ON THE DIMENSION OF VEBLEN-WEDDERBURN SYSTEMS by CARLTON J. MAXSON
 (Received 11 March, 1969)

1. Introduction. In [1, p. 97], Bruck and Bose ask the question " Has every (right) Veblen-Wedderburn system finite dimension over its left operator skew-field?" It is the purpose of this note to show that, in general, this question has a negative answer.

We recall that, in [1], the left operator skew-field of a Veblen-Wedderburn system $\langle R,+,$. is defined to be the subsystem $\langle F,+,$.$\rangle consisting of those elements x \in R$ satisfying, for all $a, b \in R$,
(i) $x \cdot(a+b)=x \cdot a+x \cdot b$,
(ii) $x \cdot(a \cdot b)=(x \cdot a) \cdot b$

The Veblen-Wedderburn systems considered in this paper will be (right) near-fields $\langle F,+,$.$\rangle with the additional property$
(P) for all $a, b, c \in F, a \neq b$, there exists one and only one element $x \in F$ such that $x a=x b+c$.

We recall that a near-field is an algebraic system $\langle F,+,$.$\rangle such that +$ and . are associative binary operations on $F,\langle F,+\rangle$ is a group with identity 0 (say), $\langle F-\{0\},$.$\rangle is a group and$ $(a+b) . c=a . c+b . c$ for all $a, b, c \in F$. As usual $a . c$ will be written $a c$ and the multiplicative identity denoted by 1 .

The near-fields satisfying property (P) are called planar by Zemmer [4] and projective by Kerby [2].

The kern of a near-field $\langle F,+,$.$\rangle is defined to be the set K(F)=\{a \in F \mid a(b+c)=a b+a c$ for all $b, c \in F\} .\langle K(F),+,$.$\rangle is a subskew-field of F$ and $\langle F,+\rangle$ is a (left) vector space over $K(F)$. In particular, the kern of F is the left operator skew-field of F (considering F as a Veblen-Wedderburn system). Moreover, if the dimension of $\langle F,+\rangle$ over $K(F)$ (i.e. [$F: K(F)$]) is finite, then $\langle F,+,$.$\rangle is a planar near-field (see [2] and [4]).$

Both Kerby and Zemmer give examples of near-fields not satisfying property (P). Kerby also gives an example of an infinite near-field satisfying (P). We use the methods of Kerby to construct infinite planar near-fields (hence Veblen-Wedderburn systems) which are infinite dimensional over $K(F)$ (i.e., over their left operator skew-fields).

In our construction of infinite planar near-fields, we use the concept of "coupling map " defined in [3]. For the sake of completeness, we give this definition.

Definition. Let $\langle R,+,$.$\rangle be a ring and \mathrm{End}_{0} R$ be the semigroup of ring endomorphisms of R with 0_{R} adjoined. A function $\phi: R \rightarrow \operatorname{End}_{0} R\left(a \rightarrow \phi_{a}\right)$ is said to be a coupling map of R if $\phi_{0}=0_{R}$ and $\phi_{a} \circ \phi_{b}=\phi_{a \phi_{b} \cdot b}$, for all $a, b \in R$.
2. Results. Let H be a field and T an arbitrary but fixed automorphism of $H, T \neq I_{H}$. T induces an automorphism T^{*} on $H((x))$, the field of formal power series over H; that is, for $\alpha=\sum_{h}^{\infty} \alpha_{i} x^{i} \in H((x)), \alpha T^{*}=\sum_{h}^{\infty}\left(\alpha_{i}\right) T x^{i}$. The mapping $\phi: H((x)) \rightarrow \operatorname{End}_{0}\langle H((x)),+,$.
given by

$$
\alpha \phi=\left\{\begin{array}{cc}
\alpha\left(T^{*}\right)^{\delta(\alpha)}, & \alpha \neq 0 \\
0, & \alpha=0
\end{array}\right.
$$

where $\delta(\alpha)=\operatorname{Ord} \alpha\left(=\right.$ smallest index for which $\left.\alpha_{i} \neq 0\right)$, is a coupling map for $H((x))$ and therefore (see [3], p. 6) $\langle H((x)),+, o\rangle$ is a near-field. We recall that the multiplication \circ is given by

$$
\alpha \circ \beta=\left\{\begin{array}{cc}
0 & \beta=0 \\
\alpha\left(T^{*}\right)^{\delta(\beta)} \cdot \beta, & \beta \neq 0
\end{array}\right.
$$

Thus, if $\alpha=\sum_{r}^{\infty} \alpha_{i} x^{i}$ and $0 \neq \beta=\sum_{t}^{\infty} \beta_{j} x^{j}$, then $\alpha_{0} \beta=\sum_{r}^{\infty}\left(\alpha_{i}\right) T^{\delta(\beta)} x^{i} \cdot \sum_{t}^{\infty} \beta_{j} x^{j}$.
Kerby [2] has shown that $\langle H((x)),+, 0\rangle$ is a near-field with property (P).
In particular, let H be the field $k(x)$ of rational functions in one indeterminate over a field k of characteristic zero. Let $T: k(x) \rightarrow k(x)$ be the automorphism of $k(x)$ given by $x \rightarrow x+1$. We denote the coupled near-field $\langle k(x)((t)),+, \circ\rangle$ by F. We proceed to show that $[F: K(F)]$ is not finite.

Lemma Let $\alpha=\sum_{h}^{\infty} \alpha_{i} t^{i} \in F$; then $\alpha \in K(F)$ if and only if $\alpha_{i} T=\alpha_{i}$ for all i.
Proof. If $\alpha \in K(F)$, then $\alpha \circ(1+t)=\alpha \circ 1+\alpha \circ t=\alpha+\alpha \circ t$. Hence $\alpha \circ(1+t)=\alpha \cdot(1+t)=$ $\alpha+\sum_{h}^{\infty} \alpha_{i} T t^{i+1}$, which in turn implies that $\sum_{h}^{\infty} \alpha^{i} t^{i+1}=\sum_{h}^{\infty} \alpha_{i} T t^{i+1}$. Thus $\alpha_{i}=\alpha_{i} T$ for all i. Conversely, if this is the case, then, for all $n \in \mathbf{Z}, \alpha_{i} T^{n}=\alpha_{i}$. Hence $\alpha \circ \beta=\alpha$. β for all $\beta \in F$, and so $\alpha \in K(F)$.

Corollary. Let $\alpha=\sum_{h}^{\infty} \alpha_{i} t^{i} \in F$; then $\alpha \in K(F)$ if and only if $\alpha_{i} \in k$, for all i.
Proof. Let $q \in k(x), q=f(x) \mid g(x)$, where $f(x), g(x) \in k[x], g(x) \neq 0$; we may assume without loss of generality that g.c.d. $\{f(x), g(x)\}=1$. We must verify that $q T=q$ is equivalent to $q \in k$. Clearly $q \in k$ implies that $q T=q$. Conversely, $f(x) / g(x)=f(x+1) / g(x+1)$ implies that $f(x) g(x+1)=f(x+1) g(x)$. Hence $f(x) \mid f(x+1)$ and so $f(x+1)=r f(x)$, where $r \in k$. Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$, where $a_{n} \neq 0$. Assume that $n \geqq 1$. From $f(x+1)=r f(x)$, by equating the coefficients of x^{n} and x^{n+1}, one obtains
(i) $a_{n}=r a_{n}$,
(ii) $n a_{n}+a_{n-1}=r a_{n-1}$.

From (i), $r=1$, since $a_{n} \neq 0$. But then, from (ii), $n a_{n}=0$, which is a contradiction since k is of characteristic zero. Hence $f(x)=a_{0} \in k$. If $a_{0}=0$, then $q \in k$. If $a_{0} \neq 0$, we obtain $g(x)=$ $g(x+1)$ and then find that $g(x)=b_{0} \in k$. Hence $q \in k$, as desired.

Since $k(x)$ is a simple transcendental extension of $k,[k(x): k]=\infty$. Let $B=\left\{b_{u} \mid \alpha \in \Lambda\right\}$ be a basis for $k(x)$ over k. Since $B \subseteq k(x)$, we have $B \subseteq k(x)((t))$. For any finite subset
$\left\{b_{\alpha_{i}} \mid i=1,2, \ldots, r\right\}$ of B, let $0=b_{\alpha_{1}} f_{1}+b_{\alpha_{2}} f_{2}+\ldots+b_{\alpha_{r}} f_{r}$, where $f_{i} \in K(F), i=1,2, \ldots, r$. Hence $f_{i}=\sum_{h_{i}}^{\infty} a_{j}^{i} t^{j}, a_{j}^{i} \in k$. For each $j \geqq h=\min \left\{h_{i} \mid i=1,2, \ldots, r\right\}$,

$$
0=b_{\alpha_{1}} a_{j}^{1}+b_{\alpha_{2}} a_{j}^{2}+\ldots+b_{\alpha_{r}} a_{j}^{r}
$$

and since $[k(x): k]=\infty$, we have $a_{j}^{i}=0$ for $i=1,2, \ldots, r$ and all j. Hence B is an independent set over $K(F)$ and consequently $[F: K(F)] \geqq[k(x): K(F)]=\infty$.

We have established the following
Theorem. There exist Veblen-Wedderburn systems having infinite dimension over their left operator skew-fields.

REFERENCES

1. R. H. Bruck and R. C. Bose, The construction of translation planes from projective spaces, J. Algebra 1 (1964), 85-102.
2. W. Kerby, Projective und nicht-projective Fastkörper, Abh. Math. Sem. Univ. Hamburg, 32 (1968), 20-24.
3. C. J. Maxson, Dickson near-rings, J. Algebra 14 (1970), 152-169.
4. J. L. Zemmer, Near-fields, planar and non-planar, The Math. Student, 31 (1964), 145-150.

Texas A and M University
College Station, Texas 77843

