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Abstract

We compute Betti numbers for a Cohen–Macaulay tangent cone of a monomial curve in the affine 4-space
corresponding to a pseudo-symmetric numerical semigroup. As a byproduct, we also show that for these
semigroups, being of homogeneous type and homogeneous are equivalent properties.
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1. Introduction

Let S = 〈n1, . . . , nk〉 = {u1n1 + · · · + uknk | ui ∈ N} be a numerical semigroup generated
by the positive integers n1, . . . , nk with gcd(n1, . . . , nk) = 1. For a field K, let A =

K[X1, X2, . . . , Xk] and let K[S ] be the semigroup ring K[tn1 , tn2 , . . . , tnk ] of S . Then
K[S ] ' A/IS , where IS is the kernel of the surjection φ0 : A→ K[S ], associating Xi to
tni . If CS is the affine curve with parameterisation

X1 = tn1 , X2 = tn2 , . . . , Xk = tnk

corresponding to S and 1 < S , then the curve is singular at the origin. The smallest
minimal generator of S is called the multiplicity of CS . To understand this singularity,
it is natural to study algebraic properties of the local ring RS = K[[tn1 , . . . , tnk ]] with
the maximal ideal m = 〈tn1 , . . . , tnk〉 and its associated graded ring

grm(RS ) =

∞⊕
i=0

m
i/mi+1 � A/I∗S ,

where I∗S = 〈 f ∗ | f ∈ IS 〉with f ∗ denoting the least homogeneous summand of f . When
K is algebraically closed, K[S ] is the coordinate ring of the monomial curve CS and
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grm(RS ) is the coordinate ring of its tangent cone. A natural set of invariants for
these coordinate rings is the Betti sequence. We refer to Stamate’s survey [12] for
a comprehensive literature on this subject. The Betti sequence β(M) = (β0, . . . , βk−1)
of an A-module M is the sequence consisting of the ranks of the free modules in a
minimal free resolution F of M, where

F : 0 −→ Aβk−1 −→ · · · −→ Aβ1 −→ Aβ0 .

When β(A/I∗S ) = β(K[S ]), the semigroup S is said to be of homogeneous type as
defined in [6]. In particular, if a semigroup is of homogeneous type then the Betti
sequence of its Cohen–Macaulay tangent cone can be obtained from a minimal free
resolution of K[S ]. To take advantage of this idea, Jafari and Zarzuela Armengou
introduced the concept of a homogeneous semigroup in [8]. When the multiplicity
of a monomial curve corresponding to a homogeneous semigroup is ni, homogeneity
guarantees the existence of a minimal generating set for IS whose image under the
map

πi : A→ Ā = K[X1, . . . , X̄i, . . . , Xk]

is homogeneous, where π(Xi) = X̄i = 0 and π(X j) = X j for i , j. Together with the
assumption of a Cohen–Macaulay tangent cone, this property is inherited by a standard
basis of IS and the authors of [8] were able to prove that S is of homogeneous type.
The converse is not true in general: there exists a 3-generated numerical semigroup
with a complete intersection tangent cone which is of homogeneous type but not
homogeneous; see [8, Example 3.19]. They also ask in [8, Question 4.22] if there
are 4-generated semigroups of homogeneous type which are not homogeneous having
noncomplete intersection tangent cones. Since homogeneous-type semigroups have
Cohen–Macaulay tangent cones, we restrict our attention to monomial curves having
Cohen–Macaulay tangent cones in this article.

The problem of determining the Betti sequence for the tangent cone (see [12,
Problem 9.9]) was studied for 4-generated symmetric monomial curves by Mete and
Zengin [10]. In this paper, we focus on the next interesting case of 4-generated
pseudo-symmetric monomial curves. Using the standard bases we obtained in [11],
we determine the Betti sequence for the tangent cone, addressing [12, Problem
9.9] for 4-generated pseudo-symmetric monomial curves having Cohen–Macaulay
tangent cones, and prove that being homogeneous and being of homogeneous type
are equivalent, answering [8, Question 4.22]. So, in most cases, there is no 4-
generated pseudo-symmetric numerical semigroup of homogeneous type which is not
homogeneous. Before we state our main result, let us recall from [9] that a 4-generated
semigroup S = 〈n1, n2, n3, n4〉 is pseudo-symmetric if and only if there are integers
αi > 1, for 1 ≤ i ≤ 4, and α21 > 0 with α21 < α1 − 1 such that

n1 = α2α3(α4 − 1) + 1,
n2 = α21α3α4 + (α1 − α21 − 1)(α3 − 1) + α3,

n3 = α1α4 + (α1 − α21 − 1)(α2 − 1)(α4 − 1) − α4 + 1,
n4 = α1α2(α3 − 1) + α21(α2 − 1) + α2.
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Table 1. Examples of each case.

α21 α1 α2 α3 α4 n1 n2 n3 n4 β0 β1 β2 β3

2 5 3 2 2 7 12 13 22 1 5 6 2
2 4 4 2 4 25 19 22 26 1 5 6 2
2 4 4 2 5 33 23 28 26 1 5 7 3
2 5 4 2 4 25 20 35 30 1 6 9 4
1 3 2 3 3 13 14 9 15 1 5 6 2
3 6 3 4 6 61 82 51 63 1 6 8 3
1 3 2 2 4 13 11 12 9 1 5 6 2
1 4 2 2 4 13 12 19 11 1 5 7 3

Then the toric ideal IS is given by IS = 〈 f1, f2, f3, f4, f5〉 with

f1 = Xα1
1 − X3Xα4−1

4 , f2 = Xα2
2 − Xα21

1 X4, f3 = Xα3
3 − Xα1−α21−1

1 X2,

f4 = Xα4
4 − X1Xα2−1

2 Xα3−1
3 , f5 = Xα21+1

1 Xα3−1
3 − X2Xα4−1

4 .

The Betti sequence of K[S ] for a 4-generated pseudo-symmetric semigroup is
β(K[S ]) = (1, 5, 6, 2) by [1]. Hence, S is of homogeneous type if and only if the
Betti sequence of the tangent cone is also β(A/I∗S ) = (1, 5, 6, 2). We refer the reader to
[3] for the Betti sequence of K[S ] for 4-generated almost-symmetric semigroups.

Our main result is as follows.

Theorem 1.1. Let S be a 4-generated pseudo-symmetric semigroup with a Cohen–
Macaulay tangent cone. Then the Betti sequence β(A/I∗S ) of the tangent cone is:

• β(A/I∗S ) = (1, 5, 6, 2) if n1 is the multiplicity;
• β(A/I∗S ) = (1, 5, 6, 2) if n2 is the multiplicity and α1 = α4;

β(A/I∗S ) = (1, 5, 7, 3) if n2 is the multiplicity and α1 < α4;
β(A/I∗S ) = (1, 6, 9, 4) if n2 is the multiplicity and α1 > α4;

• β(A/I∗S ) = (1, 5, 6, 2) if n3 is the multiplicity and α2 = α21 + 1;
β(A/I∗S ) = (1, 6, 8, 3) if n3 is the multiplicity and α2 < α21 + 1;

• β(A/I∗S ) = (1, 5, 6, 2) if n4 is the multiplicity and α3 = α1 − α21;
β(A/I∗S ) = (1, 5, 7, 3) if n4 is the multiplicity and α3 < α1 − α21.

We illustrate in Table 1 that there are pseudo-symmetric monomial curves with
Cohen–Macaulay tangent cones in all of these cases.

We make repeated use of the following effective result as in [7, 8, 12] in order to
reduce the number of cases for determining the Betti numbers of the tangent cones.

Lemma 1.2. Assume that the multiplicity of the monomial curve CS is ni. Suppose
that the K-algebra homomorphism πi : A→ Ā = K[X1, . . . , X̄i, . . . , Xk] is defined by
πi(Xi) = X̄i = 0 and πi(X j) = X j for i , j, and set Ī = πi(I∗S ). If the tangent cone grm(RS )
is Cohen–Macaulay, then the Betti sequences of grm(RS ) and of Ā/Ī are the same.
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Proof. If the tangent cone grm(RS ) is Cohen–Macaulay, then Xi is regular on A/I∗S .
The result follows from the well-known fact that Betti sequences are the same up to a
regular sequence. �

Therefore, the problem of determining the Betti sequence of the tangent cone is
reduced to computing the Betti sequence of the ring Ā/Ī. In all proofs about the
minimal free resolution of Ā/Ī we use the following criterion by Buchsbaum–Eisenbud
to confirm the exactness, leaving the not so difficult task of checking if it is a complex
to the reader.

Theorem 1.3 [2, Corollary 2]. Let

0−→Fk−1
φk−1
−→ · · ·

φ2
−→ F1

φ1
−→ F0

be a complex of free modules over a Noetherian ring A. Let rank(φi) be the size of the
largest nonzero minor of the matrix describing φi and let I(φi) be the ideal generated
by the minors of maximal rank. Then the complex is exact if and only if:

(a) rank(φi+1) + rank(φi) = rank(Fi); and
(b) I(φi) contains an A-sequence of length i

for 1 ≤ i ≤ k − 1.

The structure of the paper is as follows. We treat the cases where S is homogeneous
in the next section and, when S is not homogeneous, we find the minimal free
resolution of the ring Ā/Ī in each subsequent section, completing the proof of Theorem
1.1 by virtue of Lemma 1.2. We refer the reader to [4] for the basics of commutative
algebra as we use Singular [5] in our computations.

2. Homogeneous cases

In this section, we characterise which pseudo-symmetric 4-generated semigroups
are homogeneous. We start by recalling basic definitions from [8]. The Apéry set of
S with respect to s ∈ S is defined to be AP(S , s) = {x ∈ S | x − s < S } and the set of
lengths of s in S is

L(s) =

{ k∑
i=1

ui

∣∣∣∣∣ s =

k∑
i=1

uini, ui ≥ 0
}
.

Note that L(s) is the set of standard degrees of monomials Xu1
1 · · · X

uk
k of S -degree

degS (Xu1
1 · · · X

uk
k ) = s. A subset T ⊂ S is said to be homogeneous if either it is empty

or L(s) is a singleton for all s with 0 , s ∈ T . If ni is the smallest among n1, n2, . . . , nk,
the semigroup S is said to be homogeneous if the Apéry set AP(S , ni) is homogeneous.

Proposition 2.1. Let S be a 4-generated pseudo-symmetric numerical semigroup.
Then S is homogeneous if and only if:

• n1 is the multiplicity; or
• n2 is the multiplicity and α1 = α4; or
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• n3 is the multiplicity and α2 = α21 + 1; or
• n4 is the multiplicity and α3 = α1 − α21.

Proof. By [8, Corollary 3.10], S is homogeneous if and only if there exists a set E of
minimal generators for IS such that every nonhomogeneous element of E has a term
that is divisible by Xi when ni is the multiplicity. Şahin and Şahin [11, Corollary 2.4]
states that indispensable binomials of IS are { f1, f2, f3, f4, f5} if α1 − α21 > 2 and are
{ f1, f2, f3, f5} if α1 − α21 = 2. Therefore, they must appear in every minimal generating
set. Let us take E = { f1, . . . , f5} in order to prove sufficiency of the conditions.

• Since each f j ( j = 1, . . . , 5) has a term that is divisible by X1, when n1 is the
multiplicity, S is always homogeneous.

• The only binomial in E that has no monomial term divisible by X2 is f1.
Hence, when n2 is the multiplicity and α1 = α4, it follows that f1 and thus S
is homogeneous.

• The only binomial in E that has no monomial term divisible by X3 is f2. Hence,
when n3 is the multiplicity and α2 = α21 + 1, f2 and thus S is homogeneous.

• Similarly, only f3 has no monomial term that is divisible by X4 and it is
homogeneous when α3 = α1 − α21. Hence, S is homogeneous if n4 is the
multiplicity.

For the necessity of these conditions, recall that f1, f2 and f3 are indispensable, so they
must be homogeneous when the multiplicity is n2, n3 and n4, respectively. �

3. The proof when the multiplicity is n1

If the tangent cone is Cohen–Macaulay and the semigroup is homogeneous, it is
known that the semigroup is of homogeneous type. When n1 is the multiplicity, the
pseudo-symmetric semigroup is always homogeneous by Proposition 2.1 and hence
the Betti sequence is (1, 5, 6, 2) in this case.

4. The proof when the multiplicity is n2

Let n2 be the multiplicity and suppose that the tangent cone is Cohen–Macaulay. If
α1 = α4, then the Betti sequence is (1, 5, 6, 2) by Proposition 2.1. We treat the cases
α1 < α4 and α1 > α4 separately.

4.1. The proof in the case α1 < α4. In this case, { f1, f2, f3, f4, f5} is a standard basis
of IS by [11, Lemma 3.8]. Since Ī is the image of I∗S under the map π2 sending only
X2 to 0, it follows that Ī is generated by

G∗ = {Xα1
1 , X

α21
1 X4, X

α3
3 , X

α4
4 , X

α21+1
1 Xα3−1

3 }.

We prove the claim by demonstrating that the complex

0 −→ A3 φ3
−→ A7 φ2

−→ A5 φ1
−→ A −→ 0
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is a minimal free resolution of Ā/Ī by virtue of Lemma 1.2, where

φ1 =
[
Xα1

1 Xα21
1 X4 Xα3

3 Xα4
4 Xα21+1

1 Xα3−1
3

]
,

φ2 =


0 X4 0 0 Xα3−1

3 0 0
0 −Xα1−α21

1 X1Xα3−1
3 Xα4−1

4 0 0 −Xα3
3

Xα21+1
1 0 0 0 0 Xα4

4 Xα21
1 X4

0 0 0 −Xα21
1 0 −Xα3

3 0
−X3 0 −X4 0 −Xα1−α21−1

1 0 0


and

φ3 =



−X4 0 0
0 Xα3−1

3 0
X3 Xα1−α21−1

1 0
0 0 −Xα3

3
0 −X4 0
0 0 Xα21

1
X1 0 −Xα4−1

4


.

It is easy to check that rank φ1 = 1, rank φ2 = 4, rank φ3 = 3. So, we show that I(φi)
contains a regular sequence of length i for all i = 1, 2, 3. Since this is obvious for i = 1,
we only discuss the other cases. For the matrix φ2, the 4-minor corresponding to the
rows 1, 2, 4, 5 and columns 1, 5, 6, 7 is computed to be −X3α3

3 . Similarly, the 4-minor
corresponding to the rows 2, 3, 4, 5 and columns 1, 2, 4, 5 is X2α1

1 . As these minors are
relatively prime, the ideal I(φ2) contains a regular sequence of length 2. The 3-minor
of φ3 corresponding to the rows 1, 5, 7 is −X1+α4

4 , to the rows 2, 3, 4 is X2α3
3 and to the

rows 3, 6, 7 is Xα1
1 . As they are powers of different variables, they constitute a regular

sequence of length 3.

4.2. The proof in the case α1 > α4. In this case, a standard basis of IS is
{ f1, f2, f3, f4, f5, f6 = Xα1+α21

1 − Xα2
2 X3Xα4−2

4 } by [11, Lemma 3.8]. Since Ī is the image
of I∗S under the map π2 sending only X2 to 0, it follows that Ī is generated by

G∗ = {X3Xα4−1
4 , Xα21

1 X4, X
α3
3 , X

α4
4 , X

α21+1
1 Xα3−1

3 , Xα1+α21
1 }.

We prove the claim by demonstrating that the complex

0 −→ A4 φ3
−→ A9 φ2

−→ A6 φ1
−→ A −→ 0

is a minimal free resolution of Ā/Ī by virtue of Lemma 1.2, where

φ1 =
[
X3Xα4−1

4 Xα21
1 X4 Xα3

3 Xα4
4 Xα21+1

1 Xα3−1
3 Xα1+α21

1

]
,
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φ2 is given by

−X4 0 0 0 0 Xα21
1 0 Xα3−1

3 0
0 0 −Xα1

1 −X1Xα3−1
3 −Xα4−1

4 −X3Xα4−2
4 0 0 Xα3

3
0 −Xα21+1

1 0 0 0 0 0 −Xα4−1
4 −Xα21

1 X4
X3 0 0 0 Xα21

1 0 0 0 0
0 X3 0 X4 0 0 −Xα1−1

1 0 0
0 0 X4 0 0 0 Xα3−1

3 0 0


and

φ3 =



0 −Xα21
1 0 0

X4 0 0 0
0 0 −Xα3−1

3 0
X3 0 Xα1−1

1 0
0 X3 0 0
0 −X4 0 −Xα3−1

3
0 0 X4 0
0 0 0 Xα21

1
X1 0 0 −Xα4−2

4


.

It is easy to check that rank φ1 = 1, rank φ2 = 5, rank φ3 = 4. So, we show that I(φi)
contains a regular sequence of length i for all i = 1, 2, 3. Since this is obvious for i = 1,
we only discuss the other cases. For the matrix φ2, the 5-minor corresponding to the
rows 1, 2, 3, 5, 6 and columns 1, 3, 4, 5, 8 is computed to be −X1+2α4

4 . Similarly, the 5-
minor corresponding to the rows 1, 2, 4, 5, 6 and columns 1, 2, 7, 8, 9 is −X3α3

3 . As these
minors are powers of different variables, the ideal I(φ2) contains a regular sequence of
length 2. The 4-minor of φ3 corresponding to the rows 1, 4, 8, 9 is X2α21+α1

1 , to the rows
3, 4, 5, 6 is X2α3

3 and to the rows 2, 6, 7, 9 is −X1+α4
4 . As they are powers of different

variables, they constitute a regular sequence of length 3.

5. The proof when the multiplicity is n3

Suppose that the tangent cone is Cohen–Macaulay. If α2 = α21 + 1, then the Betti
sequence is (1, 5, 6, 2) by Proposition 2.1. If α2 < α21 + 1, then by [11, Lemma 3.12]
a minimal standard basis for IS is either { f1, f2, f3, f4, f5, f6 = Xα1−1

1 X4 − Xα2−1
2 Xα3

3 } or
{ f1, f2, f3, f ′4 = Xα4

4 − Xα2−2
2 X2α3−1

3 , f5, f6}. Since π3 sends only X3 to 0, it follows that
in both cases the ideal Ī = π3(I∗S ) is generated by

G∗ = {Xα1
1 , X

α2
2 , X

α1−α21−1
1 X2, X

α4
4 , X2Xα4−1

4 , Xα1−1
1 X4}.

We prove the claim by demonstrating that the complex

0 −→ A3 φ3
−→ A8 φ2

−→ A6 φ1
−→ A −→ 0
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is a minimal free resolution of Ā/Ī by virtue of Lemma 1.2, where

φ1 =
[
Xα1

1 Xα2
2 Xα1−α21−1

1 X2 Xα4
4 X2Xα4−1

4 Xα1−1
1 X4

]
,

φ2 =



0 −X4 0 0 0 0 X2 0
0 0 Xα1−α21−1

1 0 −Xα4−1
4 0 0 0

−Xα4−1
4 0 −Xα2−1

2 0 0 −Xα21
1 X4 −Xα21+1

1 0
0 0 0 X2 0 0 0 Xα1−1

1
Xα1−α21−1

1 0 0 −X4 Xα2−1
2 0 0 0

0 X1 0 0 0 X2 0 −Xα4−1
4


and

φ3 =



0 −Xα2−1
2 −Xα21

1 X4
−X2 0 0

0 Xα4−1
4 0

0 0 −Xα1−1
1

0 Xα1−α21−1
1 0

X1 0 Xα4−1
4

−X4 0 0
0 0 X2


.

It is easy to check that rank φ1 = 1, rank φ2 = 5, rank φ3 = 3. So, we show that I(φi)
contains a regular sequence of length i for all i = 1, 2, 3. Since this is obvious for i = 1,
we only discuss the other cases. For the matrix φ2, the 5-minor corresponding to the
rows 1, 2, 3, 5, 6 and columns 1, 2, 4, 5, 8 is computed to be −X3α4−1

4 . Similarly, the
5-minor corresponding to the rows 2, 3, 4, 5, 6 and columns 1, 2, 3, 7, 8 is −X3α1−α21−1

1 .
As these minors are powers of different variables, the ideal I(φ2) contains a regular
sequence of length 2. The 3-minor of φ3 corresponding to the rows 1, 2, 8 is −Xα2+1

2 ,
to the rows 3, 6, 7 is −X2α4−1

4 and to the rows 4, 5, 6 is X2α1−α21−1
1 . As they are powers

of different variables, they constitute a regular sequence of length 3.

6. The proof when the multiplicity is n4

Suppose that the tangent cone is Cohen–Macaulay. If α3 = α1 − α21, then the Betti
sequence is (1, 5, 6, 2) by Proposition 2.1. If α3 < α1 − α21, then a minimal standard
basis for IS is { f1, f2, f3, f4, f5} by [11, Lemma 3.17]. Since Ī = π4(I∗S ), under the map
π4 sending only X4 to 0, it is generated by

G∗ = {Xα1
1 , X

α2
2 , X

α3
3 , X1Xα2−1

2 Xα3−1
3 , Xα21+1

1 Xα3−1
3 }.

We prove the claim by demonstrating that the complex

0 −→ A3 φ3
−→ A7 φ2

−→ A5 φ1
−→ A −→ 0
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is a minimal free resolution of Ā/Ī by virtue of Lemma 1.2, where

φ1 =
[
Xα1

1 Xα2
2 Xα3

3 X1Xα2−1
2 Xα3−1

3 Xα21+1
1 Xα3−1

3

]
,

φ2 =


0 Xα2

2 0 0 Xα3−1
3 0 0

0 −Xα1
1 −X1Xα3−1

3 0 0 0 −Xα3
3

−Xα21+1
1 0 0 0 0 −X1Xα2−1

2 Xα2
2

0 0 X2 −Xα21
1 0 X3 0

X3 0 0 Xα2−1
2 −Xα1−α21−1

1 0 0


and

φ3 =



0 −Xα2−1
2 0

0 0 −Xα3−1
3

−X3 0 Xα1−1
1

0 X3 Xα1−α21−1
1 X2

0 0 Xα2
2

X2 Xα21
1 0

X1 0 0


.

It is easy to check that rank φ1 = 1, rank φ2 = 4, rank φ3 = 3. So, we show that I(φi)
contains a regular sequence of length i for all i = 1, 2, 3. Since this is obvious for
i = 1, we only discuss the other cases. For the matrix φ2, the 4-minor corresponding
to the rows 1, 3, 4, 5 and columns 2, 3, 4, 7 is computed to be X3α2

2 . Similarly, the 4-
minor corresponding to the rows 2, 3, 4, 5 and columns 1, 2, 4, 5 is −X2α1+α21

1 . As these
minors are relatively prime, the ideal I(φ2) contains a regular sequence of length 2.
The 3-minor of φ3 corresponding to the rows 1, 5, 6 is −X2α2

2 , to the rows 2, 3, 4 is
X1+α3

3 and to the rows 3, 6, 7 is −Xα1+α21
1 . As they are powers of different variables,

they constitute a regular sequence of length 3.
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