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*^# The extended completeness theorem of the predicate 
calculas of the f i rs t o rde r . In section 12, we developed a deduc
tive theory of the f i rs t order predicate calculus, while in section 
II we dealt with the semantic theory of that calculus. We now have 
to consider the connection between these two theor ies . We recal l 
that a sentence X can be satisfied by a s t ructure M only if X is 
defined in M. Given a sentence X (a set of sentences K) we shall 
say that the s t ructure M i s a model of X (of K) if X is (all the 
sentences of K are) satisfied by M. 

We may first ask the question whether a provable sentence 
(a theorem) is by necessi ty satisfied by all s t ructures in which it 
is defined. A check on the rules 12. 1-12.6 shows that this i s 
indeed the case although for some of the rules the detailed a rgu
ment is cumbersome. 

Conversely it is natural to enquire whether a sentence X 
which i s satisfied by all models in which it i s defined i s necessar i ly 
provable within the deductive theory of section 12. The answer to 
this question i s in the affirmative and is known as "Godel fs com
pleteness theorem" . It is an immediate consequence of the follow
ing "Extended completeness theorem of the f i rs t order predicate 
calculus11, 

13.1. Any consistent set of sentences in the f irst order p red i 
cate calculus pos se s se s a model . 

We say that a set of sentences, K, i s consistent if it is not 
contradictory. K is contradictory if it contains a finite subset 
{ Xj t . . . , X n } , n ^ l , such that 

13.2. ( X x A (X Z A. . . A X n ] . . J 3 Z 

*) Errata for part UI, Can. Math. Bull.1 (1958), 193-208.. 
pg. 198, line 2 from below, for "prime11 read "atomic", 
pg. 200, line 3 from below, for "in X" read "in X or Y". 
Can. Math. B a l l . , v o l . 2 , no. 1, Jan. 1959 
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is provable for a r b i t r a r y Z . By arguments used previously , an 
equivalent condition i s that there exis ts a pa r t i cu la r sentence Z 
of the form Y A ^ Y such that 13.2 i s provable . 

We will prove 13. 1 present ly . To deduce from it G o d e t s 
completeness theorem (see above) we suppose that X i s not p rov
able. If so then K= { ^ X } must be consistent for if K were con
t radic tory then ^ X ^ X, i . e . ^ X ] v X, and hence X v X and 
hence X would be provable , cont rary to assumption. Thus , by 
13. 1, K pos se s se s a model M. M satisfies^X and hence does not 
satisfy X although X is defined in i t . This proves G6del !s com
ple teness theorem. 

As another corol lary of 13.1 we have the fact, mentioned 
e a r l i e r , that if X eq Y and if M is a s t ruc ture in which both Xand 
Y a r e defined then X and Y either both hold, or both do not hold, 
simultaneously in M. 

We f irs t prove 13. 1 for the case that no quantifiers occur 
in K. Thus the sentences of K all a r e obtained by the use of p r o -
positional connectives from atomic formulae which contain only 
n- place relat ions (n > o) and individual constants (but no var iab les ) . 
L»et P be the set of a tomic formulae which occur in K. To every 
X in P (which may occur more than once in the sentences of K) 
we select a variable P^ . of the proposit ional calculus such that 

different P ^ correspond to different X. To every sentence Y of 

K we now define a formula f( Y \ of the proposit ional calculus by 
the following: 

f( C Y ] ) = P y if Y is a tomic , 

f( [ Y v Z ] ) = f(Y) v f ( Z ) , 

f(OY3) - ~f(Y), 

Thus, Y is obtained from f(Y) simply by replacing the proposit ional 
var iables ( e .g . P ^ ) by the corresponding atomic formula (X),and 
by switching over to the square bracket convention for the predicate 
calculus. 

Let K! = f(Y) be the set of formulae obtained in this way 
from the sentences Y of K. Then the rule 12. 1 shows immediately 
that if K1 is contradictory so i s K. 
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Suppose then that K is consistent, in agreement with the 
hypothesis of 13. 1. Then K1 i s consistent and so, according to 
10. 1 there exists an admissible valuation, W, say, for the v a r i 
ables of K1. Suppose f irs t that there a re individual constants 
which occur in the sentences of K( i . e . that some of the relat ions 
which occur in K have a positive number of places) . In that case 
we define a model M of K as follows. The set of individual con
stants of M is the set of individual constants which occur in K. 
The relat ions of M a r e the relations which occur in K. Now con
sider any expression R(a^ , . • • »a-n), n > o, where R and a-, , . . . ,a 
a r e relat ions and constants of M respectively. If this expression 
occurs among the atomic formulae of K then we define that it 
holds or does not hold in M according as the corresponding p r o -
positional variable in K1 obtains the value T or F in the valuation 
W. If R(a, , . . . ,a ) does not occur among the atomic formulae 
of K then we define (arbitrari ly) that it holds in M. Since W i s 
an admissible valuation it follows that with these definitions M 
becomes a model of K. 

Suppose next that K does not contain any individual constants . 
In-this case we define the set of relations of M (all of 0 places) as 
above, while the set of constants of M is now empty. This is a 
degenerate case in which all we can say of the relat ions of M is 
that they either hold or do not hold in M. The definition given for 
the previous case is still applicable, but except for a slight differ
ence in the formal framework the resul t provided by 13.1 can, 
in this case , be identified with 10. 1. 

Suppose now that at least one of the sentences of K includes 
a quantifier. In this case we f i rs t replace every sentence of Kby 
the corresponding sentence in prenex normal form (see section 12 
above). Since the resulting sentence is equivalent to the original 
sentence (eq) and contains the same relations and individual con
stants , any s t ructure satisfying it will satisfy also the original 
sentence. Thus, we may as well suppose from the outset that the 
sentences of K a r e in prenex normal form. We may also suppose 
that K contains at least one relation with a positive number of 
p laces , for otherwise the quantifiers which occur in K can all be 
omitted, yielding one of the cases t reated previously. 

The following auxiliary consideration is required at this 
point. L»et X be a sentence in prenex normal form, e .g . 

13.3, 

X = (3y1)(x1)(3y2)(x2)Qy3)(ay4) Z(x 1 , x 2 , y 1 , y 2 , y 3 , y 4 ) , 
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where Z is a formula which is free of quantifiers and containing 
the var iables x , , . . . , y , . (It will be convenient though not e s 
sential to a ssume that these var iables occur effectively in Z. ) 
Let M be a s t ructure which satisfies X. Then (presupposing the 
validity of the axiom of choice) the semantic interpretat ion of 
X implies that we may select in M a constant *p, and functions 

^2 = fylx-l)' ^3 = 9 3 ( x i » x 2 ) ' ^4 = ^ 4 ( x l ' x 2 ^ with arguments 
x i, x 2 which vary over all individual constants of M such that 

13.4. Z(x l f x 2 , (p x , ^ ( X j ) , ( jP 3 (x r x 2 ) , ( p 4 ( X l , x 2 ) ) 

hold in M for all values of x , , x^. Note that 13.4 i s not formulated 

within the language of our calculus, but is t ransformed into a sen
tence of the calculus whenever we replace x, , x 2 by a r b i t r a r y in
dividual constants of M and ^ ^ l ^ ' ^ > 3 ^ x l , x 2 ^ ' *P4^X 1'x2^ ^Y t n e 

corresponding functional values of ÇD Cf> Cf It will be seen 

that 13.4 is obtained formally from 13. 3 by removing the quanti
f iers and by replacing each variable in Z which is associated with 
an existential quantifier by a function symbol which includes as 
arguments the var iables in universal quantifiers which precede 
the existential quantifier in question. Even cp may be regarded 
as a special case of this procedure (number of var iables = zero) . 

The same procedure can be applied to an a rb i t r a ry sen
tence X which is in prenex normal form. The resul t which 
as stated is not in general a sentence within the calculus will 
be said to be the Herbrand t ransform of X, H(X). 

Considering again the par t icu lar sentence given by 13. 3,we 
see that , conversely, if the functions cp, , <p2, (p~, <£,, a r e def
inable in a s t ructure M so that 13.4 is satisfied when we substitute 
a rb i t r a ry individual constants of M for x^ and x - , then 13. 3 is sat 
isfied by M. Thus, the satisfiability of 13.4 in the indicated sense 
is equivalent to the satisfiability of 13. 3 and, more general ly , the 
satisfiability of a given sentence is equivalent to the satisfiability 
of i ts Herbrand t rans form. 

We re turn to the proof of 13. 1 under the stated assumptions» 
Supposing that K is consistent , we shall establ ish the existence of 
a s t ructure M which is a model of K. 
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Let K1 = { H ( X ) } be the set of Herbrand t ransforms of the 
sentences X of K, where it is understood that different function 
symbols a re used for different sentences of K. Let (]) be the set 
of function symbols (including individual constants and including 
in par t icular the individual constants which occur in the original 
K). If $ does not include any individual constants by virtue of 
this definition then we include in it an a rb i t ra ry individual con
stant, c. 

By a t e rm we mean any of the individual constants of $> 
as well as any expression obtained by the repeated application of 
the function symbols of ($ to these individual constants. Thus if 
K contains the sentence 13 .3 , the fy <?2 ( 9 ^ * ^ ( Ç ^ Ç ^ ^ j ) ) ' 

e tc . a re t e r m s . 

Let $> be the set of all t e rms obtained in this way. For 
every t é (p , we select an individual constant c t subject to the 
two conditions that different c. correspond to different t, and 
that Cf- = t whenever t is an individual constant which occurs in 
K. Let.fi. be the set of constants c t obtained in this way. £l is 
not empty. 

We now define an infinite sequence of sentences {K } , 
n = 0 , 1 , 2 , . . . inductively as follows. 

K = K. o 

In order to define K^, consider al l X € K which begin with 
an existential quantifier, (3y) say. Include in K^ the sentences 
which are obtained from K by deleting (3y) and by replacing the 
variable y in the remaining formula by the individual constant 
ĉ . where t i s the constant (here-function of zero variables) which 
corresponds to ( 3 y) in H(X). Thus, if X is given by 13 .3 , H(X) 
is given by 13.4 and y = y^, t = (pi. To these sentences, add all 
sentences of K . 

Then Krt c Ki. 

&2 i s obtained next in the following way. Consider all 
X € Ki which begin with a universal quantifier, (y) say. Include in 
K2 all sentences which are obtained from X by deleting (y) and by 
replacing the variable y in the remaining formula by an individual 
constant which occurs in K j . If there is no such constant, include 
the sentence obtained from X by deleting (y) and by replacing y by 
the individual constant c introduced above. In either case add to 
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the sentences obtained in this way al l sentences of K , , 

T h e n K j C K ^ 

Suppose now that we have al ready defined the sets KQ, 

K* , . . . ,K , n > 2. In order to define K^. ^ we distinguish between 

even and odd suffixes n. 

If n i s even, we make the inductive assumption, satisfied 
for n = 2, that any X <£ K is either included in K or that it has 

been obtained from a sentence IKQ of K by deleting a number of 
the leading quantifiers and by replacing the corresponding v a r i 
ables in the remaining formula by cer ta in elements of fl. Now 
consider any X 6 K n which begins with an existential quantifier, 
Q y ) say, and suppose that the universal quantifiers which were 
deleted in passing from X to XQ a r e (xj;), , , * >(x-^). 

Suppose that in X, the var iables Xp . . • , x^ a r e replaced 
by individual constants c . , . . . , c, , such that at least one of these 

constants occurs for the f i rs t t ime in K J ^ J , and hence does not 
occur in K n - 2 Suppose further that the function symbol c o r r e s 
ponding to (3y) in H(X) is y(x;[ , . . . , x^). We then include in 

K ^ i the sentence which is obtained from X by deleting Qy) and 
by replacing y in the remaining formula everywhere by c^/^. . tk)* 
(We note that the same X € K n may a r i s e from different X ^ K, 
leading to different elements of K , p ) In addition, we include 
in K n + 1 all e lements of K^ so that K ^ K n + 1 . 

If n is odd, consider all X € K n which begin with a universal 
quantifier, (y) say. Include in K ^ i all sentences which a r e ob
tained from X by deleting (y) and by replacing the variable y in 
the remaining formula by an individual constant which occurs in 
Kn . To these add all elements of K n . Then K n C Kn + \. It will be 

seen that K ^ ^ as defined, pos se s se s the inductive proper ty a s 

sumed for the definition of Kn+ i for even n, 

Now let H = K Q ^ K I ^ K ^ O . . . . We propose to show that H 

is consistent . Since K Q Ç K ^ K^ , . . i t i s sufficient to show that K 
is consistent for all n. K0 = K is consistent by assumption. We 
assume that K ,̂- is consistent for some j > 0 and we prove that in 
this case K£-+ j and K 2i4-7 m u s t ^ e consistent as well . 
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Suppose on the contrary that K ^ . , i s contradictory. Then 
there exist sentences 

X l ' • • • ' X k € K 2j ' Y l ' "* * ' Y m e K 2j + r K 2 j 

such that 

13.5. [Yx A C.. . A I Y ^ A C . . . A D ^ A [ . . . A X ] . . J o Z 

i s provable for some Z which is of the form V A ^ V where V i s a 
sentence of which we may assume that it does not have any indivi
dual constants in common with H, and where m > 1 (while k ^ 0) 
since K£. is assumed consistent. Now the sentences Y-, , . . . , Y 

are obtained from sentences of K^; of the form 

V. = ( 3 w . ) Z . , j = l , . . . , m , 

respectively by deleting the quantifiers ( 3 W J ) and by replacing 
the Wj in Z; by different constants which did not appear in 

X j i • • • i Xj^ , VY » • • • > ^n*i* * 

The repeated application of 12.5 in conjunction with 12. 1 
now shows that since 13.5 i s provable, so i s the sentence 

13.6. Cv1 A [ . . . A [ v m A C . C x ^ C . . ^ x k ] . . . l 3 Z . 

But the sentences in the implicans of 13.6 all belong to 
K^i and so 13.6 entails that K£; is contradictory and this i s con
trary to assumption. Accordingly K2J+1 is consistent. 

Suppose next that K2J-J-2 * s c o ntradictory. Then there exist 

X l X k € K 2 j + l ' Y l Y m ^ Z j + Z - K y + l ' * » 1 

such that 13.5 is provable for some Z as described above. Now 
the sentences Y 1 , . . . ,Y m are obtained from sentences of K2J of 
the form 

respectively, by deleting the (WJ ) and by replacing the variables 

w. in Z- by certain constants. Hence by 12.2 , the sentences 
J J 
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13.7. V j ° Y j ' j = 1 ' - - - ' m 

a re provable . The application of the rules of the propositional 
calculus ( i . e . of 12. 1) to 13.5 in conjunction with 13.7 now shows 
that the sentence 13.6 is provable and this i s again contrary to 
the supposition that K ^ + i i s consistent . Thus , H i s consistent . 

Let H'be the set of sentences of H which a r e free of quanti
f i e r s . Then H' is consistent and hence, pos se s se s a model M, as 
constructed previously. Notice that by that construction the 
individual constants of M coincide with the individual constants 
of H and hence constitute a subset of «Q. . 

Let X be any sentence of K and let X1 = H(X) be its Herbrand 
t rans form. Suppose that x\ , . . . , x^ a re the var iables which appear 
in X under the sign of universal quantification while y j , . . . , y m a r e 
the var iables which a r e quantified in X existentially. Let the cor 
responding function symbols in X* be cp^, . . . ,<prn . Then we have 
to show that we can define (pi, . . . , ^ 0 1 1 the set of individual con
stants of M, Q} say in such a way that X is satisfied by M for all 
values of X i , . . . , x in C. 

Suppose that ip. = <£>. ( x , , . . . , x * ), U j 4 m , ( K ^ k , 

We have to define this function for all values of x j , . . . , x^in C 
i . e . for cer ta in x^= c t , . . . , x * = c\ where t p . . . , t « a r e 
t e r m s (elements of $/). A suitable definition is 

13.8. 9 j ( V - ' " V S ^ ( h , . . . , ^ ) -

(Note that on the left hand side of 13. 8, <£>. real ly denotes a func
tion while on the right hand side it is a symbol which yields a t e r m 
when combined with t , . . . , t*.) 

Consider for example the sentence X given by 13.3 with the 
Herbrand t ransform 13.4. Defining <p ,̂ . . . , <p^ by 13 .8 , we have 
to show that 

13.9. Z ( c t 1 . c t 2 , c ç , l f c ^ 2 ( t 1 ) , c ç ^ ( t l ï t 2 ) » c ^ 4 ( t l f t 2 ) ) 
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i s satisfied by M for all terms t^, t2 such that c t , c t belong to 
C. But by virtue of our construction of H, 13. 9 actually occurs 
in H! for all such t j , t^, and so M satisfies 13.9 and hence 13.3. 

The same argument applies to general XGK. This completes the 
proof of 13 .1 . 

Bearing in mind the definition of consistency we obtain the 
following immediate corollary of 13. 1. 

13. 10* Let K be a set of sentences such that every finite 
subset of K possesses a model. Then K also possesses a model. 

This corollary contains no reference to the deductive con
cepts of section 12 above and it may be expected that such con
cepts can be eliminated also from its proof. It is indeed possible 
to construct a variant of our proof of 13. 1 which establishes 13.10 
by means of semantic concepts alone. 

A host of interesting applications of 13. 10 to modern Algebra 
has been shown by Malcev, Henkin and the present author. For 
some of them, the reader i s referred to the author's monograph 
Complete Theories (published in the series Studies in Logic and 
the Foundations of Mathematics, Amsterdam 1956). 

Another corollary of 13. 1, or rather of its proof, i s the 
famou s 

13. 11. Theorem of Lowenheim-Skolem. Suppose that the 
number of elements of K does not exceed &* (K i s finite or count
able). Then if K possesses a model at all , it also possesses a 
model the number of whose individual constants i s finite or count
able. 

Indeed, since K possesses a model it must be consistent. 
The model M constructed in the proof of 13. 1 then satisfies the 
conclusion of 13. 11. 

14. Conclusion. We have now developed our subject as far 
as intended. It should be clear to the reader that we have reached 
only the end of the beginning. There are further developments in 
many directions. Of these, we may mention first the predicate 
calculi of higher order in which relations can be quantified and 
may appear as arguments of other relations. Other investigations 
are concerned with questions of co~hstructivity in Mathematics, of 
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algori thms and decision methods , and a r e intimately connected 
with the concepts of recurs ive functions and p red ica t e s . This is 
a subject which is related to the theory of modern computers 
(usually electronic) and it has both influenced that theory and been 
influenced by it. Again, there is the possibil i ty of replacing the 
set of two truth values on which Logic is based customari ly ( i . e . 
11 t rue" and "false") by a g rea te r (even infinite) number of truth 
va lues . This leads to the theory, or theor ies , of many-valued 
Logics . Finally, in addition to the pursui t ofvarious ramificat ions 
at the top, we may wish to investigate m o r e closely the logical 
and philosophical foundations of the ent i re subject. One respec t 
in which our approach has been less subtle than is somet imes held 
to be necessa ry is that we have not distinguished between a name 
( e . g . symbol) and the object denoted by it . In general there is 
indeed a difference between these-a rose by any other name, e tc . 
However while a complete d i s regard for this distinction can lead 
to unpleasant resu l t s in some connections, it is not difficult to 
justify the pract ice adopted in these notes as far as they went. 

Hebrew Universi ty, 
J e r u s a l e m , I s r a e l . 
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