CLASSIFICATION DES ÉTOILES B À PARTIR DES RAIES DE L'HYDROGÈNE - COMPARAISON AVEC D'AUTRES CLASSIFICATIONS

R. HERMAN

Observatoire de Paris, Section d'Astrophysique, 92190 Meudon, France

Résumé. Comparaison entre notre classification, basée sur les raies de l'hydrogène $(R_c \overline{\gamma}, \overline{\delta}, \varepsilon)$, et les classifications Chalonge, Barbier-Morguleff et J. Rountree-Lesh. Il semble que notre classification soit voisine de ces trois autres mais qu'elle est plus sûre dans le cas des étoiles Be.

1. Introduction

Il est important de classer les étoiles Be pour comprendre leur évolution. Ce problème n'est pas simple en raison de leurs variations rapides pouvant passer en quelques années (ou même en quelques mois) d'une émission à une absorption supplémentaire plus ou moins importante dans les raies de Balmer ('shell'). De plus, des variations ont lieu également dans le continu stellaire (Feinstein, 1968; Peton, communication privée). Généralement, la discontinuité de Balmer n'est pas affectée par l'émission car, la plupart du temps, l'émission ne concerne que les premières raies de Balmer, par contre, les grandes enveloppes modifient considérablement la discontinuité de Balmer. De plus, le continu et la discontinuité de Balmer risquent d'être perturbés par la qualité de l'atmosphère terrestre, c'est pourquoi nous avons été amenés (Rojas-Herman, 1955) à chercher une autre méthode qui utilise les mêmes quantités (T ou g) que la position et la grandeur de la discontinuité de Balmer.

2. Méthode Rojas-Herman

Celle-ci est basée uniquement sur les moyennes de mesures des largeurs équivalentes W et des profondeurs centrales R_c des raies de la série Balmer de l'hydrogène; soit $\overline{W\gamma, \delta, \varepsilon}$ et $R_c\overline{\gamma, \delta, \varepsilon}$. L'avantage est que l'on peut travailler avec un ciel moyen puisque les mesures sont monochromatiques. De plus, la dispersion est suffisante pour observer aisément une émission ou une 'shell' (dispersion à $H\gamma = 77 \text{ Å mm}^{-1}$, $H\delta = 59 \text{ Å mm}^{-1}$, $H\varepsilon = 50 \text{ Å mm}^{-1}$).

3. Comparaison avec les classifications Chalonge-Divan, Morgan-Keenan-Lesh, Barbier-Morguleff

Nous donnerons tout d'abord 4 tableaux de comparaison. Le premier concerne la comparaison de notre classification avec les 3 autres classifications: Chalonge-Divan (communication privée), Lesh (1968), Barbier-Morguleff (communication privée).

Ch. Fehrenbach and B.E. Westerlund (eds.), Spectral Classification and Multicolour Photometry, 17–20. All Rights Reserved. Copyright © 1973 by the IAU.

18 R. HERMAN

Le deuxième compare notre classification avec celles de Chalonge-Divan et de Morgan-Keenan-Lesh. Le troisième compare notre classification avec celles de Chalonge-Divan et de Barbier-Morguleff et le quatrième compare notre classification avec celles de Morgan-Keenan-Lesh et de Barbier-Morguleff. On constate que, dans l'ensemble, les résultats sont comparables à ± une classe spectrale ou à ± une classe de luminosité, sauf pour HD 4180 (Tableau I), HD 171406 (Tableau III), HD 164284 (Rakotoarijimy et Herman, 1958) et HD 187811 (Tableau IV). Les cas signalés ici sont caractéristiques. Ils correspondent à des variations importantes d'émission et d'absorption d'enveloppe, avec alternance entre le maximum d'émission et le maximum d'absorption dans les raies Balmer de l'hydrogène.

Dans les Tableaux I, II, III et IV toutes les étoiles indiquées (var.) se comportent probablement de la même façon. Le Tableau V donne d'autres étoiles variant également de la même façon.

Parfois, l'enveloppe est très peu développée comme c'est le cas pour HD 23408 (Figure 1) et on peut penser, si on utilise la discontinuité de Balmer, que l'étoile est moins chaude qu'elle ne l'est en réalité. Huit étoiles (signalées par un astérisque) ont

TA		

Etoile	Auteur	Chalonge- Divan	Morgan- Lesh	Morguleff
HD 4180	B4IV-B9III (env. var.)	B5-6III	B5III	B3-4III
14818	B2Ia	B2Ia	B2Ia	B2I
22192	B5IV?	B3-4IV-III	B5V	B2V
42087	B3Ia	B2-3Ia	B2.5Ib	B2
91316	Bllab	BlIab	Bllab	BII
204172	Bllab	B0Iab	BOID	В0

TABLEAU II

Etoile	Auteur	Chalonge- Divan	Morgan- Lesh	Morguleff
HD 10516	O9.5V?	O9Ia	B2Vp	
23 302	B8.5IV-III	B7-8III	B6III	-
23338	B9.5IV-III	B6IV	B6IV	_
23408	B7III (env.)	B7III	B8III	_
23480	B6.5IV-V	B6IV-III	B6IV	_
23 630	B8IV-III	B8III	B7III	_
35439	B2III-IV	B1IV	B1Vn	_
37742	B1.5Ia	O9-8Ib-II	O9.5Ib	_

TABLEAU III

Etoile	Auteur	Chalonge- Divan	Morgan- Lesh	Morguleff
HD 24131	B4IV (env.?)	B1V		B1V
171406	B7V-B9IV (var.)	B4V		B5V

	.F.A	

Etoile	Auteur	Chalonge- Divan	Morgan- Lesh	Morguleff
HD 5394	BOII?		B0.5IV	ВО
22780	B9V?(env.?)		B7Vn	B8V
32343	B3V?		B2.5V	B2II-III
34078 ′	O8III		O9.5V	B1
37202	B2III		B4III	B2III
43 28 5	B7V?		B6V	B5V
45995	B2V?		B2.5V	B1III
138749	B5-6V-IV		B6Vnn	В3
164284	B2V-B6V (var.)		B2V	В0
183 362	B3V (env. var.?)		B3V	B2
187811	B4-5V-B8-9IV-III (var.)		B2.5V	B3V
194335	B3IV?		B2Vn	B2
197419	BOV?? var?		B2IV-V	B3V
198478	B3Ia		B3Ia	B3I
200120	O9V?		B1.5V	BOI
212076	B2IV		B2IV-V	B2
214168	B1-2V		B1V	B2
217891	B8.5 var.		B6V	B7
224 544	B7IV?		B6IV	В3
224 559	B4V?		B4V	B3

TABLEAU V

HD 24131	B2V-B4.5III	HD 177648	B3.5V-B7IV ou B8III
45 542	B6V-B9III	179 343	B6.5V-IV-A1III
164447	B7V-B9IV	191610	B3V-B6.5IV-III
168957	B6V-B9IV	193911	B5V-B8.5IV
171780	B6V-B9IV	217675	B4.5V-B9.5Ib
174105	B7V-B9IV		
174237	B3V-B8III		
175869	B7.5V-B9IV		

été étudiées par M. Lacoarret (1965) qui a discuté seulement les variations de la moyenne $W\overline{\gamma}$, δ , ε sans indiquer les classes spectrales et de luminosité.

Un autre cas intéressant est celui de HD 162732 que nous considérons comme B6V. Cette étoile semble très stable. L'émission est peu importante alors que la 'shell' est forte. Des mesures récentes sur cette étoile, faites par N. Morguleff, donnent (B5) et A1 ou 2 pour les bandes D et K. L'importance des raies D et K n'est pas due aux raies interstellaires, mais bien à l'enveloppe.

4. Conclusion

On voit que notre classification, faite sur les raies de l'hydrogène, semble dans le cas des étoiles Be, apporter plus de renseignements que les autres, tout en étant cohérente avec elles. Il semble que cette classification, faite à partir d'une théorie grossière et améliorée par l'expérience, ne correspond pas aux résultats de Mihalas, qui trouve des

20 R. HERMAN

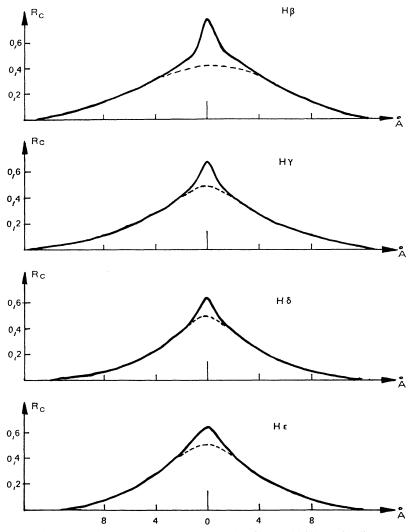


Fig. 1. Profils des raies d'hydrogène de l'étoile HD 23408 (W 3014).

ailes beaucoup plus grandes que ne les donnent les observations. De plus, les différences de profondeurs centrales de $H\alpha$ et $H\beta$ sont plus petites que celles données par Mihalas.

Bibliographie

Feinstein, A.: 1968, Z. Astrophys. 68, 29.

Lacoarret, M.: 1966, Ann. Astrophys. 28, 231. Lesh, J.: 1968, Astrophys. J. Suppl. 151, 17.

Rakotoarijimy, D. et Herman, R.: 1958, in 'Etoiles à raies d'émission', Extr. Mém. in 8° Roy. Sci Liège XX, 4ème sér. p. 204.

Rojas, H. et Herman, R.: 1955, Compt. Rend. Acad. Sci. Paris 240, 727.