x) 

at. 
d ^ m . ' 3 ^ 

at 
u ( t r . . , t , x) 

m 

with data 

+ f(t . . . , t , x ) , 
1 m 

. u(t . . , t ,x) 
ox) 1 m t.^0 Yik 

l 

0<k<a.-l, lj<i<_m , 

under the compatibility conditions on 
"ik' 

at. J J k 

•••° i v *• t. =.0 
J 

where the summation is done for (3, y such that 

l y l > IPl + Y> «. > P.» i = 1 m -
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We have an unique existence theorem of the solution of the above 
equation in the function class of 5-geverey with respec t to x for 

ô : 1 <. ô <. min — and continuously differentiable up to 
P. Y y 

the order a with respec t to t, which general ises the resul t s of 
A. F r i edman (Trans . Amer . Math. Soc. 98) and L. Hormander 
(Theorem 5 . 1 . 1 ; Springer 1963). 

.10 R .G . Lintz (McMaster University) 
Cauchy's P rob lem for Generalised Differential Equations 

The idea of derivatives in general topological spaces has been 
introduced in (Notices Amer . Math. Soc. - 648-76; August, 1967). 
As a consequence, we can consider also differential equations in 
general topological spaces . To do this, we have to consider in the 
spaces X and Y a s t ruc ture of Gauss space and then if we a re given 
an open set M in X and an open set M' in Y it is possible to 
prove the existence of solution of the equation Df = g, where g is 
a special g-function, satisfying initial conditions relat ively to the 
pair (M, M1). For a rb i t r a ry g-function g this problem is not yet 
solved. 

68.11 D . Z . Djokovic (University of Waterloo) 
A Representat ion Theorem for (X - 1)(X - 1). . . (X -1) and its 

Applications 

Let R be a commutative ring with unity. We prove that the polynomial 

(1) (n'.)2 £ ( X . - l ) 
i=l 

for some integer s > 0 is contained in the ideal of R[X , . . . , X ] 

which is generated by all polynomials of the form 

(2) (X. X. . . . X . - l ) n 

1 2 k 

w h e r e 1 < i < i < . . . < i. < n . 
1 c, K 
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The p r o o f of t h i s i s b a s e d on the i d e n t i t y 

,k <r- , „ _ _ , v n S (-1) 5 1 (X. X. . . . X. - 1) ] 

k= l l < i < i < . . . < i < n 1 2 k 

= ( - ^ O n <^m-D. 
m = l i = l 

l 

T h i s r e p r e s e n t a t i o n of t he p o l y n o m i a l (1) a s a c o m b i n a t i o n of 
p o l y n o m i a l s (2) (wi th p o l y n o m i a l c o e f f i c i e n t s ) l e a d s to a s i m i l a r 
r e p r e s e n t a t i o n of the i t e r a t e d d i f f e r e n c e o p e r a t o r 

A A . . . A . 
u u u 

1 2 n 

By u s i n g t h i s r e p r e s e n t a t i o n we p r o v e a g e n e r a l i s a t i o n of a r e c e n t 
r e s u l t of M . A . M c K i e r n a n : If f : R -*• R s a t i s f i e s 

A n + 1 f ( x ) = 0 

for a l l u, x e R and a f ixed p o s i t i v e i n t e g e r n t h e n 

f (x ) = S g * (x) 
k = 0 k 

w h e r e g : R -> R i s m u l t i a d d i t i v e and g * (x) = g (x, x, . . . , x) . 

We show t h a t t h e s a m e t h e o r e m i s va l id ( e s s e n t i a l l y ) if we t a k e f 
to b e a func t ion w h i c h m a p s an a b e l i a n s e m i g r o u p in to an a b e l i a n 
g r o u p . 

6 8 . 1 2 E . Z a k o n ( U n i v e r s i t y of W i n d s o r ) 
On U n i f o r m S p a c e s wi th a N e s t e d B a s e 

A u n i f o r m s p a c e X wi th a n e s t e d b a s e ( " n e s t e d s p a c e " ) a l w a y s 
h a s a b a s e V w h i c h i s e i t h e r c o u n t a b l e o r c o n s i s t s of c l o p e n 
e n t o u r a g e s w h i c h a r e e q u i v a l e n c e r e l a t i o n s , so t h a t e a c h V G V 
i n d u c e s a p a r t i t i o n of X in to d i s j o i n t c l o p e n n e i g h b o r h o o d s V [ x ] . 
Such a b a s e i s c a l l ed s t a n d a r d if i t i s w e l l o r d e r e d by i n v e r s e 
i n c l u s i o n and i s of the l e a s t p o s s i b l e o r d e r type J u n d e r t h a t 
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well o rder ing . Notation: (X, y , J) . (X, V» J) is said to be 
pseudocomplete if O V [x ] f 0 for every decreasing 

sequence of neighborhoods V [x 1 (V e V) of order type n < J . 
V V V y i. i 

We say that X has few isolated points if some neighborhood is 
free of such points . 

SOME THEOREMS. 2 .4 ( a ) . (X, V, J) is met r izable if it is 
heredi tar i ly Lindelôf, or separable , or totally bounded, or has a 
non-discre te subspace with one of these p rope r t i e s . 

3.2. A pseudocomplete nested space (X, V, J) with few isolated 
points is met r izab le if: (a') For each V G V, X can be covered by 

less than 2 neighborhoods V[x]; or (b1) every open covering of 

X has a subcovering of power < 2 ° ; or (c1) every set of power 

> 2 ° in X has a limit point; or (d1) some neighborhood V[x] 
without isolated points has one of these three proper t ies , as a 
subspace of (X, V, J) . 

68.13 W.A. O'N. Waugh (University of Toronto) 
Conditional Probabi l i t ies in a Birth and Death P r o c e s s 

A Markov process may, in general , possess one or m o r e sets of 
absorbing s t a t e s . The author has described a method for deriving 
probabil i t ies conditional on absorption in a given set, from 
unconditional probabil i t ies for the same p r o c e s s . The purpose of 
the p resen t work is to extend this resu l t to the non-Markovian age-
dependent branching p r o c e s s . There is a single absorbing s ta te : 
zero, or extinction of the population, and all other states (the 
positive integers) a re t rans ient . The process is conveniently 
described in t e rms of a family t ree , and we shall make use of 
probabili ty m e a s u r e s on a space of possible family t r e e s . The 
p rocess is well defined when one has given the distribution G(t) 
of life-lengths of individuals, and the respect ive probabil i t ies 
q Jt) and q ~(t) that life ends in death without issue or in binary 
fission, given that it ends at age t . Let p be the probability of 
death, and cr the probability of binary fission (unconditionally). 
Also, let B* (t |b) be the life-length distribution conditional on 
binary fission, and D#( t |d ) , be that for death without i s sue . 

Let A be any event and let E be the event "extinction". We write 
for the probability in the conditioned process 

P(A|E) = P(A) 

and adopt the same convention of a tilde for all probabil i t ies in the 
conditioned p r o c e s s . Our resu l t is that 

(a) p = o- and <r = p 

(b) D*(t |d)= D*(t(d) and B*(t |b) = B* (t | b) 
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(a) is just what would be obtained by applying the author's ea r l i e r 
r e su l t for Markov p r o c e s s e s to the imbedded d i s c r e t e - t ime Galton-
Watson p r o c e s s , while (b) implies that, given his reproduct ive 
his tory an individual 's life is independent of the ult imate fate of the 
population. 

F r o m this resul t , the conditional probabil i t ies G(t) qQ(t) and 
q?(t) can be obtained, and mean life-lengths and other p roper t i e s 
of the p rocess obtained. 

(Reference: W. A. O'N. Waugh, Age-dependent Branching 
P r o c e s s e s Under a Condition of Ultimate Extinction. Biometr ika 5 5 

(1968) 291-296.) 

68.14 M . P . Heble (University of Toronto) 
On the Homotopy Groups of the Genera l Linear Group of an Infinite-
dimensional Banach Space 

The basic hypothesis made i s : 

X is an infinite-dimensional complex Banach space with a 
countable bas i s , and with the further proper ty that every closed 
linear subspace in X has a complementary closed l inear sub-
space in X. The bas is elements a re assumed to be normal i sed . 

We consider L(X, X) the l inear space of continuous l inear opera to rs 
A: X->X, with the topology defined by the operator no rm: 

Denote by GL = GL(X) the group of elements A e L(X, X) such 
-1 

that A, A both belong to L(X, X). GL becomes a topological 
group with the above topology. The theorem proved i s : 

THEOREM. All homotopy groups of GL vanish: 

IT (GL) = 0, k = 0, 1, 2, . . . . 
k 

68.15 J. A. Baker (University of Waterloo) 
Measurabi l i ty Implies Continuity for Solutions to a General System 
of Functional Equations 
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68.16 C E . Haff and G. Berman (University of Waterloo) 
The Construction of /^-Kernels for Coloring a Graph 

Let G be a finite, undirected graph, without loops. Define the 
integer-valued function A (G) by 

(1) A(G) = max min val(GT, x) 
G ' C G xeV(G) 

where va l (G\ x) is the number of edges of G1 incident with x 
and V(G) is the ver tex set of G. Szekeres and Wilf* have shown that 

(2) K (G) < A(G) + 1 ; 

where K (G) is the chromatic number of G . 

A A-kernel of G is a maximal independent set C CV(G) such that 
A(G - G[C]<C A(G) - A. A method is given for parti t ioning V(G) by 
A-kerne l s . This yields a sharpening of the inequality (2), 

(3) K (G) < A*(G) + 1 < A(G) + 1, 

where A*(G) is the cardinality of the part i t ion. A corresponding 
coloration of G in A*(G) + 1 - colors is determined. 

(*G. Szekeres and H. S. Wilf, An Inequality for the Chromatic 
Number of a Graph, Journal of Combinatorial Theory 4 , (1968) 1-3.) 

68.17 C .E . Bil l igheimer (McMaster University) 
Symmetric Difference Operators in a Hilbert Space 

We have discussed proper t ies of the formally self-adjoint fourth order 
difference operator P acting on sequences of complex numbers 

y Ï defined by 

(Py) = d y ^ + c y ( j l + b y + c v , + d v ^ (n>0) v 7'n n n+2 n^n+1 n J n n - l 7 n - l n -2 7 n-2 -

where b , c , d a re r e a l numbers , d > 0 
n n n n 
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Regarding the operator P , which is analogous to a fourth order 
self-adjoint differential opera tor , as an unbounded operator in the 

Hilbert space I of sequences jy > °° which a re of summable 
CO ^ 

- I I 2 

square such that 2' y < oo, we consider the classif icat ion of 
o n 

P according to the deficiency indices (m, m) (O <c m <_ 4) of the 
closed symmetr ic operator A with minimal domain, or equivalently 
the number m of l inearly independent solutions of the r e c u r r e n c e 
relat ions 

( n > 0 ) (*) 

which are of summable square . 

By considering symmet r ic extensions of A we show that for r e a l 
\ , which a re not eigenvalues of A, the number of summable 
square solutions m( \ ) sat isfies m ( \ ) < _ m . 

In the case of self-adjoint extensions, we obtain the c lass ica l 
eigenfunction expansion theorem for a sequence in ^ in t e r m s of 
a unique spec t ra l function, which corresponds to the resolut ion of 
the identity for the self-adjoint opera to r . We also obtain the unique 
Green ' s function for (*) for Im \ ^ 0 and the corresponding 
resolvent opera to r . In the quas i - regu la r case, m = 4, the 
resolvent operator is completely continuous and the spec t rum is 
d i s c r e t e . 

We have obtained by a d i rec t method the theorem that there always 
exist at least two l inearly independent solutions of summable square 
of the unres t r ic ted r e c u r r e n c e re la t ions y ! = \ y (n > 0). Also, 

n n — 
if for one value of \ these r e c u r r e n c e re la t ions have four l inearly 
independent solutions of summable square , then this is t rue for all 
values of X . These two theorems a re also derivable by Hilbert 
space methods . 

The above re su l t s a re pa ra l l e l to those for the analogous continuous 
case of an even-order differential opera tor , obtained by Hilbert 
space methods by Kodaira (1950) and Glazman (1951) and di rec t ly 
by Ever i t t (1957), which general ize the second-order differential 
operator case with its fundamental l imit-point , l imi t -c i rc le 
distinction discussed by Weyl (1910), Stone (1932), Ti tchmarch 
(1946), Levitan (1950), Yosida (1950), Levinson (1951), and o the r s . 

68.18 R .A. Day (McMaster University) 
The Character iza t ion of Latt ice Equations in Universal Algebra 

In this paper we give charac te r iza t ions of cer ta in p roper t i es that 
hold in the congruence latt ice of every algebra of an equational 

vl = x y . 
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class (variety) by equations of the equational c l a s s . Mal 'cev 
(Mat. Sb (N.S.) 35 (77) (1954) 3-20) has character ized 
permutabi l i ty ' ( i . e. every pair of congruence relat ions 6, i|j in 
every congruence lattice satisfy 0 o \\t = \\) o 9) by the existence 
of a t e rnary t e rm p(x, y, z) that satisfies the equations 
a = p(a, b, b) and b = p(a, a, b). Pixley (Proc . AMS 14 (1963) 
105-109) gave a s imilar resul t for permutabil i ty and distributivity 
while Jonsson (Math. Scand. (to appear)) has character ized 
distributivity alone. 

The author (Can. Math. Bull, (to appear)) has shown that every 
congruence lattice of an equational c lass is modular if and only if 
there exists a finite sequence m , . . . , m of quaternary t e r m s 
satisfying the equations: 

(Ml) a = m ( a , b , c , d ) and d = m (a, b, c r d) 
o n 

(M2) m.(a, b, b, a) = a (i = 0, 1, . . . , n) 

(M3) m.(a, a, b, b) = m. , (a, a ,b ,b ) (i even) 
l l+l 

(M4) m . ( a , b , b , d ) = m ( a , b , b , d ) (i odd). 

Direct proofs were also given (in t e rms of the character iz ing equations) 
that both distributivity and permutabil i ty imply modular i ty . 

The above resu l t s r a i se the following general problem: can every 
proper ty that possibly holds in congruence lattices be character ized 
by equations if it holds for every congruence lattice in an equational 
c l a s s ; or more precise ly , what distinguishes those proper t ies that 
a re character ized by equations? 

68.19 Y. L. P a r k (Laurentian University) 
On the Project ive Cover of the Stone-Cech Compactification of a 
Completely Regular Hausdorff Space 

Let C be the category of compcict Hausdorff spaces and continuous 
m a p s . For E e C, let O(E) be its topology, and A (E) be the 
space of maximal f i l ters M C O(E) whose topology is generated 
by the set A (E) = {M | W G M, M e A (E) } for each W e O(E). 

The following a re proved: 1) Let X and Y be the topological 
spaces such that X is a dense subspace of Y; then A(Y) = A (X) 
under the mapping M f -> M ' | X, M» e A(Y); 2) For any M e A(X), 

if U e M, then M e I \ l im" 1 (U); 3) Let cj):K->(3X be a 
A(X) pX 

projective cover of (3X inj C; then for each dense subset 

D of X, c|)"1(D) is dense in K and K = p<t>_1(D) . Let « be a 
filter base of dense subsets of X and Q*(X) be the di rect limit 

of the di rect system (C*(D)) ^ with (^D>D ^ as a family of 

the limit homomorphisms. A function f e C*(D) defines f o <j> 
-1 ^ 

on (j> (D), and f o § has a unique continuous extension f to K 
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for D e & . Let u e Q*(X) with u = <\> (f) and f e C*(D) for some 

D G $ . The mapping u -* f is a norm prese rv ing monomorph ism. 

If $ contains all disconnected dense open subsets of X, then the 
maximal ideal space of Q*(X) endowed with the Stone-topology is 

homeomorphic to K. Hence K is homeomorphic to the maximal 
ideal space of the maximal r ing of quotients of C(X). 

68.20 L . J . Mordel l (University of Toronto) 
2 2 

The Integer Solutions of the Equation ax + by + c = 0 in Quadratic 
Fields 

The following resu l t is proved. Let a, b, c, be ra t ional in tegers 
such that (b, c) = (c, a) = (a, b) = 1 and a and b a re square f ree . 

2 2 
Then integer solutions of the equation ax + by + c = 0 exist in a 
quadratic field Q(t) if and only if there exist ra t ional integers 
p, q, d, d , such that n 1 

2 2 
ap + bq = d ; (ap, bq) = d , 

and either d is some divisor of a, b, c and 

t2 + abk2 / d 1 + c/d = 0 

or d is some even divisor of 2 abc and 

t2 + t + \ ( 1 + a b k / d 2 ) + c/d = 0 

Also k is an integer such that the equations have integer coefficients. 

The values of x and y a re expressed simply in t e r m s of t . 

68.21 B. Banaschewski (McMaster University) 
oo n 

Another Algebraic Character iza t ion of C (R ) 

An algebra A (with unit e) over the r e a l number field R is called 
r ea l s emi - s imp le if and only if the in tersect ion of its r e a l max imal 
ideals is zero, and convex if and only if, for every f e A, e + f ^ is 
inver t ib le . 
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P R O P O S I T I O N . An R - a l g e b r a A wi th un i t e i s i s o m o r p h i c to 
oo n 

the R - a l g e b r a C (R ) if and only if it i s r e a l s e m i - s i m p l e and 
c o n v e x , and t h e r e e x i s t e l e m e n t s u 1 ( . . . , u e A wi th the fo l lowing 

1 n a 
p r o p e r t i e s : 

(K) The i d e a l s S A(u. - a .e) , (a , , . . . , a ) e R , a r e e x a c t l v 
l l 1 n 

the r e a l m a x i m a l i d e a l s of A . 

(S) F o r e a c h ( a , , . . . , a ) e R and e a c h i n v e r t i b l e f e A, 
1 n 

t h e r e e x i s t a £ 0 in R and g e A s u c h t ha t 

22 (u. - a .e) + f = a e + g 
i l & 

(D) T h e r e e x i s t d e r i v a t i o n s 8 , . . . , 8 : A-> A s u c h t h a t 
1 n 

8. u . = e and 8 .u = 0 for i f k . 
i l l k 

(M) A h a s no n o n - t r i v i a l u n i t a r y , r e a l s e m i - s i m p l e , and c o n v e x 
a l g e b r a e x t e n s i o n in wh ich (K), (S), and (D) s t i l l hold for the 
e l e m e n t s u , . . . , u e A . 

1 n 

oo n 
T h e p r e s e n t c h a r a c t e r i z a t i o n of C (R ) is s i m i l a r to t ha t g iven in 

oo n 
An A l g e b r a i c C h a r a c t e r i z a t i o n of C (R ), by B . B a n a s c h e w s k i , B u l l . 
A c a d . P o l o n . S c i . 16 (1968) 1 6 9 - 1 7 4 , bu t a good d e a l s i m p l e r in 
s o m e a s p e c t s ; n o n e t h e l e s s , f u r t h e r s i m p l i f i c a t i o n s would be w e l c o m e . 
It should be m e n t i o n e d tha t the m a x i m a l i t y cond i t i on (M) i s not i m p l i e d 
by the c o n d i t i o n s p r e c e e d i n g i t : the a l g e b r a of a l l r e a l - a n a l y t i c func t ions 

n 
on R i s a u n i t a r y , r e a l s e m i - s i m p l e , and c o n v e x p r o p e r s u b a l g e b r a of 

oo n 
C (R ) in wh ich (K) - (D) hold for the C a r t e s i a n c o o r d i n a t e f u n c t i o n s . 

I n c i d e n t a l l y , t h i s a l g e b r a is c l e a r l y not i s o m o r p h i c to C (R ); m o r e 
oo n 

g e n e r a l l y , C (R ) c a n n o t b e i s o m o r p h i c to any p r o p e r u n i t a r y suba lgebra 
c o n t a i n i n g the C a r t e s i a n c o o r d i n a t e f u n c t i o n s , a c o n s e q u e n c e of i t s 
m a x i m a l i t y p r o p e r t y g i v e n by the P r o p o s i t i o n . 

6 8 . 2 2 K . L . D u g g a l ( U n i v e r s i t y of W i n d s o r ) 
S i n g u l a r R i e m a n n i a n S t r u c t u r e s C o m p a t i b l e wi th TT - S t r u c t u r e s 

R i e m a n n i a n s t r u c t u r e (b r i e f ly R - s t r u c t u r e ) on T T - s t r u c t u r e i s 
TT 

def ined by the k n o w l e d g e of a c o m p l e x m e t r i c G = (g . . ) , of r a n k n , 

s a t i s f y i n g the r e l a t i o n JG = \ G . By s e t t i n g G = JA + \ A , w h e r e 
A = (a . . ) i s a f i e l d of s y m m e t r i c t e n s o r s on V m , of r a n k m , one 
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c a n a l w a y s o b t a i n f r o m (a . . ) an R - s t r u c t u r e . We i n t r o d u c e 

R - a d a p t e d b a s e s ( e , , ) = (e , e * ) s u c h t h a t the v e c t o r s (e ) 
TT 1 a. a a l 

a r e o r t h o n o r m a l . It i s e a s y to show tha t the s e t 0 ( n , n ) of t he 

t r a n s f o r m a t i o n m a t r i c e s of two R - a d a p t e d b a s e s i s a L i e - s u b g r o u p 
TT 

of G(n , n ) . 

The s e t E (Vm) of the R - a d a p t e d b a s e s r e l a t i v e to d i f f e r e n t 
R TT 

p o i n t s of V m a d m i t s a n a t u r a l s t r u c t u r e of p r i n c i p a l f i b r e b u n d l e 
and c o n s e q u e n t l y one is a b l e to de f ine R - c o n n e c t i o n ( i n f i n i t e s i m a l 

c o n n e c t i o n ) on E ( V m ) . As E (Vm) is s u b b u n d l e of t h e f i b r e 
R R 

b u n d l e E (Vm) of a l l t he b a s e s so any R - c o n n e c t i o n d e f i n e s 
C TT 

c a n n o n i c a l l y a l i n e a r c o n n e c t i o n wi th w h i c h i t c a n b e iden t i f i ed and 
c o n v e r s e l y . One c a n p r o v e t h a t V 2 . . = 0 in an R - c o n n e c t i o n . 

Knowing t h a t V F . = 0, we c o n c l u d e t h a t a c o m p l e x l i n e a r c o n n e c t i o n 
. . . i 

c a n be iden t i f i ed w i th an R - c o n n e c t i o n if and only if V F . = V g . . =0 . 
TT J IJ 

F u r t h e r i t c a n be p r o v e d t h a t V h a s an R - s t r u c t u r e if and on ly 
rn TT 

if t h e r e e x i s t s a c o m p l e x l i n e a r c o n n e c t i o n w h o s e h o l o n o m y g r o u p 
i s a s u b g r o u p of 0 ( n , n ) . F i n a l l y we show t h a t t h e f i r s t 

c h a r a c t e r i s t i c f o r m di t i s z e r o for any R - c o n n e c t i o n . 
1 TT 

6 8 . 2 3 F . H . N o r t h o v e r ( C a r l e t o n U n i v e r s i t y ) 
L i n e a r I n t e g r a l E q u a t i o n s 

A p a r t f r o m the e s t a b l i s h m e n t of a few s c a t t e r e d r e s u l t s the bulk 
of the t h e o r y of the h o m o g e n e o u s l i n e a r i n t e g r a l e q u a t i o n is 
r e s t r i c t e d to t he c a s e - a d m i t t e d l y an i m p o r t a n t one - in w h i c h 
the k e r n e l i s s y m m e t r i c . An e x t e n s i v e and d e t a i l e d t h e o r y - the 
w e l l - k n o w n H i l b e r t - S c h m i d t t h e o r y - h a s b e e n b u i l t up for t h i s c a s e . 

In the p r e s e n t w o r k , an e x t e n s i v e t h e o r y c o v e r i n g the g e n e r a l k e r n e l 
h a s b e e n b u i l t u p . It i s b a s e d upon the i d e a of e x p r e s s i n g the s o l u t i o n s 
of a l i n e a r i n t e g r a l e q u a t i o n a t an e i g e n v a l u e X = X , s a y , a s the 

l i m i t func t ion of t he s o l u t i o n of t h e c o r r e s p o n d i n g n o n - h o m o g e n e o u s 
l i n e a r e q u a t i o n for X 5^Xn, w h e n \ -> \ . U n d e r c e r t a i n c i r c u m s t a n c e s , 

t h i s kind of r e p r e s e n t a t i o n w o r k s for s o l u t i o n s of t he h o m o g e n e o u s 
e q u a t i o n a t X ~ ^ n > and a l s o fo r s o l u t i o n s of the n o n - h o m o g e n e o u s 

e q u a t i o n a t X = X n (when s u c h e x i s t ) . 

V a r i o u s e x p l i c i t e x p r e s s i o n s for the g e n e r a l s o l u t i o n of t h e l i n e a r 

e q u a t i o n a t X ~ ^ n > a r e o b t a i n e d , and , in the c a s e of the non -

h o m o g e n e o u s e q u a t i o n , n e c e s s a r y and su f f i c i en t c o n d i t i o n s a r e 

ob t a ined for the e x i s t e n c e of a s o l u t i o n at X ~ ^ n -
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As a by-product, a s tronger vers ion of the well-known theorem 
that the maximum number of l inearly independent solutions 
obtainable from a homogeneous equation at an eigenvalue is finite, 
is obtained, with an expression for the upper bound of such a number . 

Also, necessa ry and sufficient conditions a re obtained for the 
ability of the simple form 

j t ( y ) D U ' (x, y ; X 0 ) d y 
a 

to compr ise all solutions. Here, D(x, y; \ ) is the "first Fredholm 
minor" , I the least number such that the derivative indicated 
(taken with respec t to \) is not identically zero at \ , and t(y) is 
is any continuous function. 

68.24 E. Hotzel (McMaster University) 
On Semigroups whose Non-tr ivial Left Congruence Classes a re 
Left Ideals 

A left congruence \ of a semigroup S is called a Rees left 
congruence if there exists a left ideal L such that (a, b) £ \ if and 
only if a, b e L or a = b. A Rees left congruence is a special case 
of a left congruence whose non-t r ivia l c lasses ( i . e . c lasses containing 
at least two elements) a re left ideals . In the following a descript ion 
is given of the semigroups S without zero which have the proper ty that 

(A) all left congruences of S are Rees left congruences or m o r e 
generally that 

(B) all non-t r ivia l left congruence c lasses in S a re left idea ls . 

Semigroups with proper ty (A) have been completely character ized 
under the supposition of commutativity in [ l ] and under the 
supposition of the existence of the zero element in [2] ((A) is 
equivalent to (B) under these suppositions). 

In every semigroup S the set R(S) of right zeros is an ideal. It 
contains at mos t three elements if S has property (A). 

THEOREM 1. Let S be a semigroup such that R(S) is not empty. 
Then S has property (B) if and only if S/R(S) has property (A). 

THEOREM 2. Let S be a semigroup which has exactly two right 
zeros q and r . Then S has proper ty (A) if and only if 
S\{q} ££ S \{ r} is a sub semigroup of S which has proper ty (A). 

THEOREM 3. Let S be a semigroup which has exactly three right 
z e r o s . Then £! has proper ty (A) if and only if it is isomorphic to 
one of the following 10 semigroups: 
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p 
q 
r 
1 

P 
P 
P 
P 
P 

q 
q 
q 
q 
q 

r 
r 

r 
r 
r 

1 

P 
q 
r 
1 

I p q r a I 1 
P P q r p p 

q p q r
 P q 

r p q r q r 
a p q r p | a 
11 p q r a 1 

p q r a b 
P P q r p p" 

q p q r
 P

 r 

r p q r r p 
a | p q r a l p 
b | p q ~ r b p 

P 
q 
r 
a 
b 

P 
P 
P 
P 
P 
P 

q 
q 
q 
q 
q 
q 

r 
r 

r 
r 
r 
r 

a 

P 
P 
r 
a 
b 

b 
r 

P 
r 
r 
r 

p q r a b 

P P q r p p 
q p q r p q 
r p q r r p 
a p q r a p 
b p q r p b 

|p q r a b J c 
p p q r p p p 

q p q r p r r 
r p q r r r p 
a p q r a a p 
b p q r b b p 
c p q r c" c p 

T H E O R E M 4 . L e t S be a n o n - e m p t y s e m i g r o u p w i t h o u t r i g h t z e r o s . 
T h e n S h a s p r o p e r t y (B) if and on ly if it i s a two e l e m e n t left z e r o 
s e m i g r o u p o r a c y c l i c g r o u p of p r i m e o r d e r . 

The n o n - t r i v i a l p a r t of the p roof of T h e o r e m 4 m a y be g i v e n in the 
fo l lowing s t e p s : 

1) S i s r i g h t c a n c e l l a t i v e . 2) If e i s an i d e m p o t e n t in S t h e n i t 
i s the i d e n t i t y e l e m e n t of S, o r S is a two e l e m e n t left z e r o s e m i 
g r o u p . 3) S i s left s i m p l e . 

[1] E . S. L jap in , S e m i s i m p l e c o m m u t a t i v e a s s o c i a t i v e s y s t e m s 
( R u s s i a n ) , I zv . A k a d . Nauk SSSR 14, (1950) 3 6 7 - 3 8 0 . 

[2] E . H o t z e l ; H a l b g r u p p e n m i t a u s s c h l i e f i l i c h r e e s s c h e n L i n k s k o n -
g r u e n z e n , s u b m i t t e d to M a t h . Z e i t s c h r i f t . 

6 8 . 2 5 T . D . H o w r o y d ( U n i v e r s i t i e s of M e l b o u r n e and W a t e r l o o ) 
On F u n c t i o n a l E q u a t i o n s in M a n y V a r i a b l e s and S i m u l t a n e o u s 
F u n c t i o n a l E q u a t i o n s in a S ing le V a r i a b l e 

L e t S b e a s e t and H: S X [0 , l ] •+ S. E </> : [0, l ] ~> S and 

n 
(1) <j> ( 2 x . / n ) = H (tf(x ), . . . , * (x ); x , . . . , x ) 

i 1 n 1 n 
1 

t h e n 

(2) tf((X+p)/n) = H(tf(x), 4> ( a , ) , . . . , rf(a , ) ; x, a , , . . . , a .) 
1 n - 1 1 n - 1 
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where 

a = 1 if k < p , a = 0 if k > p, p = 0, . . . , n - l 

Hence, if S is a Hausdorff space and </> is continuous then $ is 
uniquely determined by the values ^ (0) and $(1) . 

If _I is the set of n -a ry fractions in [0, 1] and (using the notation 

H(u , . . . , u ; x , , . . . , x ) = H(u.; x.).) : 
1 n 1 n i l l 

(i) H(u.; x.). is symmetr ic in u. and u, , x. and x : 
i l l J k J k 

(ii) H(u;x). = u; 

(iii) H(H(u..; x. .) . ; S x . . / n ) . is symmetr ic in u. and u , , 
ij ij J • iJ i kq qk 

x. and x ; 
kq qk 

(iv) H(u.; x.). is a one-to-one function of u.; and $ : I -*• S , 
1 1 1 J "H -

then (2) is equivalent to (1). 

If (i) to (iv) hold, S is a Hausdorff space, H is continuous, and 
<f> : [0, 1] -> j3 is continuous then (1) is equivalent to (2). 

If S_ = C (the complex plane); (i) to (iv) hold; H is continuous; 

(v) there exists r e (0, 1) such that 

n 
|H (U.; x.). - H(v.; x.). I < r S I u. - v. I; 
1 i i i i i i 1 — , ' i l 1 

1 

then there exists exactly one bounded solution <jy : [0, l ] -> C of (1) 
for any given ^ (0) and ^(1); this <t> is continuous. 

2 2 
If 1_ is a convex subset of C; H: C X_I •*• C is continuous; (i) to 

2 2 
(v) hold with n = 2; there exists a continuous function K: C X _I_ -• 
such that 

K(H(u, v; x, y), v; x, y) = u, 

and a, , a . a0 a r e non-coll inear points in I; then there exists 
1 2 3 — 

exactly one locally bounded solution ^ : _Î  -> C of (1) for any given 
</> (a ), fi (a ) and ^ (a ); this ^ is continuous. 
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68.26 M . E . Muldoon (York University) 
Singular Integrals whose Kernels Involve Certain Sturm-Liouvi l le 
Functions 

We prove resu l t s of the form 

b 

/ 

V -*- oo a 

where a < 0 < b and, for each v > 0, w(v , t) is the solution of 

r 2 1 
(1) Urn J f(t) w ( v , t ) d t = | f ( 0 - ) + ~ f ( 0 + ) , 

(2) d 2 w / d t 2 = [v2 t + q(t)]^ 

which satisfies 

lim w(v , t) t exp(— vt )=~Tr 1/2 
t -> oo 

We assume that q(t) is continuous for t > a and that 

00 1/2 
ex i s t s . It can be shown that (1) holds if 

0 

(i) f e B V [ a , 0 ] 

(ii) f ( l+) exis ts , and 

(iii) f e L [ 0 , b ] . 

We consider applications of (1) to in tegrals involving var ious 
special functions which satisfy equations of the type (2). One such 
application is to a singular integral (involving the Besse l function 
J ) considered by L. Lorch and P. Szego. 
v 

We show that hypothesis (i) may be replaced by 

(i1) f£C'[a, 0], 

if the limit re la t ion in (1) is interpreted in the sense of Cesaro (C, k) 
1 

summabil i ty, for k > — , but that this is not so in the case of (C, k) 

summabili ty, for 0 < k < 1/2. 
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68. 27 Charles Ford (University of Toronto) 
A Note on the Schur Index of a Group Representat ion 

Let G be a group and x a n i r reducible character of G . Let 
m(x) be the Schur index of x over the rat ional field. For p a 
pr ime divisor of m(x) let m be the p -par t of m(x). There is 

a theorem of Brauer which shows that m is the Schur index of an 
P 

i r reducible charac ter £ of a p-e lementary subgroup of G . A 
p-e lementary group is the semi -d i rec t product A'P of a (normal) 
cyclic p ' -group A and a p-group P . 

It is shown that if m(£) ^ 1,2, then there exists a p r ime q 
dividing | A | for which m(£, ) | ( q - 1 ) . Thus for the charac ter x 
of G, if m £ 1,2, there is a pr ime divisor q of | G | for which 
m j ( q - l ) . 

P 

The problem is f i rs t reduced by finding a factor group P ' of a 
subgroup of P such that the group A'P1 contains a cyclic, normal , 
self-central izing subgroup (which is , in general , larger than A) 
and A'P1 has a faithful charac ter £' for which m(g') = m(£). Then 
the theory of crossed products and factor sets is used to prove the 
resu l t . 

A splitting field F is found for a representa t ion affording £ ' . The 
dimension (F : Q(£')) is a p-power which divides q - 1 . 

The only exceptional case occurs when p = 2 and A is t r iv ia l . 
In this case we can have m(£ ' ) = 2, and then p ' mus t contain a 
generalized quaternion subgroup. 

68.28 E. Barbeau (University of Toronto) 
A general izat ion of the Algebra of Functions of Bounded Variation 

Let ( E , £ ) be a compact Hausdorff space with a par t ia l ordering, 
and A the convex cone of continuous non-negative increasing 
functions on E . Then A is uniformly closed and contains the 
product of any pair of its elements, so that its linear hull V is an 
a lgebra . With the Schaefer norm, whose unit ball is the absolutely 
convex hull of the set {f : f e A , ||f|| £ l } , V is a Banach 
a lgebra . If E is the closed unit interval with the usual ordering, 
one obtains the Banach algebra of functions of bounded variat ion 
in this way. 

When A separa tes points of E , the algebra shares with the 
algebra of functions of bounded variat ion the proper ty that every 
p r i m a r y ideal is maximal . However, an example is given to show 
that, in general , not every closed ideal is the intersect ion of 
maximal ones. For , let E be the points of the closed unit square 

[0, 1] whose absc issae a re either 0 or rec iproca ls of in tegers , 
and let (x, y) < (u, v) if and only if x = u and y _< v. Then the 
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ideal of functions in V which vanish in a neighbourhood of the 
edge {(x, y) : (x, y) e E, x = 0} is not norm dense in the ideal of 
functions vanishing on the edge. 

68.29 R. Blum (University of Saskatchewan) 
On a General izat ion of Ste iner ' s Quartic with 3 Cusps 

Let r E <j) (u, v) + (u + v ) = 0 , where u, v a r e the non-homogeneous 
Hesse-coord ina tes and cj)(u, v) is a homogeneous polynomial of degree 
2n + 1 in u and v, be the equation of a c lass curve in the euclidean 
plane. It is shown that its 2n + 1 cusps, which do not lie on the line 
at infinity, can be obtained as the in tersect ion of F with a curve 

whose equation is A = \\i (u, v) + (u + v ) = 0 , where \\i (u, v) is 
a homogeneous polynomial of degree 2n - 1 in u, v . 

If we impose upon the cuspidal tangents the condition that they be 
concurrent (which is identically satisfied when n = 1) T admits 
2n + 1 axes of symmetry and, therefore, its cusps a re the ver t ices 
of a regular (2n + 1) - gon. The case n = 1 yields Ste iner ' s quart ic 
with 3 cusps . 

Considerations of duality lead to the following proper ty : If the 2n + 1 

points of inflection of the curve C = cj)(x, y) + (x + y ) = 0 a re 
collinear (on a line i ) then the lines joining them with the origin form 
equal angles . However, there is no symmet ry of the curve itself 
except when I = I 

68.30 J. Poland (Carleton University) and A .H . Rhemtulla 
A General izat ion of Hamiltonian Groups 

Groups whose subgroups a re all no rmal a r e called Hamiltonian groups, 
and their s t ruc ture is well-known. Now, the core H of a subgroup 

G 
H of the group G is defined as the in tersect ion of the conjugates of 
H, or al ternat ively as the maximal subgroup of H which is no rmal 
in G. Dr . A .H. Rhemtulla (University of Alberta, Edmonton) and 
the author have been considering using the concept of core to obtain 
the following general izat ion of the Hamiltonian groups: let X be a 
c lass of finite groups; we call a finite group G an X- Core group 
if H/H £ X for all subgroups H of G (finite Hamiltonian groups 

G 
a re {1} -Core groups) . We f i rs t took X = G, the c lass of finite 
abelian groups . Our major resu l t i s : G -Core groups have nilpotent 
derived group. We a re now in the p roces s of extending this resul t ; 
for example, if X is closed under the operation of taking factor 
groups, then if G is a solvable X - Core group and Fit(G) is the 
Fitt ing subgroup, then G/Fit(G) e X. Our second major resu l t is that 
if % is the c lass of finite s imple groups and G is an i - Core group, 
then G is solvable and G/Z (G) has abelian Sylow subgroups 

(Z^G) is the hypercenter of G). This r e su l t does not hold for G-Core 

642 

https://doi.org/10.1017/S0008439500029866 Published online by Cambridge University Press

https://doi.org/10.1017/S0008439500029866


groups, where we originally conjectured it . (A summary of the 
ea r l i e r resu l t s was presented to the mini-conference on group 
theory held at the University of Manitoba at the end of the 1968 
Summer Research Institute which the authors both at tended.) 

68.31 E. Hotzel 
Remarks on Simple Cancellative Semigroups 

(1) Any simple cancellative semigroup which contains a minimal 
right ideal is a group. 

(2) Any simple cancellative semigroup which is finitely generated 
as a right ideal is a group. 

The f i rs t s tatement follows from well known facts about simple and 
right simple semigroups (cf. A. H. Clifford and G .B . P re s ton : 
The algebraic theory of semigroups, Providence, (1961, 1967) 
Vol. II, Lemma 8.13, and Vol. I, § 1.11). The second one is 
obtained by observing that a cancellative semigroup S of the form 
5 = a , S u a^S U . . . u a S contains an idempotent. A simple 

1 2 n 
cancellative semigroup containing an idempotent is easily seen to 
be a group (Clifford and Pres ton , Vol. I, p . 51, ex. 11). 

T HE OR EM Any cancellative semigroup without idempotents can 
be embedded in a simple cancellative semigroup without idempotents . 

If S is a cancellative idempotent-free semigroup then a simple 
cancellative semigroup containing S can be obtained as the union of a 
chain S = S C S, C Sn C , . . of cancellative idempotent-free semi-

o ~~ 1 "~ 2 ~ 
groups. Take S to be essential ly the semigroup which is 

generated by the set X. = U.US.UV. under the relat ions r s = t, 
6 ] l i i i 

if r s = t in S., and u sv = t ( s , t e S.) where U., V. a re 
l s, t s, t l i l 

sets such that U , S., V. a re pairwise disjoint and where 
i l l 

( s , t ) -*u , (s, t)-*-v a re one-to-one mappings from S. X S. 
s, t s , t i l 

onto U. and V., respect ively. 

It can be seen by the Theorem in connexion with the Malcev example 
of a cancellative semigroup which is not embeddable in a group 
(A.I . Malcev, Math. Ann. 113, (1937) 686-691) that not every 
simple cancellative semigroup can be embedded in a group 
(cf. Clifford and Pres ton , Vol. I, p . 51). 

68.32 C. Davis (University of Toronto) 
An Inequality for Hi lber t -space Operators 

The ' she l l ' of an operator A on Hilbert space # is the set of 

t r ip les ( | |Ax | | , x*Ax, | | x | | ) as x ranges over non-zero 
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elements of U. Two such t r ip les being identified if they differ 
only by mult ipl icat ion by a positive number, the shell can be 
represented as a point-se t s(A) in r ea l 3 -space . Many 
relat ionships a r e known (Ch. Davis, Acta Sci. Math. Szeged 29 
(1968), 69-86) between p roper t i e s of A and geometr ic p roper t i e s 
of s(A). In the course of studying the question (still unsolved) of 
charac ter iz ing those point -se ts which can be s(A) for some A, 
the author found the following curious theorem: Assume | | A [ | = 1. 
Let IT/2 > y*- > a rcs in( - 1/3). Then for every G > 0 there exists 

non-zero x £ M for which 

(1 + e )2\f~2cos V^|x*Ax| > (1 + s i n ^ ) | | x | | + (1-3 sin >*-) 11 Ax| | . 

(The case \?- = a r c s i n ( l / 3 ) is a previously known re su l t . The 
limiting case \h ~+ TT/2 is t r iv i a l . ) In this note the theorem is 
related to p roper t i es of the shel l . 

68.3 3 W. Kahan and C. Davis (University of Toronto) 
The Rotation of Eigenvectors by a Per tu rba t ion 

When a Hermit ian linear operator A is slightly per turbed, by how 
much can its invariant subspaces change? Given some approximations 
to a c luster of neighbouring eigenvalues and to the corresponding 
eigenvectors of a r e a l symmet r i c mat r ix , and given a lower bound 
ô > 0 for the gap that separa tes the c luster from all other eigenvalues, 
how much can the subspace spanned by the eigenvectors differ from 
that spanned by our approximations? These questions a re closely 
re la ted : both a re investigated h e r e . F i r s t , the difference between 
the two subspaces is charac ter ized in t e r m s of cer ta in angles through 
which one subspace must be rotated in order most di rect ly to r each 
the other . The angles constitute the spec t rum of a Hermit ian 
operator G, with which is associated a commuting skew-Hermi t ian 
operator J = - J ; the unitary operator that differs least from the 
identity and rota tes one subspace into the other turns out to be exp(J9). 
These opera tors unify the t rea tment of na tura l geometr ic , opera tor -
theoret ic and e r ro r - ana ly t i c questions concerning those subspaces . 
Given the gap 5 , and given bounds upon either the per turbat ion 
(1st question) or a computable res idual (2nd question), we obtain sharp 
bounds upon t r igonometr ic functions of 6 . For example, let one sub-
space be the invariant subspace of A associated with that pa r t of A1 s 
spect rum in some interval , let the other subspace be the invariant sub-
space of A + H associated with that par t of (A + H)'s spec t rum lying 
no further than 5 from the same interval , and let 6 be the angle-
operator "between" the subspaces; then ô | | s i n 6 | | < | | H | | for every 
uni tary- invar iant operator norm 11 . . . 11 . 
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68.34 P . Rosenthal and H. Radjavi (University of Toronto) 
Matr ices for Operators and Generators of B(ft) 

Let ft be a separable complex Hilbert space. 

THEOREM. Jf A is a bounded operator on ft and is not a multiple 
of the identity, then there exists an or thonormal basis ( e ) for 
. .—. , . _ nJ 
ft such that every entry in the ma t r i x of A with respec t to {e } is 
non-ze ro . 

The proof of this theorem is very e lementary . 

COROLLARY 1. If A is not a multiple of the identity then there 
exists a compact Hermit ian operator K such that A and K have 
no common invariant subspaces . 

Corollary 1 follows immediately from the Theorem. A theorem of 
Arveson 's then gives 

COROLLARY 2. If_ A is not a multiple of the identity then there 
exists a compact Hermit ian operator K such that the weakly closed 
algebra generated by A and K jis B(ft), (the algebra of all bounded 
opera tors on ft) . 

In case ft is f ini te-dimensional we get 

COROLLARY 3. If A is an nX n ma t r i x that is not a multiple of 
I then there exists a Hermit ian ma t r ix K such that every nX n 
ma t r i x is a polynomial in A and K. 

68.35 P L . Kannapan and S. Kurepa (Universit ies of Waterloo and Zagreb) 
Some Relation between Additive Functions 

Concerning the Cauchy functional equation 

(1) f(x + y) = f (x)+f(y) , x , y € R (R, r ea l numbers) 

I. Halperin has raised a question, whether f: R -*• R, satisfying 
2 1 

(1) and f(x) = x f(—), x t 0, is necessar i ly continuous or not? 

Answer to this and some general izat ions were given by many 
including the second au thor . In this direction, the following m o r e 
general problem will be of in te res t . 

P rob lem . Let U.(x) be ra t ional functions in X, P . be continuous 

on R except at the singular points of U.(x), and f. be additive on 

R such that 
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n 
(A) X P . (x)f . (U. (x)) = 0, 

i=l 1 1 1 

for all x on which P. 1 s a r e defined. Whether the f'.s a re 
i l 

continuous or der ivat ives ( i . e . f'.s satisfy f(xy) = xf(y) + yf (x) ) 

or functions obtained from these two? 

The following resu l t s a re establ ished: 

THEOREM 1. _Let f (£ 0) and g be additive functions from R 
into R and satisfy 

(2) f(xn) = P(x) g (x m ) 

for all x ^ 0, with P from R = R - {0) into R as a continuous 
o L J 

function such that P( l ) = 1, m and n a re in t ege r s . Then P(x) = x ; 
further, if F(x) = f(x) - f(l)x and G(x) = g(x) - g(l)x, then F and G 
a re der ivat ives , and nf(x) = mG(x), except when 

(i) n = 0, m = 0, in which case there is nothing to p rove , 

(ii) n = m, in which case f = g , 

(iii) n = 0, m ^ 0 in which case G = 0 is a der ivat ive and f is 
a rb i t r a ry , and 

(iv) m = 0, n H 0 in which case F = 0 is a derivat ive and g is 
a r b i t r a r y . Conversely, if F and G a re der ivat ives on R 
and f(x) = ax + F(x), g(x) = ax + G(x), where "a is any r e a l 
number, mG(x) = nF(x) and P(x) = x , where m and n 

a re in tegers , then f, g and P satisfy (2) for al l xçR. 

THEOREM 2. JLet F ( i 0) and g ( + 0) be r ea l additive functions 
and P, a continuous function on R - {a, b} = R*, (a ^ b ) into R, 
such that 

(26) f^y = p(x) gfe^r) ' for a11 xeR* • 

Then f(x) = Ag(x) for all r e a l x, A a r e a l constant. Fu r the r , 
x-b 

f and g a re continuous if and only if P(x) is proport ional to 
If f and g a re not continuous, then 

(i) P(x) = A ' X s » (A, a non-zero constant) . / \2 (x-a) 
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(ii) h(x) = g(x) - g(l)x is a derivative on R, and 

(iii) h(a-b) = g(l) (a-b). 

Conversely, if P , f, g, h and numbers A, a and b satisfy 
conditions (i), (ii), (iii) and f - A g, then (26) holds t rue . 

68.36 P . Greiner (University of Toronto) 
An Asymptotic Expansion for the Heat Equation 

00 

Let M be a compact n-dimensional C manifold without boundary. 
00 

Let E and F be two C complex vectorbundles of fiber dimension 
N over M . Let P(x, D) be a strongly elliptic smooth linear par t i a l 

00 

differential operator of order m sending C sections of E into 
00 

C sections of F . Denote by dx a density over M and by (* , * ) 
hermit ian s t ruc tures over E and F . These can be introduced 
locally and extended to all of M by a part i t ion of unity. The heat 
operator is given by 

(1) L =j^ + P(x,D) 

defined on C°°(E) X C^ (R). 

00 

Now let Q be a precompact submanifold of M with a C boundary 
oj . Let G. , . . . , G be bundles on GO and let B . , . . . , B be 

1 |JL 1 |JL 

boundary differential opera tors of the form 

m - 1 
(2) B.u = 2 B., T, u , 

J k = 0 J k k 

where B., is a differential operator from E to G. in oo of order 
Jk J 

m -k and y u is the k-th normal derivative of u valued on a) . 
J r * 

Our pr incipal assumption is that B is elliptic with respec t to 
P(x, D) + i'r for all T with Im T <_ 0 . For example, this is satisfied 
by all strongly elliptic opera tors P(x, D) with Dirichlet boundary 
conditions. 
Let G(t, x, y) be the Green ' s ma t r ix for the boundary problem (L, B) 
and let 

(3) G(t) = f Trace G(t, x, x)dx. 
M 
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The a we have 

THEOREM. Let (L, 3) be the above boundary problem. Then 

IA\ ru\ r t ._ n / m i r f-n/m+l/m .-n/m-i-2/m , 
(4) G(r:) ~ C t + C t 4- C0t + 

0 1 2 

as t I 0 . Furthermore the coefficients C. , i = 0, 1, Z, . . . , 
J 

can be evaluated explicitly in terms of the coefficients of P(x, D) 
and B . 

A consequence of the theorem is the following: 

COROLLARY. Let (-A, D) be the negative Laplacian with 
Dirichlet boundary conditions in some precompact domain Q in_ 
in the plane with smooth boundary & . Let JJL , u , |JL , . . . be the 
eigenvalues for (-A, D) . Then 

(5) 
j = 0 

_as_ t ï 0, where | f i | an(j | ^ | denote the area and length of Q 
and oo , respectively, and h is the number of holes in £? . 

This corollary was the motivation for the investigation. It was 
originally conjectured by Kac and proved by McKean and Singer. 

68.37 C.Y. Chan (University of Toronto) 
A Two-Phase Stefan Problem with Arbitrary Rate of Liquid Removal 

The two-phase Stefan problem is the problem of solving two heat 
equations in two regions separated by an unknown moving surface 
which must also be determined. In general, the interface is not 
necessarily monotonie. This is actually the basic difference 
between the single-phase and the two-phase problems. 

Physically, we can think of our problem as a finite slab of solid 
in contact with its liquid of finite length; heat is taken away from 
the free end of the solid at a rate f (t) while the temperature f (t) 

is specified at the free end, a(t), of the liquid which is removed 
at an arbitrarily prescribed rate. Mathematically, the problem is 
formulated as follows: Find 0 < s(t) < 1, u (x, t) and u (x, t) 

1 2 
such that 
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K A u (x, t) = u (x, t) for 0 < x < s ( t ) , t > 0, 
1 *xx *t 

u (x, 0) = (j) (x) w h e r e <|> (x) < 0, 0 < x < _ b , and <|> (b) = 0 

k u . ( 0 , t ) = f (t) w h e r e f ( t ) > 0 , t > 0, 
1 l x 1 1 -

L p d s ( t ) / d t = k u ( s ( t ) , t ) - k u ( s ( t ) , t ) 
1 l x Z 2 X 

w h e r e s(0) = b > 0, 0 < s( t) < a(t) < 1, t > 0, 

u (s ( t ) , t) = 0 = u (s ( t ) , t) for t > 0 > 

K u (x, t) = u (x, t) for s(t) < x < a(t) < 1, t > 0, 

XX t 

u (x, 0) = <(> (x) w h e r e <|> (x) > 0, 0 < b < x < l , 

and cf>2(b) = 0, <(,2(1) = f 2 (0 ) , 

u (a(t) , t) = f (t) w h e r e f (t) >_ 0, t > 0, and a(0) = 1 . 

K . (i = 1, 2) d e n o t e the r e s p e c t i v e d i f fu s iv i t i e s of the two p h a s e s ; 

k . (i = 1, 2) d e n o t e the r e s p e c t i v e c o n d u c t i v i t i e s ; L i s the l a t e n t 

h e a t ; p i s the d e n s i t y of t he sol id and the l iquid ; x = s(t) i s t he 
unknown f r e e b o u n d a r y , and u . (x , t) (i = 1, 2) a r e the r e s p e c t i v e 
t e m p e r a t u r e s . 

T H E O R E M . Jf 4> (x) (0 < x < _ b ) , <|> (x) ( b < x < l ) , f (t) ( 0 < t < o o ) 

and a(t) (0 < t < oo) a r e c o n t i n u o u s l y d i f f e r e n t i a b l e , and f (t) 

(0 < t < oo ) i s c o n t i n u o u s , t h e n t h e r e e x i s t s one and only one s o l u t i o n 

u (x, t ) , u (x, t) and s( t ) of the p r o b l e m for a l l t < oo. 

6 8 . 3 8 W . A . O ' N . Waugh ( U n i v e r s i t y of T o r o n t o ) 
T r a n s f o r m a t i o n of a B i r t h P r o c e s s in to a P o i s s o n P r o c e s s 

L e t { Z : t > 0} b e the M a r k o v i a n p u r e b i r t h p r o c e s s wi th l i n e a r 

b i r t h r a t e s , t h a t i s 

P { Z = j + 1 | Z t = j } = j X 6t + o ( 6 t ) j = 1, 2, . . . 
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where Z = 1 and where all other t rans i t ions have a probabili ty 

that is o(6 t ) . It is known that Z e -»- W which is a random 
- w 

var iable having density e . Let the t ime during which Z =j 
00 t 

("sojourn t ime") be X . . Then .2 (x - £ X . ) ( = S ) is convergent . 

We prove two theo rems : (1) W = exp{ - X. S - y } , where y is Eu l e r ' s 
\ T 

constant; (2) Where T = X. + . . .+X and T * = W(e n - l ) , 
n 1 n n 

then, given S, or equivalently W, the joint dis tr ibut ion of 

T 4 # , . . . , T* is that of the f i r s t m epochs in a Po isson s t r eam of 1 n 
ra te 1. Theorem (2) has been proved by analytic methods by 
D.G. Kendall and the purpose of this lat ter pa r t of the p resen t 
work is to show the connection with the theory of random s e r i e s . 

68.39 M. T. Wasan (Queen's University) 
Sufficient Conditions for a F i r s t P a s s a g e Time P r o c e s s to be that 
of Brownian Motion 

Let 

T = inf { t > 0 | X (t) > x} 
X 

where X and T a r e respect ively the state and passage t ime 

var iables of the strong Markov p rocess and a re both random 
var iab les , and let 

F(t, x; x +Ax) = P r [ T x + A X < T | T x = t ] 

be the t ransi t ion probabili ty distr ibution such that when the state 
var iable take the value x + A x , the passage t ime T takes a 

x + A x 
value less than or equal to T given that the t ime var iable T v takes 

the value t when the state var iable takes the value x. We denote 
the t ransi t ion density function of F(t , x , t, x) by f(tn, X ; t, x) and 
when t = 0, X = 0 by f ( t ,x) . 

Now we assume the following set of conditions. 

(a) WC1
 n — f d F(t, x; T , x + A x ) = 0 for any 0 = 0 

A x-*"U A x J i i ,. T 
IT - t | > Ô 

( b ) A x " o À , , (T-t)d F ( t , x ; T , x + A x ) = l 
|T - t I < 6 

( C ) A x " o A / , . ( T - t ) 2 d F(t, x ; T , x + A x ) = l . 
T - t < 6 
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T H E O R E M . L e t the s t r o n g M a r k o v p r o c e s s X(T) s a t i s f y the 
c o n d i t i o n s (a), (b) and (c ) . F u r t h e r , l e t u s a s s u m e tha t the 
t r a n s i t i o n d e n s i t y func t ion f(t, x) e x i s t s and is s u c h t ha t the 
d e r i v a t i v e s 

tA\ d î d î A ^ f 

(1) ix • ÏT and ~i 
ot 

e x i s t and a r e c o n t i n u o u s . Then f(t, x) s a t i s f i e s the d i f f e r e n t i a l 
e q u a t i o n 

(2) 5i = . ii + i «if , 
v ' ax at 2 Q 2 ' 

ot 
00 

w h e n j f(t, x ) d x = 1, f(t, x) > 0 for x > 0 and t > 0 f(oo, x) = 0, 
0 

f(t, oo) = 0 and f(0, 0) = 1. Then it_j_s_shown t h a t 

- ( x - t ) 2 

f ( t , x ) = -T== e 2 X x > 0 , t > 0 
"3 

r x N/2 TT : 

= 0 o t h e r w i s e 

Now we g ive a n o t h e r s e t of c o n d i t i o n s w h i c h l e a d s to the s a m e d e n s i t y 
for a s t o c h a s t i c p r o c e s s {X(t ) , t > 0} . 

(i) L e t X(t) = 6 + X ( t - 6 - W(6)) 

( a p p r o x i m a t e l y for s m a l l 6 and for the p a t h s of W(6 ) w h i c h 
do no t r e a c h the l ine y = t - x in the i n t e r v a l (0 , 6)) w h e r e 
ô i s any p o s i t i v e n u m b e r and W(6 ) i s a B r o w n i a n m o t i o n 
p r o c e s s s u c h tha t E(W(6)) = 0 and Va r [W(6) ] = 6 . 

(ii) X(t) = X f t / n ) + X f t /n ) +. . . + X ( t / n ) i . e . X(t) is in f in i t e ly 
1 2 n 

d i v i s i b l e p r o c e s s . 

With the he lp of t h i s d e n s i t y a s t o c h a s t i c p r o c e s s i s def ined and i t s 
e x i s t e n c e is p r o v e d . F u r t h e r m o r e , in a s e r i e s of p a p e r s i t s 
p r o p e r t i e s a r e i n v e s t i g a t e d . 

6 8 . 4 0 J. C s i m a ( M c M a s t e r U n i v e r s i t y ) 
E x t r e m a l M u l t i d i m e n s i o n a l S t o c h a s t i c M a t r i c e s and P a t t e r n s 

Th i s p a p e r d e a l s wi th c o m b i n a t o r i a l p r o p e r t i e s of m u l t i d i m e n s i o n a l 
m a t r i c e s . The r e s u l t s a r e r e l a t e d to the J u r k a t - R y s e r c l a s s i f i c a t i o n 
p r o b l e m of m u l t i d i m e n s i o n a l s t o c h a s t i c m a t r i c e s and e x t r e m a l 
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stochastic m a t r i c e s . The main tool in this paper is a covering 
technique, developed ea r l i e r by the author for the purpose of 
dealing with Latin squares and mult idimensional (0, l ) - m a t r i c e s . 

The order in which m a t r i c e s and their pa t terns a re introduced is 
important . F i r s t , pa t terns a re defined as sets of d- tuples . Then 
res t r i c ted pat terns and c r i t i ca l pa t te rns a re defined by simple 
covering c r i t e r i a . After all this is done, ma t r i c e s a r e defined and 
pat terns a re associated with them. This way a c l ea r -cu t dist inction 
is established and maintained between those pa t tern p roper t i e s that 
depend on the definition of a stochastic c lass and those that do not. 

For mult idimensional m a t r i c e s Konig's theorem is not t rue in the 
sense that the covering number (of degree e ) does not necessa r i ly 
equal the t e rm rank (of degree e) of the m a t r i x . This spoils 
the possibil i ty of t r iv ia l general izat ions of important two-dimensional 
t heo rems . 

The resu l t s of the paper include the proof that s tochastic pa t te rns 
a re r e s t r i c t ed and that only ex t remal m a t r i c e s can have c r i t i ca l 
pa t t e rns . Among other things it is shown that the covering number 
of stochastic m a t r i c e s of dimension d , degree e and order n is 

d - e 
exactly n , and that ex t remal stochastic m a t r i c e s a re either 

d - e 
permutat ion ma t r i c e s or else have t e r m rank less than n . An 
ex t remal 3-dimensional l ine-s tochas t ic m a t r i x is constructed 
which is not a permutat ion m a t r i x . 

Multidimensional (not necessa r i ly stochastic) m a t r i c e s a re also 
dealt with, and higher dimensional analogues of 3-dimensional 
theorems of Jurkat and Ryser a re given. 
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