ON THE DIMENSION OF VEBLEN-WEDDERBURN SYSTEMS

by CARLTON J. MAXSON

(Received 11 March, 1969)

1. Introduction. In [1, p. 97], Bruck and Bose ask the question "Has every (right) Veblen-Wedderburn system finite dimension over its left operator skew-field?" It is the purpose of this note to show that, in general, this question has a negative answer.

We recall that, in [1], the *left operator skew-field* of a Veblen-Wedderburn system $\langle R, +, . \rangle$ is defined to be the subsystem $\langle F, +, . \rangle$ consisting of those elements $x \in R$ satisfying, for all $a, b \in R$,

(i) $x \cdot (a+b) = x \cdot a + x \cdot b$,

(ii) x . (a . b) = (x . a) . b

The Veblen-Wedderburn systems considered in this paper will be (right) near-fields $\langle F, +, . \rangle$ with the additional property

(P) for all a, b, $c \in F$, $a \neq b$, there exists one and only one element $x \in F$ such that xa = xb + c.

We recall that a near-field is an algebraic system $\langle F, +, . \rangle$ such that + and . are associative binary operations on F, $\langle F, + \rangle$ is a group with identity 0 (say), $\langle F - \{0\}, . \rangle$ is a group and $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in F$. As usual $a \cdot c$ will be written ac and the multiplicative identity denoted by 1.

The near-fields satisfying property (P) are called *planar* by Zemmer [4] and *projective* by Kerby [2].

The kern of a near-field $\langle F, +, . \rangle$ is defined to be the set $K(F) = \{a \in F \mid a(b+c) = ab + ac$ for all $b, c \in F\}$. $\langle K(F), +, . \rangle$ is a subskew-field of F and $\langle F, + \rangle$ is a (left) vector space over K(F). In particular, the kern of F is the left operator skew-field of F (considering F as a Veblen-Wedderburn system). Moreover, if the dimension of $\langle F, + \rangle$ over K(F) (i.e. [F: K(F)]) is finite, then $\langle F, +, . \rangle$ is a planar near-field (see [2] and [4]).

Both Kerby and Zemmer give examples of near-fields not satisfying property (P). Kerby also gives an example of an infinite near-field satisfying (P). We use the methods of Kerby to construct infinite planar near-fields (hence Veblen-Wedderburn systems) which are infinite dimensional over K(F) (i.e., over their left operator skew-fields).

In our construction of infinite planar near-fields, we use the concept of "coupling map" defined in [3]. For the sake of completeness, we give this definition.

DEFINITION. Let $\langle R, +, . \rangle$ be a ring and End₀ R be the semigroup of ring endomorphisms of R with 0_R adjoined. A function $\phi: R \to \text{End}_0 R$ $(a \to \phi_a)$ is said to be a *coupling map* of R if $\phi_0 = 0_R$ and $\phi_a \circ \phi_b = \phi_{a\phi_b,b}$ for all $a, b \in R$.

2. Results. Let *H* be a field and *T* an arbitrary but fixed automorphism of *H*, $T \neq I_H$. *T* induces an automorphism T^* on H((x)), the field of formal power series over *H*; that is, for $\alpha = \sum_{h=0}^{\infty} \alpha_i x^i \in H((x)), \ \alpha T^* = \sum_{h=0}^{\infty} (\alpha_i) T x^i$. The mapping $\phi : H((x)) \to \operatorname{End}_0 \langle H((x)), +, . \rangle$ given by

$$\alpha \phi = \begin{cases} \alpha (T^*)^{\delta(\alpha)}, & \alpha \neq 0, \\ 0, & \alpha = 0, \end{cases}$$

where $\delta(\alpha) = \operatorname{Ord} \alpha$ (= smallest index for which $\alpha_i \neq 0$), is a coupling map for H((x)) and therefore (see [3], p. 6) $\langle H((x)), +, \circ \rangle$ is a near-field. We recall that the multiplication \circ is given by

$$\alpha \circ \beta = \begin{cases} 0 &, \quad \beta = 0, \\ \alpha(T^*)^{\delta(\beta)} \cdot \beta, \quad \beta \neq 0. \end{cases}$$

Thus, if $\alpha = \sum_{r=1}^{\infty} \alpha_i x^i$ and $0 \neq \beta = \sum_{i=1}^{\infty} \beta_j x^j$, then $\alpha \circ \beta = \sum_{r=1}^{\infty} (\alpha_i) T^{\delta(\beta)} x^i \cdot \sum_{i=1}^{\infty} \beta_j x^j$.

Kerby [2] has shown that $\langle H((x)), +, \circ \rangle$ is a near-field with property (P).

In particular, let H be the field k(x) of rational functions in one indeterminate over a field k of characteristic zero. Let $T: k(x) \rightarrow k(x)$ be the automorphism of k(x) given by $x \rightarrow x+1$. We denote the coupled near-field $\langle k(x)((t)), +, \circ \rangle$ by F. We proceed to show that [F: K(F)] is not finite.

LEMMA Let
$$\alpha = \sum_{i=1}^{\infty} \alpha_i t^i \in F$$
; then $\alpha \in K(F)$ if and only if $\alpha_i T = \alpha_i$ for all *i*.

Proof. If $\alpha \in K(F)$, then $\alpha \circ (1+t) = \alpha \circ 1 + \alpha \circ t = \alpha + \alpha \circ t$. Hence $\alpha \circ (1+t) = \alpha \cdot (1+t) =$

COROLLARY. Let
$$\alpha = \sum_{h=1}^{\infty} \alpha_i t^i \in F$$
; then $\alpha \in K(F)$ if and only if $\alpha_i \in k$, for all i.

Proof. Let $q \in k(x)$, q = f(x)/g(x), where f(x), $g(x) \in k[x]$, $g(x) \neq 0$; we may assume without loss of generality that g.c.d. $\{f(x), g(x)\} = 1$. We must verify that qT = q is equivalent to $q \in k$. Clearly $q \in k$ implies that qT = q. Conversely, f(x)/g(x) = f(x+1)/g(x+1) implies that f(x)g(x+1) = f(x+1)g(x). Hence f(x)|f(x+1) and so f(x+1) = rf(x), where $r \in k$. Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$, where $a_n \neq 0$. Assume that $n \ge 1$. From f(x+1) = rf(x), by equating the coefficients of x^n and x^{n+1} , one obtains

(i)
$$a_n = ra_n$$
,
(ii) $na_n + a_{n-1} = ra_{n-1}$.

From (i), r = 1, since $a_n \neq 0$. But then, from (ii), $na_n = 0$, which is a contradiction since k is of characteristic zero. Hence $f(x) = a_0 \in k$. If $a_0 = 0$, then $q \in k$. If $a_0 \neq 0$, we obtain g(x) = g(x+1) and then find that $g(x) = b_0 \in k$. Hence $q \in k$, as desired.

Since k(x) is a simple transcendental extension of k, $[k(x):k] = \infty$. Let $B = \{b_u | \alpha \in \Lambda\}$ be a basis for k(x) over k. Since $B \subseteq k(x)$, we have $B \subseteq k(x)((t))$. For any finite subset

CARLTON J. MAXSON

 $\{b_{\alpha_i} \mid i = 1, 2, ..., r\}$ of B, let $0 = b_{\alpha_1}f_1 + b_{\alpha_2}f_2 + ... + b_{\alpha_r}f_r$, where $f_i \in K(F)$, i = 1, 2, ..., r. Hence $f_i = \sum_{h_i}^{\infty} a_j^i t^j$, $a_j^i \in k$. For each $j \ge h = \min\{h_i | i = 1, 2, ..., r\}$, $0 = b_{\alpha_1} a_j^1 + b_{\alpha_2} a_j^2 + ... + b_{\alpha_r} a_j^r$

and since $[k(x):k] = \infty$, we have $a_i^i = 0$ for i = 1, 2, ..., r and all j. Hence B is an independent set over K(F) and consequently $[F: K(F)] \ge [k(x): K(F)] = \infty$.

We have established the following

THEOREM. There exist Veblen-Wedderburn systems having infinite dimension over their left operator skew-fields.

REFERENCES

1. R. H. Bruck and R. C. Bose, The construction of translation planes from projective spaces, J. Algebra 1 (1964), 85-102.

2. W. Kerby, Projective und nicht-projective Fastkörper, Abh. Math. Sem. Univ. Hamburg, 32 (1968), 20-24.

C. J. Maxson, Dickson near-rings, J. Algebra 14 (1970), 152–169.
J. L. Zemmer, Near-fields, planar and non-planar, The Math. Student, 31 (1964), 145–150.

TEXAS A and M UNIVERSITY **COLLEGE STATION, TEXAS 77843**

116