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RIEMANNIAN MANIFOLDS WITH DISCONTINUOUS

METRICS AND THE DIRICHLET INTEGRAL

MOSES GLASNER* AND MITSURU NAKAI**

Introduction

Consider a relatively compact region Ω of a Riemann surface R. The

term Dirichlet integral over Ω, DΩ{ ), is used for the variation whose Euler-

Lagrange equation is Δu — 0 on Ω and the term energy integral over Ω,

Eζ( ) = EQ{ ), is used for the variation with Euler-Lagrange equation

(*) Δu = Pu, P>0 on Ω.

If the second order differential P is defined on all of R one can consider

the space PD(R) of solutions of (*) with DR{u) < oo. In 1959 Royden [20]

gave some partial results about PD{R). He also remarked that "the study

of (unbounded) solutions of (*) with a finite Dirichlet integral seems to me

particularly difficult because we are assuming less about them than the

natural assumption E(u) < oo".

In 1961 Nakai [14] made some progress in the study of PD{R) as a result

of his observation that a weak form of the Dirichlet principle is valid for

(*): for Ω a relatively compact region of R, among all nonnegative subsolu-

tions of (*) with given boundary values, it is the solution of (*) that mini-

mizes DΩ{ ). Glasner-Katz [2] noted in 1969 that the Royden harmonic

boundary Δ of R serves for a maximum principle for PD(R). Only recently

considerable progress has been made by Nakai [17] concerning the class

PD{R) by observing the connection between PD{R) and the (Green) energy:

JhO*. y)u(x)P(x)u(y)P(y).
RxR

In this paper we give a complete account of Dirichlet-finite solutions
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of (*) on Riemannian manifolds R with discontinuous metric tensors. Attention

has been focused by Nakai [15] on examining such manifolds from the view-

point of harmonic functions. Since then several papers [10], [16], [4], [3]

have contributed to the tools of analysis on such manifolds. We begin by

presenting the tools necessary for the study of Dirichlet-finite harmonic

functions, the primary one being the Royden boundary. After the con-

nections between Dirichlet integral and (Green) energy are developed we

proceed to describe PD(R).

Among our principal results is the fact that the bounded Dirichlet-finite

solutions of (*) are dense with respect to the Dirichlet norm and the com-

pact convergence topology in PD{R). In particular, the nonexistence of

bounded solutions of (*) on R implies that PD{R) = {0}. We also give suf-

ficient conditions for a functions on the Royden harmonic boundary to be

the boundary value of a function in PD{R). This leads to a characterization

of the situation when the bounded Dirichlet-finite harmonic functions are

canonically isomorphic with corresponding solutions of (*).

Throughout the paper we make references only when we specifically

make use of someones result. The papers listed among the references and

the bibliography of [21] can be used to trace the counterparts, if any, of

our results on Riemann surfaces. Some of the results presented here dup-

licate the authors' results on this sort of manifold [15], [16], [4], [3] and some

of the work in Section 6 has been inspired by F.-Y. Maeda's work [10].

Before beginning with the exposition we mention that results corres-

ponding to ours for bounded or energy-finite solutions of (*) are easily

obtained and other generalizations of known results from Riemann surfaces

would be mere formalities.

§ 1. Preliminaries

1A. Riemannian manifolds. By a Riemannian manifold R we shall

mean a connected* separable and orientable m-dimensional (m >2) ^-manifold

with a fundamental tensor {gtj) satisfying the following condition: in each

parametric ball B c R, gtj is measurable and there is a constant K = κB

such that

for every vector ξ e £ m and for almost every x e B. The set of parametric

balls will be denoted by ^
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DISCONTINUOUS METRICS AND THE DIRICHLET INTEGRAL 3

Let ΛP(U) (O^p^m) be the space of measurable p-forms on U and

denote by £&P(U) the differentiable forms in ΛP(U) and by £&ξ(U) those

forms in &P{U) with compact supports. Here U is any open subset of R.

If ψ e' Λp(U)y then in terms of local coordinates ψ = ψadxa, where a ranges

over all ordered multi-indices of length p and φa are measurable functions on U.

We employ the Einstein summation convention when no ambiguity arises.

An inner product on ΛP(U) is given in terms of local coordinates by

extending the following formula by linearity.

dxa- dxβ = det (ςΓtβj) a.e.,

where {giJ) is the inverse matrix of {gtj) a.e. In the one dimensional space

Λm{R) we choose ω satisfying ω ω = 1 a.e. and call it the volume element.

I n terms of local coordinates

(2) ω = i/Ίfdx1 Λ Λ dxm,

where g = det(gίj) a.e.

The Hodge star operator maps * : ΛP(R) -• Λm~p{R). If φ e ΛP{R), then

*P e Λm~p{R) is determined by its exterior products

(3) ψ A *φ = {ψ ί?)ω a.e.

for all ^ e ΛP(R). I t is easily seen that * gives an isomorphism and that

*1 = ω, *ω = 1.

IB. Weak exterior derivative. We extend the usual exterior deri-

vative d: &P(U)-* &P+1{U) by the following: if φ e ΛP{U) and there is z

Φ <Ξ ΛP+1(U) s u c h t h a t {-l)p\ φAdr=\φAT for e v e r y Ϊ<B &Tv~ι(U), t h e r

the ŵ flA; exterior derivative dψ oΐ ψ is ^. It is obvious that dψ exists i:

and only if in terms of local coordinates the weak partial derivatives (<pa)x

of ψa exist and are locally integrable for each multi-index a. I n the

affirmative case dφ = iψ^xidx1 A dxa. For a function /, i.e. a 0-form, df i,

locally fx*dx*.

For a continuous function the property of possessing locally integrabl*

weak partial derivatives in a parametric cube Q, say Q = [\xj\ <l\j = X

• ,m}, can be seen to be equivalent to / being absolutely continuou

along the lines in Q parallel to the α^-coordinate axis except for a set c

lines whose intersection with the coordinate hyperplane perpendicular t<

the α^-axis is of (m — l)-dimensional measure 0; here i ranges over 1, , m

https://doi.org/10.1017/S0027763000014756 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014756


MOSES GLASNER AND MITSURU NAKAI

For brevity we call this property ACL.

1C. Coordinate calculations. For functions /, g with weak exterior

derivatives in U we calculate the expression df A *dg in terms of local co-

ordinates. From IB we have dg = gx^dx1. Suppose that φ e A\U), ψ =

then to determine *y> e Λm~ι(U) we suppose that *φ = Σiφ^jdx1 Λ Λ

dxj~ι A dx J+1 A Λ dxm. For fixed k, using (12) and (13) we obtain

dxk A *9 = dxk {ψidxi)/~gdxι A Λ ^ m

and consequently

OtyW-l)*^ 1 Λ Λ ί / r = gikψι)/~gdx1 A Λ ί/αjm.

We conclude that

(4) *ρ = Σ l - V ' V W ^ i ^ 1 Λ Λ rfίB^"1 Λ dχJ+1 A Λ

Thus

(5) df A *dg = -j/Jg^'f^gxjdx1 Λ Λ dxm = gij!fx*gχj*l

In view of (1) and (5), we also see that

a.e. in B, where |grad/ | 2 =

Let U be an open subset of R. We call the set ^{U) of continuous

functions / with weak exterior derivatives such that df A *df is locally in-

tegrable in U the set of Tonelli functions on U. From the remarks made in

IB and (5) we conclude that in terms of local coordinates Tonelli functions

are characterized by being continuous and having weak partial derivatives

that are locally square integrable. If f,g<Ξ J7~{U) and V is a relatively

compact subset of U9 then the mixed Dirichlet integral of /, g over V is given

by

Dy{f, g) = \γdf A *dg

and we set Dv{f) = Dv(f9 /), the Dirichlet integral of / .

ID. The Laplacian The weak Laplacian of function / is formally

Δf = *d*df. In terms of local coordinates from (4) we have
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*df = Σ K - D ^ ' V ϊ ^ Λ ώ 1 Λ Λ dxJ-1 A dχJ+1 A Λ dx
j

and hence, formally,

d*df = y-ggίjfxήxjdx' Λ Λ dxm.

We concluse that

For simplicity of notation we shall use the symbols &{U), &0{U) instead

of &°(U), &\φ).

Since we are dealing with a O-manifold we take the definition of

Laplacian as follows: if for / e ^~{U)9 there exists a function λ e Lι{U) with

D{f9 φ) = —fa*l, for every φ e

then we set Δf = λ.

IE. The double. Let G be a region contained in i? with dG an

(m — l)-dimensional C^submanifold of R. We form the double ό of G across

dG. Then in a natural fashion (5 becomes a Riemannian manifold of the

sort considered here. More precisely, take two copies of G, say G and G'

Weld G and G' along dG by identifying corresponding points in dG and

dGf. The resulting set ό is the base space. Let j : ό-+ ό be the involution

associated with the doubling: a point p e G (resp. G') is sent to the cor-

responding point j(p) e G' (resp. G). We take 5 and 7(2?) as parametric

balls for ό when J3 is a parametric ball B in R such that B c G. If ^

is the tensor in i? for R, we assign the same tensor gμv to ^ and gμv © 7

for i(-β). For a parametric ball B in R with local parameter # such that

xk{6G Π5) = 0 and x\G Π 5) ̂  0 (i ψ A), we take 5 = ( 6 n 5 ) u ;(G n 5) as

a parametric ball for (5 with the local parameter y such that y = x in

G Π B and y* = - # * o j(i ψ k), and yk = xk o in ;(G Π 5). If ^ y is the

tensor in B for 7?, then we assign gμv to 2? by setting gμυ = gμv on G Π B and

&v = ft v ° i on i(G Π 5).

§2. The Royden algebra

In this section we introduce the basic properties of the Royden algebra.

Apart from providing a boundary that is very helpful in studying Dirichlet-
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finite harmonic functions or solutions of Δu = Pu, the various completeness

properties of the Royden algebra and the spaces related to it are fundamen-

tal in carrying out our analysis.

2A. Tonell i functions. We consider the set J7~{R) of Tonelli fun-

ctions on R. We first note that under the operations of pointwise min and

max, Π, U, ^~(R) is a vector lattice. I n fact since ^~(R) is clearly a

linear space, we need only show that if / e J7~{R), then \f\ e J7~(R). By

the remarks in IB we need only check that in any parametric cube \f\ is

ACL and |/|»* are locally square integrable. But these trivially follows from

the corresponding properties of / . Also if /, g e ^~(R), then fg e ^~{R)

because the ACL property is preserved by taking products of locally bounded

functions and since (fg)χ* = fgxt + gfx* we have that {fg)x* is locally square

integrable.

LEMMA. J^iR) is a vector lattice under Π and U and closed under multiplica-

tion. If / e J H # ) and in/1/I > 0, then 1// e

The second assertion follows by appealing again to the ACL charac-

terization and (1//)** = —fx*!/2.

2B. The Dirichlet integral. For a function / e ^~(R) we define its

Dirichlet integral over R by the directed limit

D(f) = DR{f) = \im^RDΩ(f)f

where Ω ranges over relatively compact subregions of R. We denote by

M(R) the subspace of J7~{R) consisting of functions / with D(f) < oo. For

f, 9 ^ M{R) the mixed Dirichlet integral

D(f, 9) = DR(f9 g) = \ima^RDΩ(ff g)

exists. The Royden algebra M(R) of R is the set of bounded functions in

M(R).

THEOREM. M(R) is an algebra and if f e M{R) with inf\f\>0, then

1//e M(R). M{R) is a lattice under Π, U and for any real number c

(6) D(f) = D(f Πc) + D(f U c).

Let a = sup | / | , b = sup \g\, and c = sup l/flf]. Observe that

d(fg) A *d(fg) = g*df A *df + f*dg A *dg

+ fg{df A *dg + dgA *df).
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Since we have

Λ *dg + dgΛ

we conclude that

c + D*(fg) ^ab + (ά*D(f)

A *dg\

Z()Dl(

bD*

In passing we observe that we have shown that M{R) is a normed

algebra under the norm sup |/[ + D*{f). Similarly we can prove

and thus if inf 1/1 > 0, then / GΞ M(R).

To prove (6) we note that it is sufficient to consider the case c = 0

because D(f) = D(f - c), D{f Π c) = D({f - c) Π 0) and D{f U c) = £>((/ - c)

U 0). Also note that D(f) = Df>0{f) + Df=0(f) + Df<0(f) where as D(/ Π 0)

= Df=0(f) + Z>/<0(/) and D{f U 0) = ^ / > 0 (/) + i>/=o(/). Thus all that is to be

proved is that Df=0(f) = 0.

To this end it is sufficient to prove that for a parametric cube Q c B

for some B e J ^ w e have A/=o)n<?(/) = 0. Assume Q = {#| |aj*I < 1}. By (5)

I Igrad / l 2 ^ 1 Λ Λ
(/=0)nQ

By the Fubini theorem

(/-o)πQ

£.. .£( J /J^1, , xηdxήdx1. . . dx^dx^1

( o ) ( i i )

Thus we have reduced the problem to proving \ φ'{t)2dt = 0 for an absolu-
J E

tely continuous function φ on [—1, 1] and £ = { / £ [—1, 1]| y>(0 = 0}. Let

Ex be the largest subset of E such that φ'{t) exists for / e £Ί. Set JT2 =

{ί e i ϊ i l ^ O = 0}. Let t0 be any point of EX\E2. Since 9?(/0) = 0 and φ'(t0)
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ψ 0, t0 is isolated in E. This shows that Et\E2 is countable and hence of

measure 0. For an absolutely continuous function E\Eγ is of measure 0 and

thus φ'(t)2 = 0 a.e. on E establishing the assertion.

2C. Topologies. Several modes of convergence can be introduced on

M(R). For a sequence {fn} we say / = C-lim fn if fn converges to / uni-

formly on compact subsets and / = B-\im fn if in addition {fn} is uniformly

bounded. We write / = D-lim /„ for lim DR(fn - /) = 0 and / = CD-lim fn

or / = BDΛim fn to indicate two types of convergence.

Under the norm ||/| | = sup \f\ + Dί/2(f), M(R) becomes a normed algebra.

2D. Completeness.

THEOREM. Let {fn} c M(R) and f a real-valued function on R such that f =

C-lim fn and D{fn) ;< K for some constant K < oo. Then f e M(R) and D (/, g) =

\\mD(fnk, g) for a subsequence {fnk} c {fn} and every g <E M(R).

The space Γ(R) of forms a e Λι(R) with I a A *a < oo is a Hubert space

under the inner product (α, β) = \ α Λ */9. Thus the sequence {dfn} c Γ(i?)

being bounded contains a weakly convergent subsequence {tf/nJ with limit

Consider any y> e ^ ϊ 1 " 1 ^ ) and note that I / W A : ^ ^ = — \ ί/ΛΛ Λ φ and

\ dfn, Λ φ — \ dfnt Λ *(*φ) -> \ a Λ φ. Thus \ /ί/9 = — \ « Λ 9 and we con-
JR JR JR OR JR

elude that / has weak exterior derivative df = a & Γ(R). But this means

that / <G M{R) and the assertions follow.
As an immediate consequence we have the

COROLLARY. (M{R), \\ ||) is a Banach algebra.

In fact, if {fn} is Cauchy with respect to the norm || ||, then there is

a bounded continuous function / = C-lim / n . Thus by the theorem / e M{R)

and D(f,g) = lim D(fnk, g) for a subsequence {/nJ. But since {fn} is Z)-Cauchy5

this weak convergence must hold for the sequence {fn} itself. Moreover,

given ε > 0 we select N such that D1/2(fn — fm) < ε/2k for n, rn>N, where

k = maxn{2>(/Λ), /)(/)}. Then lΊSn/>(/ - /») = ESn(2)(/ - Λ, /^ « Λ) + D{f,

f~fN)- D(fn, f - fN)) ^ ίϊmn />(/ - /„, fN - / n ) . But iϊ n^N then /)(/ -

Λ, fN - fn) < /)1/2(/ - fn)D^(fN - fn) < (&<*(/) + D»*(Jn))(J£) = ε.
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COROLLARY 2. If f = C-lim/n and {/„} is D-Cauchy, then / e M{R) and

f = D-\imfn.

2E. Approximation by smooth functions. The following is the key

to certain orthogonality properties and the relation between the Royden

algebra and Sobolev spaces to be discussed later.

THEOREM. M(R) Π J3f(R) is dense in M(R) with respect to || ||. Moreover,

if f e M{R) has supp f c Ω, where Ω is an open relatively compact set in R, then

the functions {fn} approximating f in the norm || || can be chosen with supp fn c Ω.

Let {φn}^ c c^R) be a locally finite partition of unity such that supp

φn is contained in some parametric ball Bn. Given / e M {R) and ε > 0,

we need only find ψnς=&0{Bn) such that \\φn - <pnf\\ <ε/2w, for then Σ ^ n

is the desired approximation. This can be achieved as in [22, pp. 29, 58].

Now suppose / e M{R) has supp f a Ω where Ω is a relatively compact

open set and an ε > 0 is given. Then there is an Ω' such that Ωr c Ω>

supβ\a/|/| < ε/3 and DΩ^{f) < ε/3. Cover Ω' by a finite number of parametric

balls {Bj} contained in Ω. Then as above we can find a ^ e ^ 0 ( U Bj)

such that supυBj\ge — f\ + DϋBj {ge — f) < ε/3. Thus ge has the required pro-

perties: \\ge — f\\ < ε and supp g& c Ω.

COROLLARY. If Ω is a relatively compact region with dΩ an {m — ϊ)-dimensional

C1 manifold, then M{Ω) Π <3ϊ{Ω) is dense in M{Ω), with respect to || | |.

For the proof we merely apply the theorem to the double Ω of Ω across

dΩ.

2F. Potential subalgebra. We denote by M0(R) the functions in

M(R) with compact support and by MΔ{R) the BD-closure of M0{R). Then

Mj{R) is a BD-closed subspace of M{R) which is also an ideal. Indeed if

f & Mj(R) and g ξ= M(R), then take {fn} c M0{R) such that f=BD-limfn.

Clearly {gfn} c M0(R) and gf = B-\\mgfn Moreover D(gf - gfn) <ς 2 sup^l/

-/nl2^(^) + 2 s u p ^ | / - / n I 2 ^ ^ ) + 2supΛ|^I2i)/e(/-/n), for any Ω c R.

T h u s Πϋin D(gf - gfn) < bDR\Q{g)9 w h e r e b/2 = supn(R\f - fn | 2 ) < oo. Since D(g)

< oo, we can make the right side arbitrarily small and hence gf = D-V\mgfn*

2G. The Royden boundary. We consider the maximal ideal space

jR* of the Banach algebra {M{R), \\ ||) and view R as being imbedded in R*.

Then R* is a compactification of R with the functions in M{R) extending
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continuously to R* and separating the points of R*. We call Γ = R*\R the

Royden boundary of R. It is easily seen that the functions in M{R) have con-

tinuous extended real-valued extensions to R*.

Further set

J = {p(Ξ R*\f(p) = 0, for every / e MΔ(R)}.

Then it is easily seen that Δ is a closed subset of Γ called the Royden har-

monic boundary of R.

By the Stone-Weierstrass theorem M(R) is dense in the set of contin-

uous functions C(R*) on R* with respect to the sup norm. This denseness

and the lattice property of M(R) allows us to transfer the Urysohn property

from C(R*) to M(R). That is, given Ku K2 disjoint compact subsets of R* there

is an f e M{R) such that f\Kγ = 0, f\K2 = 1 and 0 < / < 1.

Henceforth we shall use A to denote the closure of A in R* and dA

for the boundary of A in R.

2H. The space MΔ{R). We consider the set MΔ{R) of functions which

are CD-limits of functions in Mo.

THEOREM. Let f = CD-\ϊmfn, l/n} c M0{R). If either \f\ < oo on R or

Δψφ, then f e M(R) and f\Δ = 0.

If we know that | / | < °° on R, then by Corollary 2 of 2Ό we have

/ G M(R). If Δ = φ, then the proof is complete. Now assume only

that Δψφ. In view of the approximation theorem we may assume that

{fn\ c ^-0(/?). Then

is slso .D-Cauchy and

*- l i m TTΊ

Thus //(I + I/I) e M,(i?) and since Δ ψ φ, //(I + |/ | ) ψ 1. Thus / is finite

at some point of R and hence at every point of R. Again we conclude

that / e M(R) and in view of //(I + | / | ) | J = 0, we also have f\Δ = 0.

§ 3. The structure of Au = 0 on /J

We now point out that the harmonic functions on R satisfy the axioms

of Brelot. This is an efficient way of making the transition from the local
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results on uniformly elliptic differential equations in Euclidean space to

properties that we shall need for the harmonic functions on R.

3A. Definitions. Let U be an open set and u a, real-valued function

on U. Then u is harmonic on C/, u e H(U), if u e J?~(U) and

Du(u, ψ) = 0 for every 9

By using a partition of unity it can be seen that u & H(U) if and only

if it is harmonic in a neighborhood of every point of U. We denote by

HC{U) the subset of H(U) which have continuous extensions to dU.

3B. The Brelot axioms. Suppose a presheaf Ĵ f7 of continuous real-

valued functions are given on a locally compact topological space X. The

set of functions in J%? with domain Ω will be denoted by βt?Q. A rela-

tively compact region Ω is called regular if for any / e C(dΩ) there is a u e

^ Γ β such that tt is continuous on Ω and M | dΩ = f. Moreover, if / :> 0,

then &;>0.

The axioms of Brelot are that J%? forms a complete presheaf of func-

tions, with £??Ω a real vector space; there exists a basis for the topology of

X consisting of regular sets; given a region Ω in X, K compact in Ω and x0

e K, there is a constant M such that zt | ϋΓ< Mu(x0) for every u > 0, ft e ^ 7 f l .

(C/. [1], [8]).

A lower semi-continuous function 5 on Ω is superharmonic on Ω if for

every regular set V with V a Ω, s dominates any function u e .s f̂7 such

that s\dV>.u\dV. (Actually this defines a hyperharmonic function o n β . In

the cases we consider the two notions coinside and therefore we take the

liberty of making this loose definition.) A function s is subharmonic on Ω

if —5 is superharmonic on Ω.

We briefly summarize the results about J%? that we shall need. If 1 is

superharmonic on X then the weak maximum principle holds, i. e., a non-

constant superharmonic does not assume a negative minimum in the interior

of its domain. If 1 is harmonic on X, then the usual maximum principle

is valid. A boundary point x0 of a region Ω is regular for the Dirichlet

problem if and only if it is regular for the region Ω Π U where U is a con-

nected neighborhood of x0. This is Brelot's comparison theorem. Moreover,

the existence of a barrier function for x0 with respect to Ω Π U implies that

x0 is regular. For these results see Loeb [8]. In addition we shall use the

result of Loeb-Walsh [9] to the effect that positive or uniformly bounded
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12 MOSES GLASNER AND MITSURU NAKAI

families of harmonic functions are normal.

3C. The local results. J. Moser [11] has shown that the weak solu-

tions of { \Πf-gίjuxt)xj — 0 in Euclidean space satisfy Harnack's inequality.

Thus by piecing together parametric balls it can be seen that the third

axiom is satisfied by the sheaf £ί? of harmonic functions on the Riemannian

manifolds that we are studying. From Littman-Stampacchia-Weinberger [7]

we see that & forms a basis of regular sets for the topology of R.

3D. Regular regions. As we remarked before the regularity of x0

G dΩ with respect to the Dirichlet problem depends only on dΩ near x0.

Thus we may use the results of [7] to the effect that x0 e dΩ is regular for

the usual Laplace equation on Euclidean space if and only if it is regular

with respect to the uniformly elliptic equation (7). Thus subregions of R

with boundaries that are C1 submanifolds are regular for the Dirichlet pro-

blem. Also regions whose boundaries have slight irregularities such as finite

unions of parametric balls are regular for the Dirichlet problem unless two

are tangent to each other.

Henceforth a relatively compact region whose boundary is piecewise C1

will be called regular. We conclude with the observation that there is a

sequence {Ωn}l of regular regions with Ωn c Ωn+i and R = U Ωn. The se-

quence {Ωn}~ will be called an exhaustion of R. One possibility is to take

each Ωn to be a finite union of parametric balls, no two of them being

tangent to each other.

§ 4. The global structure of HD

In this section we present the essentials of the Royden theory for

Dirichlet-finite harmonic functions on R. It will be shown that these func-

tions are completely determined by their behavior on the harmonic boun-

dary J.

4A. Parabolicity. In order to carry out a systematic treatment of

Dirichlet-finite solutions of Δu = Pu on R we must rule out trivial situations,

namely R of parabolic type. To define this notion let {Ωn}H be an exhaus-

tion of R and take wn e M{R) with wn \Ω0 = 0, wn \R\Ωn = 1 and wn e H{Ωn\Ω0).

By the maximum principle wn^wn+ι and consequently the Harnack principle

gives w — B-\\m wn exists and w e H(R\Ω0). Strictly speaking the Harnack

principle only gives the uniform convergence of {wn} on compact subsets of
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R\Ω0. To establish the uniform convergence of {wn} on compact subsets of

R\Ω0 we form the double ό of R\Ω0 = G and extend each wn to wn on 0

by requiring wn = —wnoj. We see by the Harnack principle that {wn} con-

verges uniformly on compact subsets of ό and a fortiori compact subsets of

R\Ω0.

There are two possibilities either w > 0 or w = 0; in the latter case R is

•called parabolic and in the former hyperbolic. The symbol 0G is used for the

set of all parabolic Riemannian manifolds.

4B. Characterizations. The usefullness of the harmonic boundary

begins to appear.

THEOREM. The following are equivalent:

(i) R €= 0σ.

(ii) l e l i i ? ) .

(iii) Δ=φ.

For the proof we suppose R e 0G. Then w = BAϊm wn = 0. We note

that (1 — wn) G M0{R) and in view 2D Corollary 2 we must show that {wn}

is Zλ-Cauchy in order to conclude that 1 e MΔ{R). To this end, we have

D(ψ, Wn+p) = 0 for every ψ e &o(Rn+p\Ro) and by Theorem 2E we have

D(wn — wn+p, Wn+p) = 0, since supp wn — wn+p = Rn+P\RO. Thus 0 < D(wn — wn+p)

= D(wn) — 2D(wnt wn+p) + D(wn+p) = D(wn) — D{wn+P), which shows that {wn} is

D-Cauchy as required.

'Clear ly (iiy implies (iii). Now assume that Δ — φ. Then for every p e

j?*, there exists an fp e MΔ{R) such that /p(p) T^ 0. We may assume that

fp(p) > 1, fp^O since a constant multiple of f% e MΔ(R) has this property.

The compactness of i?* allows us to choose points pl9 , pN e i?* such

that Λ* = Ufί/i, I7i = {̂  e Λ*|/Λ(w) > 1}. The function / = ΣfΛ, e M,(i?)

has infΛ / > 1. Thus 1// e M and since MΔ{R) is an ideal of M, 1 = /// e

Mj(R). Thus there exists a sequence {#>*} c M0(i?) with 1 = BDΊimφk

Furthermore, as in 2F, it can be shown that for any g e M{R) we have

For fixed n and fc, Â ^n has support in RnQ\R0, for some w0. Thus in

view of 2.E we have D{φkwn, w) = 0. Consequently Z>(w;n, w) = HΠIA; D{φkwn, w)

= 0 and Z>(w) = lim D(wn, w) = 0. This means that w = 0 and the proof is

complete.

4C. Subregions with parabolic double. The harmonic boundary
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plays the following role discovered by Kuramochi-Kusunoki-Mori in deter-

mining the subregion of R whose doubles are parabolic.

THEOREM. Let G be a subregion of R with dG smooth such that G Π Δ = φ,

then ό, the double of G, is parabolic.

Since G Γ) Δ = φ for every j ) G G w e can find an fp e M/R) such that

fp(p) > 1, fp>0 on R. From the compactness of G we deduce the existence'

of points 3 ) h . . . , ^ ε G such that" 5 c Uf {q e R*\fPi{q) > 1}. Let {fn} c

M0(R) such that / = BD-lim fn. We denote by fn, f the symmetric exten-

sions of fn, f to ό. Since infβ/ > 0, we have 1// e M(0) and since {fn} c

Mo((?) and / = BD-\imfn we have 1 e M4((?). Theorem 45 now gives the

parabolicity of ό.

4D. OGC OZLD. We take a detour to establish the following result of

classification theory which is necessary in order to relate Δ to the behavior

of Dirichlet-finite harmonic functions.

THEOREM. If R is parabolic, then every function in HD(R) = H(R) Π ifiΓ(Z?)

is constant.

For the proof let u e HD{R). Take an exhaustion {Ωn} of R and t;Λ e

Λf(Λ) such that vn\Ω0 = «, vn|^Wn = 0, ^n e (Ωn\Ωo)' It is easily seen using

some of the reasoning of 4Λ and AB9 that i; = BD-\\m υn exists on R.

Set ur — u — v and for every positive integer m, &4 = (#' Π w) U {—m).

Clearly «' = .D-lim uή. On the other hand, 0 = D(um(l — wk), u'). Since R

e 0(?, Z>-lim(l — wk) = 1 and we conclude that D{u'my u
f) = 0 and in turn that

D(u') = 0. Since u'\Ω0 = 0, we conclude ur = 0, i.e., u = v. Finally D(u) =

-D(v, u) = limnZ>(Wn, «) = 0 and thus ft must be a constant.

4E. JEΓD-maximutn principle. The harmonic boundary is sufficiently

large from the view point of Dirichlet-finite harmonic functions to give the

following.

THEOREM. Let Ω be any subregion of R and u e HD(Ω). Suppose hmu(x)
x—>p

^ m for every p e dΩ U (Ω Π Δ\ then u < m.

For the sake of simplicity we may assume m = 0. If the theorem is

false, then we can choose a nonempty component F of the set {&>0}.

Also choose an ε > 0 such that a component Fr of {u > 2ε] Π F is nonempty.
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We construct a subregion G such that Fr c G, dG is contained in the open

set {0 < u < ε] and dG is smooth. Let [Ωn}°Z be an exhaustion of R with

Ωo Π G ψ φ, say. Let vn e M(G), the Royden algebra associated to G viewed

as a Riemarinian manifold, such that vn\dG Π Ωn — u Π ε, vn|G\(G Π J2Λ) = &

Π ε and #n e #(G Π ί?n). Then 0 < ^ w ^ ε and by the Harnack principle a

subsequence again denoted by {vn} converges uniformly on compact subsets

of G to a function υ harmonic on G. Moreover DG{υn — (u U ε), ι;n) = 0 and

thus 0^DG(vn — (u Π e)) = DG{u Π ε) — DG{vn). In view of Theorem 2Ό we

have I G M ( G ) .

It can also be seen that υ has continuous boundary values u Π ε = u

on dG. In fact fix an n0 and extend the functions vn — vnQ to the double G.

They are all harmonic on G Π ΩnQ and thus converge uniformly on compact

subsets of G Π ΩnQ, in particular, on dG Π ΩnQ-i Thus v — vnQ = 0 on dG Π

Ωno-i. Since n0 was arbitrary, the assertion about the boundary values of

v follows.

Now consider the function u — υ on G. By the construction it vanishes

on dG and has finite Dirichlet integral and thus it has an extension to ό

which is in HD(0). Moreover since supG& > 2ε, snpGu — υ > ε and conse-

quently is nonconstant. On the other hand the choice of Ff and the

hypothesis of the theorem gives Fr Π Δ = φ and a fortiori 0 Π Δ = φ. Thus

6 e θ G c 0HD which gives a contradiction establishing the theorem.

4F. The decomposition theorem. We shall call a compact set

Kc R* distinguished if K Π R = K and each component of 3(K Π R) is smooth.

Note that K may be empty set.

THEOREM. Given f e M and K a distinguished compact subset of R*, there

exist functions u e M(R) and g e MΔ(R) such that

1. f=u + g9U€Ξ HBD(R\K)

2. f\K=u\K

3. I^I|^\iΓ^max9(i,nie)uJ |/|

4. If f us superharmonic on R, then f>u.

We begin by choosing an exhaustion {Ωn} of R and defining un e M(7?)

by ^ n | # U (Ωn\K) = f and un e H(Ωn\K). Then the sequence {//„} is bounded

by sup I/I and contains a subsequence again denoted by {un} which con-

verges uniformly on compact subsets of R\K. As in 4ZΓ, by using the double

of R\K, it can be shown that [un] actually converges on compact subsets
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of R, i.e. u — B-\\m un exists. Also as before it can be seen that un is D~

Cauchy. Thus u = BDAim un e HD{R\K) and u\K Π R = /. The continuity

of u on R* and the hypothesis on K gives u\K = f. Set g = u — f and

#n = Kn — /• * Then gn e Λ/0(i?) and g = 2?ZMim #n, which gives # e MΔ(R).

Finally property 3 of u follows from Theorem AE and property 4 holds be-

cause f>.un if / is superharmonic.

4G. Duality. The definition of Δ is the set of common zeros of the

functions in MΔ(R). In the following theorem we show that MΔ{R) consists

of exactly those functions which vanish on Δ.

THEOREM. MΔ{R) = {/e M{R)\f\Δ = 0}.

Since any function in MΔ(R) vanishes on Δ we need only show that if

. / e M(R) we and f\Δ = 0, then / e M/Λ). To this end we apply Theorem

AF to / with K= φ. We obtain f = u + g, where g^MΔ{R) and uείHD(R),

u\Δ = 0. In view of Theorem 4£, « = 0 and the assertion is established.

4H. The Έvans superharmonic function. The Royden harmonic

boundary Δ gives a maximum principle for bounded superharmonic functions

on R.

T H E O R E M . Let F be a compact set in Γ\Δ. There exists a continuous positive

superharmonic functions s e M(R) such that s\Δ = 0 and s\F= oo.

Choose K a distinguished compact set in R* such that F is contained

in the interior of K. Let {Ωn} be an exhaustion of R and set Kn = K[Ωn.

Take / e M with /|/SΓ = 1 and f\Δ = 0 and let #w be the function u resulting

from Theorem AF when it is applied with K = Kn. By the maximum prin-

ciple 0^vn+1^vn and {vn} is D-Cauchy as before. Thus vo = BD-\imvn

exists and v0 e HBD(R). Since t;0 |J = 0, we have 2£D-limi>n — 0.

Fix a?o e R, and choose a subsequence {vnk} of {^} such that vnk(x0) <

αUU xy \Vnk) ^ ^ Oet

^4 = Σ3 ̂ nfc a n d υ = CZ)-limmt;4*
1

Clearly υ e M(i?) and is positive superharmonic on 7?. Since v Π 1 = -BZMim

ι?4 Π 1 and vi Π 1 e AC(/?), we have ί / Π l e Λt,(Λ). Thus t; Π 1|J = 0 and

hence υ\Δ = 0. To see that i; = oo on F note that v> v'm = rn on Kn D F ,
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COROLLARY. Let u be a subharmonic function bounded above. If hmx^pu{x)

^ m for every J J G J , then u ^m.

Let mr be any number with m < mr. The set F = [p e Γ\ϊ\mx_pu{x)>

m'\ is closed. Let 5 be as in the theorem and consider w = u — sjn. Then

\imx->pw{x) :< mr for every p ε Γ and w is bounded above. Thus the usual

maximum principle gives w^m1 and hence w^m. Take x^R arbitrary.

Then u(x) — s{x)ln ^ m and letting n -> 00 gives &(#) ^ m.

41. Potent ia ls in M{R). A positive superharmonic function on R whose

greatest harmonic minorant is 0 is called a potential.

THEOREM. Let p e M(R) be a positive superharmonic function. Then p is a

potential if and only if p e MΔ{R) or equivalently p\Δ = 0.

If p <Ξ M(7?) is a potential, then apply Theorem AF with / = p and

K = φ. Then p > w , ̂  e HD(R) and p | J = M|J. We must then have u^O

and hence p\Δ = 0.

On the other hand, suppose that p e MΔ{R). Let w e ϋΓ(7?) and 0 < ^

^ p. Then ^ is bounded above and \\mx^pu{x) — 0 for every j ) G j . Thus

by Corollary AH we have & = 0 which shows that p is potential.

§5. The Sobolev spaces

We introduce the Sobolev spaces for regular regions as an analytical

tool. In passing we indicate their connections with the Royden algebra

which sheds light on their natures. The key fact which we prove is that

the Dirichlet integral gives an inner product to make the Sobolev zero

space a Hubert space.

5A. Definitions. In this section we deal exclusively with Ω a regular

subregion on R. Consider the inner product

</, g> = D0(f, g) -

on &f(Ω). The Sobolev space Wlt2(Ω) is the completion of £gr(Ω) in the norm

HI/HI = </, fy and W\>2{Ω) is the closure of &0{Ω) in W^Ω).

LEMMA. W^(Ω) Π L~(Ω) Π C{Ω) = M{Ω), Wl>2{Ω) Π C{Ω) c MΔ{Ω) and W\>2

(Ω) Π L~(Ω) Π C(Ω) = MΔ{Ω).

In view of Theorem 2E a function / e M(Ω) (MΔ(Ω) resp.) is the limit
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of functions in <3f{Ω) (£&o{Ω) resp.) with respect to the norm ||I |II since

\ * i < oo. The proof in the other direction is carried out by showing, as
J Ω

in 2E, that any bounded continuous function / in Wlt2(Ω) is the limit of a

sequence {/„} c £&(Ω) with respect to the norm ||/|| f l = sup Λ | / | + Dl(f).

Now if / is a continuous function in Wl'2(Ω) then choose {φn} a£3ro(Ω)

and and exhaustion {Ωn} of Ω such that DQ{f — φn) < I/ft, DO\on(f) < I/ft and

ψn e £2fo{Ωn). Then again the procedure of 2E gives fn e &ro(Ω) with \\f —

ψn ~ /nil < I/ft and DΩ(fn) < 2/n. Thus D0(f -φn~ Λ) < 4/n and / = CZ)-lim

(9» + Λ), i.e., / <= M4(ί2). If / e L-fβ) also, then clearly / e

5B. Parametric cylinders. Cover Ω by a finite number of para-

metric balls JBt, , BN e ^ For φ, q^dΩ consider any C1 curve Γ c β

joining the two points. Suppose 7 is covered by Bil9 , Bu then let C

be an open neighborhood of 7 such that C c u -Bti such that C Π i2 is con-

nected and C is diffeomorphic to the cylinder

{x ςΞEm\0^

The set C together with the diffeomorphism are part of the atlas of R and

the tensor (#ίy) satisfies (1).

LEMMA. There exists a constant c such that

(7)

for every φ

Here of course we extend φ e &Ό(Ω) to ^ ( C ) by setting 9 equal to 0
1

q
φx\dxx where x —

0

(x1, , xm) and hence by the Schwarz inequality

φ\x) <a[φlidx1 <a[Ίgrad φ\2dxK
Jo Jo

Integrating this inequality over C gives

f φ2dx*£a2[ Igrad 9>|2rfα,
Jc Jc

with </# the Euclidean volume element. In view of the validity of (1) on

C we obtain
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5C The Dirichlet n o r m on Wl'2(Ω). The main result of this section

now follows.

T H E O R E M . D h / 2 { ) is equivalent to III III on W\'2{Ω).

In veiw of the definition of W\>2{Ω) it is sufficient to show the existence

of a constant c such that WφWltw^cDζφ), for every 9 ε ^ 0 ( β ) . To this end

we find a finite number of parametric cylinders CΊ, , Cn which cover Ω.

If we denote the constant of (7) corresponding to d by ct then we can

choose c = ( Σ M 2 . In fact H ^

§6. The Green's function

Using the properties of the Green's function in parametric balls we con-

struct the Green's function for regular regions and derive its properties.

We further develop the theory of potentials and the energy integral.

6A. The Po isson equation. Throughout this section we consider a

regular region Ω. Given a function f &Wlt2(Ω) such that there exists

λ e L\Ω) with

(8) -\φλ*l = DQ(φ, f) for every φ <Ξ &ro(f)9

then in ID we called 7 the Laplacian of / and set λ = Δf. Note that in view

of 2E if (8) is valid for φ e £&0(Ω), then it also holds for φ e MΔ(Ω). We

begin by proving the

THEOREM. Given any Λ e £&o(Ω), then there exists f e Λd(£?) m λ £to i /

= 2. 7?z addition f vanishes continuously on dΩ.

For the proof consider the linear functional φ-+— \ ^ * 1 on W\*2{Ω).

By the Schwarz inequality and Theorem 5C we have

φλ*l

for some constant cr. The linear functional being bounded on W\*2{Ω) with

respect to the Dirichlet inner product, which is a Hubert space inner pro-

duct again in view of 5C, implies that there is an / e W12(Ω) with Δf = λ.

Since in particular λ is continuous we deduce from [7, Theorem 2.4] that /

is continuous on parametric balls B contained in Ω and therefore on Ω.

From 5̂ 4 we see that / e Mj(β). We note that / e HD(Ω\S) where 5 = supp
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λ. Thus by Theorems 2H and AE we see that \fλ\ ̂ Lmaxs \fλ\9 in par-

ticular / e MΔ{Ω). We complete the proof by noting that the regularity of

dΩ enables us to find h e HD{Ω\S) such that h vanishes continuously on dΩ

and / — h e Mj(ί2\S). From AE we conclude / = h and thus / vanishes on

dΩ continuously.

6B. The Green's function for parametric balls. We extend the

definition of Laplacian as follows: given μ a finite Borel measure and

u e &{Ω), then μ is called the weak Laplacian of u and write Δwu = μ if

= \λdμ

for every λ e MΔ{Ω) such that Δλ *

For a fixed parametric ball 5 ε ^ there is a uniquely determined

function gB{x, y) on B x B satisfying the following three properties:

(ί) 9B{ , v) is superharmonic on B; gB{ , 2/) e H{B\{y}), vanishes con-

tinuously on dB, for every y & B and is continuous on B x B.

(ii) 0Λ(&, 2/) ~ \x — y\2~m for m > 2 and gB(xf y) ~ log |a& — y\~x for m = 2.

In particular gB{ , y) e L 1 ^) and if μ is a finite Borel measure on B, then

ι( , y)dμ{y) e LH-B).

(iii) ΔwgB{'9 y) = — ey, where εy is the unit point mass at 2/.

For the details see [20], [7], [5],

6G. The Green's function for regular regions. Let Ω be a regular

region and fix y e i? and a parametric ball 5 with y <= B c: B a Ω. Consider

the family F = F(Ω, y) = {s|si>0, 5 is superharmonic on Ω, s\B — gB( ,y)

is positive continuous superharmonic on B and bounded by a constant K}.

First we shall show that the constant K can be chosen so that F is

nonempty. Take B' c B such that y ̂  Br c B' a B. Set m = max3ΰ/^( , 2/).

Consider v e Hc(Ω\Bf) such that t;|<λ§' = m, ^[5i2 = —c, where c is a con-

stant chosen so as to make z;|d/?<0. Set s = min(#, gB) + c on B\B' and

extend the definition of s by setting s — υ -{- c on Ω\B and s = gB + c on Br.

Then if /Πs chosen to be sup s s\B — gB[ , y) we have s e F. At this point

we remark that ϋC can be chosen uniformly with respect to a small change

in y. This follows by observing the nature of the constants in the above

argument and the continuity of gB(x, y) on B x B.
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LEMMA. F = F(Ω, y) is a Perron family on Ω\{y}.

Suppose su s 2 eF, then min(si, s2)>0 and superharmonic. Moreover,

0:<min(si, s2)\B — gB(
m, y)^K. Thus F is downward directed. Let V be

a regular region with closure in Ω\{y] and sv the function equal to 5 on

Ω\V and on V, sv equals the harmonic function with boundary values 5.

Then s > sv and clearly sv ^ F if 5 e F.

Set gΩ(', y) = inf s( ). Then gΩ( , y) is called the Green's function for Ω

with singularity at y. Also we have gΩ(* ,y)&H(Ω\{y}) and since dβ is regular

for the Dirichlet problem gΩ( , y) has continuous boundary value zero on

dΩ. If we view Ω c Ω, the double of Ω, then we can extend gΩ{ , y) har-

monically across the boundary of Ω. Thus gΩ{ , 2/) has finite Dirichlet

integral over a neighborhood of dΩ. On the other hand gΩ{ , y) — gB(-, y)

e H{B\{y}) and 0;<<fo( , y)—gB( , y)^K. Thus it has a harmonic extension

to 5. Moreover, #fl( , y)>gB( , 2/).

We summarize the properties of go(x9 y) in the

THEOREM, (i) gQ{ , y) is superharmonic on Ω, gΩ(-, y) <B H(Ω\{y}) and

vanishes continuously on dΩ, for every y e Ω.

(ii) gΩ{x, y)~ \x —, y\2~m for m > 2 and gΩ{x, y)~log\x — y\~ι for m = 2.

In particular go( , y) e Lλ(Ω) and for any finite Borel measure μ on Ω, \gΩ( 9y)dμ

(y) e L'iΩ).

(iii) J w ^ ( , y) = —εy.

Properties (i) and (ii) have been verified in the course of the con-

struction. I n order to verify (iii) consider an φ e MΔ{Ω) with Δφ e ££?0(Ω).

Choose Bu B2 parametric balls such that Bx c B2a B2cz B and ψt e £&0(Ω\

Ei), Ψ2 e ^0(^2), ^2 e &Q(B2) with Jζo == ̂ ! + 9̂ 2. Now take p£ such that

^9i = Φu ψi e Mj(Ω\Bί) and ^ 2 ^ Mj{B2). For any positive integer n set #w =

te( , 2/) Π n). Then ^w e Λfj(fl) and Jβfo( , y)^9>i*l = limnj^n^^i*1 = —lim»I>x?

(fl̂ n, Pi)- For all sufficiently large n, in view of (ii), gn is harmonic on Ω\Et

and therefore J9(^, <px) = 0, i.e. Jflro(., y)dφx*l = 0. Thus J ^ ( , y)Δφ*l = jg β

( , y)Δφfl. Let §?3 e ^ Ό ( ^ ) such that p 3l#2 = 1. If we view Δφ2 e ̂ Ό ( ^ )

and φ2^M0{B) with supp φ2aB2, then we have —Ipβίfltoί t y) — gβi-, y))Δφ2

*1 = DB{φz{gΩ{ , y)-gB( , y), φ2) = £>B(flrfl( , 2/) - flb( , 2/), 92) = 0 since gΩ{., 2/)

— 9B(', y) is harmonic on i?. We conclude that Wa( , y)Δφ*l = \QB( , y)Δφ2
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*1 = —φ2(y) = ~φ{y) establishing the assertion.

Remark, For later reference we note that gΩ( , y) remains unchanged

if the constant K in the definition of the family F{y, Ω) is replaced by a

larger one. Consequently we may redefine F{y, Ω) by allowing the constant

to depend on s.

6D. Superharmonic functions. Consider s e M(Ω). Herve [5,

Theoreme 4] has shown that 5 is superharmonic on a parametric ball B c

Ω if and only if DB{s, φ)>0 for every φ e StJJS), φ>0. Thus by using

a partition of unity and the fact that superharmonicity is a local property

we see that s is superharmonic on Ω if and only if DΩ(s, φ)^0 for every φ e

φ>0. This fact combined with 6Λ gives the

T H E O R E M . Given ψ e ^0(Ω)9 Ψ>0, then there exists a potential gΦ e MΔ{Ω)

such that Δgψ = —ψ, i.e.,

(8) DΩ(gψ, φ) = \ φψ*l for every φ e &0(Ω).

and hence for every φ e MΔ{Ω).

The existence of gψ e MΔ(Ω) follows directly from 6Λ. Since ψ >: 0 we

see from (8) that DΩ(gφf <ρ) > 0 for c?ε &0(Ω), ψ > 0. Thus ^ is superhar-

monic and in view of Theorem 47, ^ is a potential.

6E. The continuity of Green's potentials. We digress from the

central theme to prove the following elementary

T H E O R E M . If ψ e L*(Ω), then the function I gΩ{ 9 y)ψ{y)*l is continuous on

Ω and vanishes on dΩ.

Fix x0 e Ω and B e ^ such that xo<= B a B a Ω. Also take 2? such

that there is a constant &' with 0fl(αs, y)^kf\x — y\m~2, if m > 2 or ^(x, 2/)

< — ifc' log I x — 2/| if m = 2 for x, y <E B (cf. Theorem 6C (iii)). For x e 5

and ε a small positive number we denote by •£,(#) the open Euclidean ball

with center at x and radius ε in B. Take ε > 0 arbitrary but so small that

c B. For any x e i?e(#0) we have

(9) ( , lflro(05f y)-gΩ(x0,
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where k comes from the bound no | φ | . If m > 2, then we have

\Xo~y\2~mdyt
Bt(x0)

\xt-y\*-*dy,
Bε(x0)

where the constant k" comes from (1) and dy is the Euclidean volume

element. Thus

(10) ( go(x09 y)*l<k'k"[ [rdrdω
jBe{χ0) JSmJθ

= -\-k'k"Γmε\

with Sm the boundary of the unit ball and Γm its area in Em. We also

obtain

\ , <Ja(x, 2/)*l<( ga(x, y)*l

\ \x - y\2~mdy = 2k'k"Γmε\

Here we used the fact that

Bε(x0) c B2e(x) c Bu(x0) for any x e Bε(x0).

If m = 2 instead of (10) and (11) we obtain

(100 [ gΩ(xo, v)*l ̂  k'k"π(ε2l2 - εHog ε)

and

(11') ( go(x9 y)*l ^ fc'fc'^e8 - 4ε2log 2ε).

Note that the constants in (9), (10), (11) or (10'), (11') are determined by

φ9 gΩ and the choice of B. Therefore, given any d > 0 we may choose ε > 0

so that

(12) ( ( \gΩ(χ,y)-go(χo,y)\\Ψ(y)\*Kδ

for any x e BΛ(x0). On the other hand, if x e Bε/2{x0), then |̂ β(ί», 2/) — ^(^0,

y)II^(y)l is a bounded function of y on Ω\Bt(x0) and therefore the bounded

convergence theorem gives
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(13) Urn ( \go(x, y) - go(x0, y)\\Ψ(y)l*l = 0.

From (12) and (13) we conclude that

lim ~ 9a(χ*, v))Φ(y)*i

and hence the limit exists and is 0. This is precisely the continuity of

ί 9( > y)Ψ(y)*l at x0 e Ω.
JΩ

We turn to the boundary values. Take a regular region Ωr such

that Ω c Ωr and any x0^ dΩ. Choose a parametric ball B with a ; o e 5 c

B c Ωr and satisfying the property relating to the Green's function of Ω' in

the preceding argument. Consider any ε > 0 so small that B4$(x0) c Ωf.

For any x e i?ε(#0) Π 42 we have the estimates

(

ί kkrk"π{ε2 - 4ε2log ε), if m = 2,

"" 1 2kk'k"Γmε\ if m > 2.

Here the constants are as above and thus given δ > 0 we can choose ε > 0

so that

(14) L(*)n/β ( α j ' y^yϊ\*1<δ

for any x e Bε(x0) f) Ω. If # e Bε/2(x0) Π i2, then &>(#, 3/)|^(y)| is bounded

on Ω\Bε(x0) and therefore by the bounded convergence theorem

(15) lim \ gΩ{x9 y)\Φ{y)\ = 0.

From (14) and ιl5) we conclude that

Πm|f gQ(x, y)ψ{y)*l < δ,
x->x01 J Ω

which shows that the limit exists and is equal to 0.

6F. The Green's function and potentials. As one already expects
from the classical setting we have the

THEOREM. For ψ e ^Q(Ω) and ψ>0
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(16) gφ(x) = \gΩ(x, y)ψ(y)*l in Ω.

Take any ψ e MΔ(Ω) such that Δψ e= ̂ 0 W . Then

(17) \gΩ(x9 y)Δφ(x)*l = -jprfε,, = -9(2/).

We multiply both sides of (17) by ψ{y) and integrate over Ω

{X, y)Δφ{x)ψ{y)*l*l = -

On applying Fubini's theorem the definition of weak Laplacian gives

, V)Φ(V)*1 = ~Φ(x).

On the other hand, for every ψ e MΔ{Ω) with Δψ G £2r*(Ω) we have \

= - D ( ^ , 9) = -J0P*1, i.e. Jwftj = -Φ.

Since λ = gφ— \gΩ(β, 2/)̂ (2/)*l is bounded and continuous on i?, Λ e L2(Ω).

From J w ; = 0 we obtain that [λΔΘ = 0 for every 0 e Mj(β) with Δθ e £&0{Ω).

In view of Theorem 6̂ 4 and the denseness of &Ό(Ω) in L2(ί2) we conclude

that ^ = 0.

6G. The energy of functions in SίJSί). The previous theorem gives

the following fundamental

THEOREM. If ψ, θ e ^ f l ( β ) , Φ, θ>b then

(18) A,fa,, flr#)

We have using (8) and (16) successively and Fubini's theorem

Da(9Φ, 9e) = ( g,Φ(v)*l

= J \gΩ(χ, y)Φ(v)0(χ)*i*i.
ΩxΩ

As an easy consequence of the symmetry to the Dirichlet integral we have

the

COROLLARY. gΩ{x, y) - gΩ{y, x).

6H The energy of functions in LW{Ω). In the case φ e &o(Ω), φ

https://doi.org/10.1017/S0027763000014756 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014756


2 6 MOSES GLASNER AND MITSURU NAKAI

> 0 , it was shown that gφ(x) = \ g{x, y)ψ{y)*l. We now extend the definition
J Ω

of gφ to L°°{Ω) by means of this formula.

THEOREM. For ψ e L°°(Ω), Ψ>0, set gψ{x) = [ gΩ(x9 y)Φ(y)*l. Then gφ e
J Ω

Mj{Ω), and

(19) D0(g) =

Moreover, if ψ e £?0{Ω), then

(20) j

From Theorem β^1 we also have that gφ vanishes continuously on dΩ.

Since Ω is relatively compact and ψ e L 1 ^ ) , we may choose a sequence

{̂ n} c ^o(fi) such that \\ψn — Φ\\mΩ) -•() and | ^ n | ^ f c , for some constant fc.

Using Theorem 6C (iii) we have the existence of the integrals

ffφ(%) = \ flrβ(», y)Ψ(y)*l, for every a e ί2

and

ΩXΩ

Moreover, since go{x9 y)φn(y)-* go{%, y)Φ(y) a.e. in Ω and the sequence is

dominated by kgo(x9 y) which is integrable, we have for every x e Ω,

(21) gΦn{χ) = J f l ^ ( » , y)Φn(y)*i -

and since 0fl(α5, y)ψn(y)φn{x) -+ gΩ(%, y)φ{y)φ{%) a.e. in ^ x ί2 and the sequence

is dominated by k2gΩ{x, y) which is integrable, we have

(22) \ogo(x, y)φn(y)φn(χ)*i*i -> \Qg0(χ, y)Ψ(y)φ(χ)*l*l.

O n the other hand by Theorem 6E, gΨn — gφn+p = gΦn-Φn+p and by Theorem 6F

y) - Φn+P(y)\\Φn[χ) - Φn+P(χ)\*ι*i
ΩxΩ
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which tends to 0 as n->oo uniformly with respect to p. Thus {gΨn} is D-

Cauchy and we conclude that there is an f ^Wl'2(Ω) such that Illsw —/III

->0 (cf. 5C). I n view of (21), f = gΦ a.e. in Ω and thus gφ e Wl>2(Ω). To

complete the proof we use 6E to show that gψ is continuous on Ω and

vanishes on dΩ. The fact that gφ e MΔ then follows from Lemma 5Λ.

§7. The Green's function for R

We now extend the results of the previous section to hyperbolic R.

This will be the main tool in studying Dirichlet-finite solutions of Δu = Pu

on R.

7A. The existence. Fix an arbitrary point y e R and choose an

exhaustion {Ωn} of R with y e ί20. Consider the sequence { n̂( , y)} where

ffon{'t V) is ^ e Green's function of Ωn with singularity at 2/. Since gan+1{ ,y)

\Ωn^F{Ωn, y), we have 0on+1( , y)>gao{*> v) Thus by the Harnack prin-

ciple flrΛ( , t/) = C-limflrflj|( , 2/) is either oo or gR{ , y) e H(R\{y}). A criterion

for the existence of #Λ( , ^) and the fact that it is independent of the choice

of y G R and {J2n} is given by the

THEOREM. R G 0G if and only if gR{ , 2/)

Suppose R e 0G. For any positive number c we may choose a regular

region Ωo containing y such that gR( , y)\Ω0>c. Then the sequence {wn}

(cf. 4̂ 4) constructed relative to the exhaustion {Ωn}^ has the property 1 = B-

HmWn on R. But by the maximum principle gon( , y)>cwn and letting w->

oo gives ^ , y)>c. Hence #Λ( , y) = oo.

Conversely assume i ? $ 0 G and choose a parametric ball B about the

point y. Take Ωo a regular region such that Ω0(zB and gB{ , y)\Ω0>2,

say. Set « = m2LXdύogB{ , 2/) and also b = max3ΰ w> w the function used to

define parabolicity with respect to the exhaustion {Ωn}°^. Cleary a>2 and

b < 1. Consider the function on B\Ω0 defined by

Note that awj(l — b) = β/(l — b) on dΩ0 whereas β/(l — b) — a + gB^ 0/(1 — 6) on d£0.

Also flw;/(l - 6) < «6/(l - ft) on 55 whereas Λ/(1 - 6) - α + gB = ab/{l - b). Thus

if we extend 5 to R by setting 5 = a/(l —• b) — a + gB on Ωo and s = awj(l ~ b)

on R\B, then s e F{Ωn, y) for every n. We conclude that gΩn{ , 2/) ̂  5 and
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hence gR{ , y) exists.

In view of the continuity of gB[x9 y) on B x B the constant can be chosen

so that s e F(Ωn9 y) for every y in a small neighborhood. Thus for all x9

y that are sufficiently close we have gB^gR^s and we conclude that gR(xf

y) ~ \x — 2/|2"m if m > 2 and ##(#, y) ~ —log Jα? — 2/1 if m = 2.

From the symmetry of #sn(#, 2/) (cf. 6G) we conclude that of gR{x, y).

Thus #Λ(ίc, y) — #β(#, 2/) is harmonic in each variable arid form the Harnack

inequality we conclude that it is continuous on B x B. Thus gR(x9 y) is con-

tinuous in the neighborhood of the diagonal on R x R and by the harmonicity

of gR(x9 y) in each variable and the Harnack inequality we have that gR(x9

y) is continuous on R x R. It can also be seen that gR[x9 y) is a potential.

7B. The energy of locally bounded measurable forms. We now
give the extension of Theorem 6H to the whole Riemannian manifold R.

THEOREM. Suppose i ? $ 0 G and P is a nonnegative locally bounded element of

Λm{R) such that

j Jflfc(», y)P(x)P(y)<oo.
RxR

Then [ gR( 9 y)P(y) e MΔ{R),

(23)
RxR

(24) Z)(l 0Λ( , y)P(y)9 φ) — \φP for

For the proof we take again an exhaustion {Ωn}°Z of R and since * P e

L°°(Ωn)9 we can apply the results of Theorem 6H. The functions f gou( *y)

P(y) are in MΔ{Ωn) and vanish on dJ2w, and therefore can be viewed as being

in M0{R). The monotone convergence theorem gives I \gQn(%, y)P(x)P(y) /

\ Wze(#, y)P(%)P(y) and therefore the numbers on the left form a Cauchy

sequence of real numbers. Thus by (19) the numbers D{\ gΩn{ , y)P(y)j

also form a Cauchy sequence.

On the other hand, by (20) we have

D(\ gΩnJ-, y)P(y)9 \ go%{-9y)P(y))

= ( ( ί flrβ.(*. y)P(y))P(χ)
JΩn+p\JΩn /
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and

But the right hand side of the above equalities are the same and conse-

quently

9on+P( , y)P(y) - \ gΩn( , y)P(y))
n + p vΩn /

= D(jΩjanJ., y)P(y)) - D§ggOn(', y)P(y)).

This shows that if gΰn( , y)P{y)\ is D-Cauchy.
I J Ω n J

The function I gR( , y)P(y) is continuous on R as can be seen by using

the same argument as in 6E. Also

and consequently by Dini's theorem the convergence is uniform on compact

subsets of R. Hence by Theorem 2H we have that \ gR( 9 y)P(y) e MAR).

To establish (24) we note that by (20)

for φ e &Ό(R) and every n with supp φ c Ωn, and let n->oo.

7C. Subregions with smooth boundary. In this number we con-

sider a subregion U of R with dU a (nonempty) smooth submanifold and

specialize the results of IB. Fix a | / G I 7 and take an exhaustion {Un}~ of

U with y e Uo. Then consider a function v e C(U) such that v|ί7o = 1, vI3£/

= 0, v e H(U\U0) and 0 ̂  v ̂  1. Such a function can be constructed by

using Theorem AF. Then clearly wn^v, where ww are the functions in AA

constructed relative to {ί/nlΐ and £/. Thus Z7Φ 0σ and we can speak of the

Green's function gσ[ , y) of £/.

Set m = max^0( , y). Then for every n, gun{'> y)^mv on Z7n\f70, by

the maximum principle. Letting n -> oo gives ^ ( , y)<mv on C/\ί/0 and this

in turn shows that gv( , y) vanishes continuously on dU.

THEOREM. If U is a subregion of R with dU smooth and P a nonnegative

locally bounded element of Λm(R) such that
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, y)P(χ)P(y) < oo.
ϋx'u

Then in addition to the conclusions of Theorem ΊB we have \ gσ{ , y)P{y) vanishes

continuously on dU.

The proof is carried out as in 6G.

§ 8. The notion of flux on R.

On Riemann surfaces the extension of Theorem AF to M(R) is achieved

by the use of Green's formula. The role that is played by Green's formula

is that it relates the "average" values assumed by a function on the boun-

dary of a region to its Dirichlet integral. In this section we introduce a

decive that serves the same purpose and indicate its applications.

8A. The Dirichlet integral of the harmonic measure. Let {Ωn}~
be an exhaustion of R. The functions wn in terms of which parabolicity

is defined (cf. 4Λ) are superharmonic on Ωn. Thus as in 6A, there is a

positive measure μn = μWn on Ωn associated with wn:

D(wn9 ψ) — \φdμn for φ e &Ό(Ωn).

Since D(wn, φ) is independent of the behavior of φ on ΩOf we must have

supp μn Π Ωo = φ. On the other hand, for every φ e £2?o(Ωn\Ωo) D(wn, φ) — 0

since wn e H{Ωn\Ω0). Therefore, supp μn c dΩ0. Moreover the norm of the

measure μn is given by \dμn = D(wn).

As we saw in 4B, the sequence {wn} is Zλ Cauchy and hence the mea-

sures {μn} are bounded. By the selection theorem we may choose a subse-

quence with weak *limit μ.

THEOREM. For any φ e Mά9 D(φ, w) = \φdμ. In particular i?eO G if and

only if μ = 0.

Take φ e MAR) and {<pk} c M0(i?) such that φ = BD-\ϊmφk. For a fixed

A, choose nk so large that supp φk c supp wWjfc. Then for every n> nk we

have

and letting n^>co gives 2>(^Λ, w) = I^^JK. NOW letting k-+oo gives the
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assertion.

8B. The decomposition of M(R).

THEOREM. Let K be a distinguished compact set in R* and suppose R is

hyperbolic if K — φ. For any f e M{R), there exists a unique pair of functions

h, g such that f = h + g, h e HD(R\K), g e MAR), g\R = 0. Moreover, D(h) <

D{f) and if f is sub harmonic, f>0, then f^Lh.

For the proof we consider first the function / ' = / U 0. Take {Ωn}^ an

exhaustion of R and let h'n e M{R) such that h'n = / ' on (R\Ωn) U K and h'n
e H(Ωn\K). Set gi = f — hή. Then as in preceeding arguments we see

that D(f) = Z>(Aί) + Z)(flfί) and also 0 < JO(Aί+p - Aί) = D{K) - D(hί+P), i.e.

{Â } is Z)-Cauchy.

Since {A«} is positive a subsequence again denoted by {hi,} converges

uniformly on compact subsets of H{R\K) to h' e H{R\K) or to oo. If i ί ^ ̂ ,

then each function hή — hή0 can be extended harmonically to dK Π ΩnQ and

hence converges uniformly in a neighborhood of dK Π £Wo-i to a harmonic

funcion which vanishes on dK Π ̂ no-i Thus C-limAn = A7 exists on R and

If /Γ = φy then i? is hyperbolic by hypothesis. Assume hr = C-lim h'n
By Theorem SH and the Schwarz inequality we have

j(Aί - f')dμ = Z)(-flrί, w) ^

This is a contradiction in view of the facts that / ' is finite on 3Ω0f D{w) is

nonzero, and μ is nontrivial. Thus hr ^ H{R) and #' = CD-limgή e Md(R).

This procedure applied to / r / = (—/) U 0 gives / " = h" = ̂ /; with the same

properties. Then f = (hr — h") + (g' — flf") = h + g is the desired decomposi-

tion. By Lemma 2H we have f\Δ = h\Δ. If h + g = f were another such

decomposition then h — h e HD(R\K) and h — h\J = 0 would give h = h in

view of Theorem 4£.

From the construction we see that h = CD-\\m {h'n — h'ή) and as before

we can deduce that D(f) = D(h'n - K) + D{g'n - g%). Thus D(h) < D{f) follows.

If f>0, then f = f, h = hr and if in addition / is subharmonic, then we

have f ^hr

n^K which gives f<h.

8C. A continuous linear functional on C{Δ). Note that the assoc-

iation of a function h e HD{R\K) to an / e M(Z?) is a linear process and
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set πκf = h. In case K = φ we merely write πf. In view of the maximum

principle (4E) if / = / on Δ for /, / e M(#) then JΓ/ = */. Thus if we

denote by M{Δ) the restriction of M(i?) to Δ then π is well-defined on M{Δ).

The maximum principle also shows that JΓ is a positive mapping and πl = 1.

For a fixed point x0 & R consider the positive linear functional / : M{Δ) -> R

given by πf(x0) and extend it positively using the Hahn-Banach theorem to

all of C(Δ), the continuous extended real-valued function on Δ. Since / I =

1 it is continuous on the bounded functions. We make the following

remark.

LEMMA. The dominated convergence theorem is valid for /. That is, if {hk}

c M(Δ) such that hk^ h pointwise on Δ, h e M(Δ) and there is a g e M(Δ) such

that \hk\^Lg, then /hk -> /h.

8D. The density of HBD{R) in HD{R). We shall employ the fun-

ctional analytic viewpoint of 8C to prove the

THEOREM. Every h e HD{R) is the CD-limit of a sequence {hk} c HBD{R),

where hk\Δ = (h Π k) U (—fc)[J.

Consider / t = ( A n i ) U (~fc) e M(7?). Then clearly A = ZMim/*. Also

set hk = JΓ/Λ and observe that π{h — fk)^h — hk. Thus D(h — hk) ^ Z>(A —

fk) -+ 0 and consequently the sequence {h — hk] is equicontinuous. I n view of

{h{x0) — AΛ(^O)} being bounded, we can find a subsequence {h — hk.} con-

verging uniformly on compact subsets of R to a function v. By Corollary 2

of 2D, υ - CD-lim (A — hki) and in turn we have that D{v) = 0, i.e. y is a

constant. Since \h\ e M(i?) and |AAJ ^ |A|, from Lemma 8C we have //^f

-> /A and therefore υ = 0. If an infinite number of terms remain in {h —

hk}\{h — hk.}, then we repeat the process. Thus h ~ CD-\Ίmhk.

8E. Another criterion for parabolicity. We give a criterion here

that is not strictly necessary for our purposes but is interesting in its own

right. The modulus τ of an open set U whose boundary is regular and

consists of two disjoint sets of components a, β is D'^w) where w is the

harmonic function on U with continuous boundary values I o n α and 0 on

β.

We now consider an exhaustion {Ωn}~ of R and set τtj equal to the

modulus of Ωi\Ωj. Also consider Wij e M(R) such that wtj\Uj = 1, Wij\R\Ωi =

0, Wij e H{Ωi\Ώj). Then τtj=zD-ι{Wij).
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From SΛ we know that there is a measure μtj on dΩj such that D(φ,

= \φdμij for every φ^£&0{Ωj). Consequently D(wij) = [dμtj andτ^j = \dμiJm

It was also shown then that there is a weak * convergent subsequence of

{μij}~=j+ι and parabolicity is equivalent to the weak * limit being 0. Here

we make use of the observation that the discussion in 8A is valid for any

choice of Ωo. By disregarding some elements of any exhaustion we can

always achieve the situation that for each j the sequence {μίj}%j+ι is itself

weak * convergent. Thus we can rephrase the result of 8A, by noting

that weak * limit 0 implies that limΛdμij = 0, as follows:

R e 0R if and only if l i m ^ y = oo for some j and hence for every j .

The modular criterion can now be given.

oo

THEOREM. There exists an exhaustion {Ωt}™ of R such that Σ τ ί ( H = oo if

and only if R e 0G.

If R e 0G, then let {Ωn} be any exhaustion. By the above remark we

can find an nx such that τ n i , 0 > l , an n2 such that τ» 2,n i^:l, and so on. If

we set n0 = 0, the desired exhaustion is {Ωn.}°°=ΰO.

Conversely assume that for an exhaustion {£*}, Στi f ί_i = oo. Denote by

Uij the function τ ^ ω o . Then clearly τtj = D{Uij). For any positive integer

n we have

Tn,0

For the sake of brevity we write here A( , •) instead oϊ DΩ.\Ω. x{ 9 ). Then

by the Schwarz inequality

Also A(«ίf<-i, tfn.o) = ^.oU.i-ife.o. But uiti-i\dΩo = τifi_i and ]dμn>0 = τ,J.

Thus A(»if<-i, »n,o) = Ti.i-i and the right side of the above inequality is

merely τ M _!. We conclude that limnτn,0 = °°, i.e. i ? £ θ G .

§ 9. The structure of Δu = Pu on R

Although the local results about Δu = Pu on R are available in the

recent work of M. and R. Herve [6], many of them can be derived from

the properties of Δu = 0 on R quite economically. In this section we carry

this out relying on the tools developed in §6. When this approach does
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not have the virtue of economy wτe do resort to quoting from the literature.

9A. Definition. We consider a locally bounded nonnegative measura-

ble 7 -̂form P on R. We denote by E(Ω) the subspace of M(Ω) with f / 2 P <

oo. For functions f,g^ E(Ω) the mixed energy integral over Ω of / and g

is defined by EΩ(f, g) = DΩ{f, g) + \ fgP. For the sake of simplicity we set

E0(f, f) = E0(f).

To an open set U c R we associate the space P(U) = {u G ^ " ( ί / ) ) ^

(w, 9) = 0 for every 9 <Ξ ̂ o ^ ) } , and by PC{U) the subset of P(U) with con-

tinuous extensions to dU.

We call the elements of the space P(U) solutions of Δu = Pu on U or

simply solutions on U. Clearly u is a solution on U if and only if it is a

solution in a neighborhood of every point of U. We consider the complete

presheaf ^3Γ = {P(£/)|C/ open subsets of R], and our first goal is to show it

satisfies the axioms of Brelot and 1 is a "superharmonic" function or

supersolution in this setting.

We shall need the following preliminary property of solutions.

LEMMA. Let u e PC(U) with U relatively compact, suck that u\du > 0, then

For the proof we suppose that the open set ^ = {x e U\u{x) < 0} is

nonempty. If φ e ^ Ό ( ^ ) , ^ ^ 0 , then 0 = E^p{u, φ) = D^(φ, u) + \ uφP.

Thus D^{φy u)>0 for 95 e ^ Ό ( ^ ) , ί°^0, and consequently ^ is superhar-

monic on < .̂ In view of ^ | 5 ^ =0, we have u\& ^ 0 , a contradiction.

9B. An integral operator. For a parametric ball B, consider the

operator τB defined by τBu(x) = \ gB(x, y)u(y)P(y). If we allow u to range

over C(B), for example, then by Theorems 6E and 6H, τBu e MΔ{B) and

vanishes continuously on 5^.

T H E O R E M . 77Z£ operator norm of τB can be made less than c, 0 < c < 1 by

choosing B small; i.e. \WBu\\L~(B)^c\\u\\L<»(B).

For B<EL& fixed we denote its center by x0 and consider the Euclidean

balls B2-
n(x) = Bn{x) of radius 2~n and center at x0 in &. Fix n0 such that

flrjβ(», y ) ^ 4 ' l a ~~ V\2~m if m > 2 or flrB(α, y)<—kr log |& — 2/| iΐ m = 2 for α, 2/

G BnQ{x0). Consider any n^n0l2 and a; G B2n(Xo)- Set A; = supB*P. If m >

2, then
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JB2n{χ0)
aB(χ,y)*ι

\x -y\2-m*l<kk'k"[ \x -y\2'mdy
) JBn(.x)

= kk'k"Γm2-*nl.

If m = 2, then we obtain

In either case by choosing n sufficiently large we can make

for every x e B2n{x^). We set £ = #2n(tfo) for such an n and note that
c a n d

(B) < \\u\\L~(B)\\τBl\\L~iB) ^

for every u

Observe that the theorem is true even if P>0 is not postulated. In

fact in the above proofs we only have to replace P by \P\ in the suitable

places.

9C. The operator / + τB We fix our considerations to parametric

balls of the sort given by the previous theorem. In this case TB = I + τB

gives a positive isomorphism of C(B) onto itself. The following will be im-

portant in establishing the local properties of solutions.

THEOREM. The operator TB = I + τB restricted to PC(B) gives an isomorphism

of PC(B) onto HC(B) which preserves order and TBu\dB = u\dB.

Let u e PC{B). Then by the previous theorem TBu e C{B) and TBu\dB

= u\dB. Note that TBu^^(B) since this is true for τBu e MΔ(B) (cf.

Theorem 6H). Suppose that φ e £^0{B). Then EB(u, φ) = 0 and therefore

DB{u, φ) - — \ uφP. Now
JB

DB{TBU, φ) = DB(U, φ) + DB(τBU, φ) = 0

in view of the above and formula (20). Thus TBu e HC{B).

That TB is a isomorphism is clear since TB acting on C(B) is. Also TB
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is obviously positive. If TBu>0, for u e PC(B), then u\dB>0 and by

Lemma 9Λ u^.0, showing that TB is order preserving.

Finally we must show that TB is onto. If υ e HC(B), then we can find

u e C(B) by the remark made at the beginning of this no. such that TBu

= υ. Since υ e J7~{B) and τβ& e MΔ{B), we must have & e ^~{B). More-

over, 0 = DB{u + τBu, φ) = DB(u, φ) + DB(τBu, φ) = EB{u, φ) by (20) for every φ e

Thus K e Pc(£).

9D. The axioms for Δu = Pu on 72. We may choose a countable

basis _^ f / for R consisting of parametric balls B for which 9B is valid.

THEOREM. The sheaf J3Γ satisfies the axioms of Brelot. In addition 1 is a

supersolution on R.

First we osberve that the sets in the basis &' are regular. In 9Λ we

showed that if υ e PC{B), v\dB>0, then v>0. If feC(dB), for £ e ^ 7 ,

then take u (= HC(B) such that u\dB = f. The function T~B

ιu <= PC{B) also

has boundary values / and therefore B is regular.

The result of Stampacchia [20, Theoreme 8.1] gives the Harnack in-

equality in parametric balls B and consequently the third axiom is easily

verified for Jf.

To see that 1 is a supersolution, take B e &' and υ e PC(B) such that

υ\dB = l. Note that v>0. Then l = TBv = v + τBv. Since τ^>:0, we

have ! / < l on 5.

The first half of the theorem is true also for not necessarily nonnegative

P by the remark made at the end of 9£.

9E. Comparison of J%? and J3Γ. Δu = 0 and Δu = Pu are related

as follows.

Let u be a positive harmonic function on a region £, let B e J ^ ' , 5 c

β, and let t; e PC(B) such that v|95 = u\dB. Then in view of Theorem 9C

we have ^ = TBυ — υ + r^ . Thus u>υ on 5 and we have shown that u

is a supersolution. Thus in the terminology of Loeb [7, p. 196J we have

" J T ^ : J Γ " , β t majorizes J Γ

A consequence of the above observation is that positive superharmonic

functions are supersolutions. Therefore if a point x0 e dΩ possesses a barrier

with respect to harmonic functions, then the same holds for solutions. Thus

the exhaustions {Ωn}~ that we consider consist of regions that are regular

for the Dirichlet problem with respect to solutions as well.
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Another result that we shall use is that a positive subsolution is sub-

harmonic.

9F. Supersolutions in M(Ω). The operator TB also leads to a char-

acterization of supersolutions as follows.

THEOREM. A function s e M(Ω) is a supersolution on Ω if and only if E{s,

for every φ

Suppose that E(s, φ)^0, for φ>0, p e &0(Ω). Take B e &' and u e

PC{B) such that s\dB = u\dB and we are to show s>u. Consider D{TBs,

φ) = D(s, φ) + D(τBs, φ) = D(s, φ) + \φsP = E(s, φ) >: 0 for f)G 3fjfi\ φ > 0,

in view of (20) and the hypothesis. Thus TBs is superharmonic on B and

hence TBs^TBu. Since TB is order preserving we have s>u on B.

Conversely suppose that 5 is a supersolution on Ω. Choose B e &' such

that B c ί2. By adding a suitable solution we may without loss of generality

assume that s\B^0. We claim that the function TBs is superharmonic on

B. In fact take any parametric ball B' with Bf c B. Let u e # e (£') such

that u\dB' = TBs\dBr = s\dBf + τBs\dB'. Note that since τ^s is superharmonic

on B (cf. 6G), τBs — u is superharmonic on 5 r and > 0 on dB'. Thus it is

^ 0 on 5 ' and hence a supersolution on 5'. On dB', τBs — u = — s and a

fortiori τβs--&:>— s on B>', i.e. TBs>.u on Z?7.

We now can assert that for 9 e &0{B), φ>0, 0 < /)(T55, 9) = £>(s, p)

+ D{τBs, φ) = E(s, φ). The inequality follows for any φ e &0{Ω), φ>.0 by

taking a partition of unity.

9G. The Dirichlet problem for Δu = Pu. That the Dirichlet problem

for Δu = Pu on a regular region Ω is solvable was a consequence of the

abstract theory of harmonic spaces. However, the following direct analytic

proof is also worthwhile mentioning.

Consider the operator τΩ defined by τΩu{x) = I gΩ{x, y)u(y)P(y) and TΩ

= I + τ0. If u e C(Ω), then

\τu(x)-τΩu(x')\<\\u\\L~{Ω)\ \gΩ{x, y)-gΩ(xf, y)\P(y)

and the same estimate as in 6E proves that τQ is a compact operator from

C{Ω) into itself. Suppose u = —τΩu. By Theorem 6H, τΩu e MΔ{Ω) and ΔτΩu

= — êP, i.e. u e Pc(ί2) and vanishes on 3i2. Lemma 9̂ 4 assures that u = 0.

This means that the null space of the operator TQ is of dimension zero.

From the well-known property of compact operators we are now able to
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conclude that TΩ is a bijective operator between C(Ω) and itself.

Let f^C{3Ω) be arbitrary. Choose v G HC{Ω) with v\dΩ = f. By the

surjectiveness of TΩ we can find a // G C(£) with T̂ w = #. Since ZJ

and τβw G Afj(β) we must have M G ̂ ( β ) . Therefore since J& = Δ(v —

= Pu and τΩu\dΩ = 0 we conclude that » G Pc(β) and u\3Ω = f.

§ 10. The space of Dirichlet-finite solutions of Δu = Pu

We begin our study of the global properties of Dirichlet-finite solutions

of Δu = Pu. In order to carry out our arguments we must exclude the

case where R G 0G. Since there are no Dirichlet finite solutions on such R

this is no restriction. After showing that the functions in this space also

satisfies the maximum principle on Δ, we show that it is a vector lattice

which is isomorphic with a subspace of HD{R). As in the harmonic case,

the bounded Dirichlet-finite solutions are dense in the Dirichlet-finite solu-

tions.

10A. PD(R) for parabolic R. We denote by PD(R) the space P(R) Π

M{R). We begin our study of PD{R) by showing that it is trivial if R is para-

bolic and after this we shall exclude parabolic manifolds from consideration

to keep our arguments from degenerating.

THEOREM. i?GθG implies that PD(R) = {0}.

Assume i?Gθ G and u G PD(R), uψO. We take an exhaustion {ΩnYZ of

R and assume that z/|,Qo>O, without loss of generality.

Take u°n G M{R) with u°n\R\Ωn = 0 and u°n\Ω0 = u, u°n(= P(Ωn\Ω0). By the

maximum principle ul¥l-^ui and thus £Mimz/n = ̂ ° exists. Moreover,

E{ul+P — tin, uί+p) = 0 in view of the fact that u°n+p — ul can be approximated

by functions in &0{Ωn+p\Ω0). Thus 0 < E(ul+p — ul) = E{ul) — E{ul+V) and

{ul} is £-Cauchy5 in particular Z)-Cauchy. The function u° belongs to M{R)

in light of Corollary 2 of 2D.

We consider v = u — u°. Then v G PD(R\ΩO), V\Ω0 = 0 and v Ψ 0. The

function υ' = υ U 0 is a subsolution on R\Ω0 and therefore E(υf, φ)^LO for

ψ e £έ?o{R\Ωo), p > 0 . Since t ' ^ 0 , we see that Z)(v', 9 ) ^ 0 for φ as above.

For any positive integer k set u'k = uf V\ k. Also take {ww} the sequence used

to define parabolicity (cf. 4A). Then D{wnv'k, v')<0 and since BD-limwnv'k
= v'k we have D(vk, v')^0. This in turn gives D(v')^0, because v' = D-lim

vk. Thus υr is a constant which must be 0 due to the fact that ί/|£?o = O.
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By symmetry we have {—v) U 0 = 0 and thus υ = 0, a contradiction.

10B. Riesz decomposition. We denote the bounded functions in

PD{Ω\ by PBD(Ω). The following is fundamental in our study.

THEOREM. If u e PD{R), {resp. PBD(R)), then there exist u+, w e PD{R),

{resp. PBD(R)), such that u+>0, u~>0, u = u+ — u~ and u+\Δ = u U 0, w\Δ

= (~u) U 0.

In view of lOA we may assume R φ 0G. Set ur = u U 0 and take {Ωn}™

an exhaustion of R. Consider the function uή e ffl{R) with Wnl̂ Wn = u',

uή^ P(Ωn)' Since ^' is a subsolution on i?, we have u'^uή^Luή+p. Since

^n ~ uί+p can be approximated by functions in ^0(Ωn+P) (cf. 2E) we conclude

E{uή — ̂ n+p, u^p) = 0. Thus Z)(«ί — uή+P, u'n+v) = J(Wn+P — «ί)«ί + P P^0 and

Thus the sequence {u'n\ is Z)-Cauchy. A subsequence of this positive se-

quence, again denoted by {uή} has the property that u+ = C-limu'n exists

and u+ e P(i?) or &+ = oo. Note that {ur — un] c Mo(7?) and is C-convergent

and i)-Cauchy. In view of R φ 0G and Theorem 2H we conclude that w'

— ί̂+ e Kί(i?), and also that ^ + e PD{R), u+\J = u U 0|J.

Starting with V = (—ίί) u 0 gives a sequence {&£} with u" = CZ)-lim w»

and ^~|J = (—M) U 0|Δ. Since ^|ί2n = u'n\Ωn — Un\Ωn, we have u = u+--u~.

If & is bounded, then clearly the process gives bounded u+, u~.

lOC PZ>-Maximum principle. The harmonic boundary also serves

to give a maximum principle for PD(R).

LEMMA. For any u e PD(R), there exist h+, h" e HD(R) such that u+ </z+,

u~<h~ and u+ — h+\Δ = 0 = «" —Λ"|J.

We merely apply Theorem 8B: set h+ = πu+. Then h+<= HD(R) with

&+— /ι+]i = 0. Since &+ is nonnegative it is also subharmonic and we have

u+^h+. Similarly for u~.

THEOREM. If u e PD(R), then inΐά(u Π 0) :<& <supj(^ U 0). 7/z particular

\u\ ^supj | «I .

We recall that by Theorem 4E we have h+ ^supΔh
+. Thus in view of
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lOB, we conclude that

U 0.

The other inequality follows by replacing u by — u.

10D. The lattice structures of PD{R). For u, v e P(R) we denote

by u V v the smallest element of P(R) which dominates u U v, if it exists,

and by u A υ the largest element of P(R) which is dominated by u Π v, if

it exists.

T H E O R E M . PD(R) {resp. PBD(R)) is a vector lattice under the operatoins V,

Λ. Moreover, u V υ\Δ — u U υ\Δ, u Λ υ\Δ = u Π

For the proof we take u e PD(Λ) (resp. PBD(R)) and note that M+ e

PD(i?) (resp. PBD(R)) has the property M + >ί<U0 and u+\Δ = u U 0|J (cf.

10B). Thus M V 0 exists and M + > ^ V 0 . Suppose ^ e J©(Λ) (resp. PBD(R))

with ur>u{j0. Then &'— & + | J > 0 and the maximum principle gives ur

^ ^ + . We conclude that u+ = u V 0. If «, υ e PD(Λ) (resp. PBD(R)), then

( » - ί i ) V 0 exists and we have κ V v = (M — ϋ) V 0 + v as in PD(R) (resp.

P£Z)(i?)).

The corresponding result for u'Λv now follows from u Λv = —{{—u) V

(—#)). The assertion about the behavior on Δ is obvious.

10E. The spaces PD{R) and HD(R). We continue studying the

structure of PD(R) with the following

T H E O R E M . There exists an isomorphism TR : PD{R) ->HD(R) with u\Δ—

TRu\Δ. TR is an isometry on the subspace PBD(R). If h e HD(R), h>0 with

(25) ( [gR(x9 y)h(x)P(x)h(y)P(y) < ooI S *
RxR

then there is a n e PD{R), with TRu — h. In particular, if

(26) j jflfcfo y)P{χ)P{y)<™

then TR : PBD{R) -• HBD(R) is onto.

We being by assuming that κ e PD{R), u > 0. Consider an exhaustion

{ί2n} of /? and the operators Γβ n^ = u + τΩnu, where τΩnu = \ gΩn{', y)P(y).

Then as in 9C we can verify that TΩnu^H\Ωn) and TθΛu\dΩn = u\dΩn.
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Since τΩn^u>.τΩnu we have TΩn+ϊu>TΩnu. Also observe that DΩn{TΩnu, τΩnu)

= 0 and consequently

DΩn(u) = DΩn(Tnu) + DΩn(τΩnu).

From \ \ gΩn{Xy y)u(x)P(x)u(y)P{y)^DΩn(u)^D(u) < oo we conclude that
ΩnxΩn

\ \gR(%, y)u{x)P(x)u(y)P(y) < oo.
RxR

Thus from 7B we have that τBu = [ gR( , y)u(y)P(y) e MΔ{R). Set TRu = u +
JR

τRu. Then D(TRu, φ) = D{u, φ) + D(τRu, φ) = E(u, φ) — 0 for φ e ££?o(R).

Thus TRu G HD{R) and T ^ J J = u\J. By virtue of τΩnu/ τRu we also have

Tώ n^ / TRu. If we extend TR to PD{R) using Theorem 10B we preserve

the property TRu\Δ = u\Δ. Therefore, by Theorems IOC and 4E we have

an isomorphism and an isometry on PBD{R).

Now suppose that h <= HD(R), h>0 and (25) holds. Take un e Pc(Ωn)

such that un\dΩn = h\dΩn Since ^ is a supersolution on R, un+1<un^h.

Thus C-lim^n = u G P(i?). Moreover, from (25) and u^h we infer

, y)u(x)P(x)u(y)P(y) < oo

and thus from Theorem 7B, τΛ^ = \gR{ , y)u{y)P(y) e MΔ(R). As in the first

part of the proof we see TΩnun = h\Ωn. Consequently, h — un = τΩnun and

letting n -+ oo gives h — u — τRu by the dominated convergence theorem.

Thus TRh = M.

If A e HBD{R) then either by Theorem 8B or Theorem 10B, h = h+ -

h" where /*+, A" e HBD(R) are nonnegative. If (26) holds, then (25) is valid

for h+ and hr and therefore there exist u+, u~ e PD{R) such that T1^"1" = A+,

Tie^~ = A"; hence TRu = h. Since w|J = h\Δ is bounded, by IOC we have

u e PBD(R).

In the process of proving the theorem we have shown the following which

we record for future reference.

COROLLARY. If u e PD{R), then

τRu = \flfΛ( , y)u(y)P(y) e Mj(i?)

5, y)u(x)P(x)u(y)P(y) < oo.
RxR
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10F. The density of PBD(R) in PD(R). We are now in a position

to establish one of our main results.

THEOREM. Every u e PD{R) is the CD-limit of a sequence {vk} c PBD{R)

such that υk\Δ = (u Π k) U (—k)\Δ.

We first treat the case u > 0. Then T ^ = u + TΛM is the function π&

e HD(R) (cf. 8B and lOE). Set uk = u Π k and choose an exhaustion {Ωn}

oΐ R. Let vkn& Pc{Ωn) such that vkn\dΩn — uk\dΩn. Since &# is a superso-

lution uk^.vkn>υktn+x and consequently ŷ  = 5 - l i m ^ ^ G P(i?). Set

(27) hkn = TΩnvkn;

then in view of the construction in 8B, a subsequence again denoted by

{hjcn} has £Z)-limit equal to λΛ =πuk. We observe that O^flrflΛ(a?, y)vkn(y)

<gii{%, y)uk{y)<gR{x, y)u{y) and τRu exists. Hence by the dominated con-

vergence theorem we obtain hk = vk + τRυk from (27). From 8D we know

that h = CD-limhk. Note that for fixed n, v f c n ^v f c +i t T O ^w, which gives t;fc

^Lvk+1^u a n d h e n c e C-lim vk— υ &. P(R) a n d v^u. Cons ider u —υk — (h —

hk) — τR{u — z/fc) and let k-> oo. We obtain u —v = —τR(u — t;). The left

hand side is nonnegative whereas the right is nonpositive and consequently

u = v.

Since τR(u — vΛ) e Mj(R), we have J9(A — /ί̂ , τR{u — vk)) — 0 and conse-

quently

D(u - υk) = Z>(A - A4) + D{τR(u - t;*)).

From (23; we have

D W M - υk)) = j jflfΛ(α?, y)(iί - υk)(x)P(x){u - vk)(y)P(y)
RxR

which converges to 0 by the monotone convergence theorem. We therefore

h a v e \imD(u — υ k ) = 0. N o t e t h a t υ k \ Δ = h k \Δ = u k \ Δ - u Π k \ Δ .

If z/ e PD(R) we use the Riesz decomposition u = u+ ~ u~. We can

find K l , {i;;} c PBD{R) with ^ + = CD-lirnvJ, ^ + = CD-\\mv'k and v+|J = u+ Π

A | J , ϋ ϊ = α " Π f t | J . B u t t h e n v k \ Δ = v^ - v l \ Δ = ((u U 0) Π k) — ((—u) Π k)\Δ

= (u Π k) I) (—k)\Δ and clearly u = CD-limvk which establishes the theorem.

We remark that the theorem shows that in case PBD(R) = {0}, then

also PD{R) = {0}.
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§ 11. The behavior of PD{R) on Δ

As it was already shown in Section 10, the harmonic boundary Δ is

significant in determining the structure of PD{R). We now sharpen this

notion by showing that the space PD{R) is determined by the subset ΔP of

P-energy nondensity points in Δ. We also give sufficient conditions for a

function in M{R) to be the boundary value of a PD{R) function and char-

acterize the situation when HBD(R) and PBD(R) are isomorphic.

11A. Relative classes. For U an open subset of R with each com-

ponent of dU smooth we cosider PD{U, dU) (resp. HD{U, dU)) of Dirichlet-

finite solutions (resp. harmonic functions) on U which vanish continuously

on dU. Also the subspace of bounded functions is denoted by PBD{U, dU)

(Iresp. HBD{U, dU)). If dU is nonempty, then each component of U is not

in 0G by 7C. Define gσ(x, y) to be gUt{
χ, V) if x> V G Uu where Ut is a

component of U and to be 0 otherwise. This defines gπ{xf y) on U.

The Riesz decomposition (10B) as well as a maximum principle on Δ is

valid for PD(U, dU) and PBD(U, dU).

THEOREM. If u e PD{U, dU), {resp. PBD{U, dU)) then there exist u+, w e

PD{U, dU) {resp. PBD{U, dU)) such that u+>.0, u~>0, u = u+ - u~ and u+\Δ Π

U = u U 0 |J, w\Δ Π U = (—u) U 0\Δ n 0. Moreover, u+^supJnΊjU U 0, W^

supJnϋ{—u) U 0.

Set u' = u U 0 and extend uf to all of R by setting it equal to 0 on

R\Ό. Then u' e M(i?). Take an exhaustion {̂ w}̂  of Λ and set Un = R Π

i2π. Consider the functions u£ e M(i?) with uή\R\Un = ^ r, «ί e P(Un). Since

&' is a subsolution on i?, we have u! -^LUn-^L uί+p. The ^ί being positive also

makes them subharmonic on R and therefore by Theorem 8B, π^^uί^uή.

On the other hand, π^u'n = π^uf. Thus u+ = C-lim«ί exists on CΛ In

view of π^u' > M + we can extend ^+ continuously to i? by setting it equal

to 0 on R\ϋ. Thus by Dini's theorem u+ = C-lim uή on R. As in 10B we

also have {uή} is D-Cauchy. Thus u+ = CXMim&w and by Theorem 2H we

have u+ — u'\Δ = 0. If we view u+, uf as only defined on U, then u+\Δ Π

£/ = «/M nί7.
From Theorem 4E we have π^u'^Lsupjrwπ^u' and therefore u+ ^

uϊ M'. The remainder of the assertion now follows easily.

In the course of the proof we have established the
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COROLLARY. If PD{U, dU) ψ {0}, then R φ 0G.

If M E PD{U, dU), uφθ9 then suppose u+ ψ 0, for example. We have

seen that πRXUuf>u+ and in view of the maximum principle 4E we conclude

that U Π Δ ψ φ, in particular Δ ψ φ.

11B. The canonical extension. In this number we associate a global

function to each element of PD(U, dU).

T H E O R E M . There is an isomorphism λ : PD{U9 dU) -> PD{R) such that u\Δ Π

Ω = 2u\Δf)Ω and λu\Δ\Ω = 0. In particular, λ is isometry on PBD{U, dU).

First consider the case u > 0. Setting u equal to 0 on R\U makes it a

subsolution on R. Consider an exhaustion {Ωn}~ of R and [vn] e M(R) such

that tfnl-ff\0n = u, vn e P(^n). Since & is a subsolution «^ι;n<tfn + 1 . On

the other hand each vn being a positive subsolution is also subharmonic.

Thus πu —TίVn^Vn and consequently v — CAimvn^ P{R). As in lOB we

can see that {vn} is D-Cauchy, and we have v = CD-\imvn. In addition, u —

v e MΔ{R). This gives u\Δ = v\Δ. Set λu = v and in view of 11A we may

extend λ linearly to all of PD(U, dU). If λu = 0, then u\U Π Δ = 0 and by

11A we have u = 0. The isometry of λ on PBD(U, dU) follows from 11A

and IOC.

llC. P-energy nondensity points. The subsets ΔP of Δ which we

proceed to define is the natural boundary for the space PBD{R). For a

neighborhood U* of a point p e Δ we set U = t/* Π R. A point p G Δ is a

P-energy nondensity point if there is a neighborhood U* of p such that

y)P(x)P{y) < oo
ϋx'U

where gu(x, y) is defined in 11 A. This property for open set U* shall be

called property (BD). Since the Green's function decreases with the region

U we may assume that each component of dU is smooth. We use the

symbol ΔP for the set of all P-energy nondensity points in Δ.

Our first observation is the

THEOREM. If u e PD(R), then u\Δ\ΔP = 0, consequently, \u\^L$λxpSp\u\.

We may assume that u > 0. Also suppose that p e Δ and u(p) > 0.

Then there is a neighborhood U* of p and a 5 > 0, such that u \ U* > 3. By
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Corollary 10E, oo > D(τRύ) = j \gu(x,y)u{x)P(x)u{y)P{y) > δ2^ \gu{x,y)P{x)P(y)
UxU UxU

11D. TXJ acting on PD{U, dU). Here again we assume each component

of dU is smooth. Then for every Uo a component of U we have gUo( , y)

vanishing continuously on dU0. We extend the definition of the operators

defined in lOE to PD{U) by setting Tuu\U0 = TUou and τυu\UQ = τUQu for

every component Uo of U. By Theorem 7C we see that τUou\dUo = 0. Thus

we have the

THEOREM. 7V gives an isomorphism of PD(U, dU) onto HD(U9 dU) with

u\Δ Π U = Puu\Δ Π 0. Tu is an isometry on PBD{U, dU). If h e HD(Uf dU)

with h>Q and

'*(*, y)h(x)P(x)h(y)P(y) < oo,
UxU

then there is a u e PD(U9 dU) with Tjjii = h. In particular, if U satisfies property

{BD), then Tπ : PBD{Uf dU)-+HBD(U, dU) is onto.

The proof is carried out as in 10E except that instead of appealing to

Theorem 7B we use Theorem 7C.

HE. Boundary values of PBD(R). Since we have seen every u e

PD(R) vanishes on Δ\ΔP, it is natural to ask whether every function in M(R)

which vanishes on Δ\ΔP is the boundary value of some function in PD(R).

To this end we prove the

THEOREM. Given an f e M(R) with s u p p / | J c z / P . There exists a u e

PBD(R) such that u\Δ = f\Δ.

For every p e supp/ |J , there is a neighborhood Up of φ with U% Π Δ c

ΔP and U% satisfies property (BD). The compactness of supp f\Δ gives a

finite number U\9 , U% of U%'s which cover s u p p / | i . The Urysohn

property (cf. 2B) and lattice property of M(R) allow us to find φu , φk
k

in M(R) with supp φt c U% and 2 φt = 1 on supp f\Δ. Set izRXU^tf = ^ G

HBD(Uί9 dUι)9 i = 1, , k. Since each 17? satisfies property (BD) from

Theorem l lD we have ut e PBD(Ui9 dUt) such that 7^.^^ = *<. We take the

canonical extensions λut of Mi and set u = 2 ί^ϊ e PBD(R).

The functions ^ has the required boundary values. In fact λut\Δ\Ui —

0 and λUt\Δ Π Ut = TΌUi\ΔUi = ht\Δ Π Ut = ψχf\Δ U Ut. Thus λut = φtf on
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Δ and hence u = f on Δ.

11F. An alternate characterization of ΔP. First note that ΔP is an

open set. Let j ) G j P and take U* a neighborhood of p such that U* (Ί Δ

<zΔP. Consider / e M(Λ) with /(p) = 2 and /|Λ*\£/* = 0, 0 < / < 2 . Then

supp/|zf c J P and Theorem HE gives u e PBD(R) such that #(p) = 2. By-

Corollary 10E we have f [gR(x, y)u(x)P(x)u(y)P(y) < oo. Set F*={j)G/?*|

#(p) > 1}. Then V* is a neighborhood of p and

(28) j j gR(x, y)P(χ)P(y) < oo
VV
j j

VxV

THEOREM, p e ΔP if and only if there is neighborhood V* of p such that

(28) holds for V.

If (28) holds for V, then in view of gR(x, y)>gv{x, y) we conclude that

V satisfies property (BD).

11G. Isomorphism of PBD{R) and HBD(R). An isometric isomor-

phism S : PBD(R) -> HBD{R) onto is called canonical if Su — u is a potential

for evrery u e PBD{R). In view of Theorem 41, S is canonical if and only

if Su — M|J = 0 for evrey & e PBD(R). We summarize our results by giving

the following criterion for the existence of a canonical isomorphism.

THEOREM. Tfer^ exists a canonical isomorphism S : PBD(R) -> HBD(R) if and

Only if there is a neighborhood U* of Δ with

J \QR{*> y)P(χ)P(y)< OO.J \
UxU

In case S exists it is equal to TR

If such a U* exists then by Theorem 11F, ΔP = J . We claim that T Λ :

PBD(R) -> HBD(R) is canonical. To this end we merely need to show it is

onto because we already know TRu\Δ — u\Δ (cf. 10E). Take an h e HBD(R)

and in view of Theorem H E we can find a w e PBD{R) with &JJ =

Consequently T Λ w|J = h\Δ and by Theorem 4E we conclude TRu = /?.

Conversely if a canonical isomorphism S exists, then Δ = ΔP because

every function in PBD(R) vanishes on Δ\ΔPy whereas for every point in Δ\

ΔP there is a function in HBD{R) which does not vanish there (cf. 4F).
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Therefore, again by Theorem HE we know that there is a function u e PBD{R)

with u\Δ — 2. The set U* = {p e 7?*|w(p) > 1} has the desired property since

\ \gR(%, y)u(x)P{x)u(y)P(y) < oo

(cf. 10E).

REFERENCES

[ 1 ] M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay,
1960.

[ 2 ] M. Glasner—R. Katz, On the behavior of solutions of Δu = pu at the Royden boundary, J .
d'Analyse Math., 22 (1969), 345-354.

[ 3 ] M. Glasner, Dirichlet mappings of Riemannian manifolds and the equation Δu = pu, J . DifΓ.
Equations, 9 (1971), 390-404.

[ 4 ] M. Glasner, Manifolds without Green's formula, (to appear).
[ 5 ] R. Herve, Quelques proprietes des sur solutions et sur solutions locales d'une equation uniformement

elliptique de la Lu = — Ύ\ -=—( Σ CLU-J^— ) = 0, Ann. Inst. Fourier, Grenoble 16 (1966),

241-267.
[ 6 ] R. Herve—M. Herve, Les functions surharmoniques associees a un operateur elliptique du second

ordre a coefficients discontinus, Ann. Inst. Fourier, Grenoble 19 (1968), 305-359.
[ 7 ] W. Littman—G. Stampacchia—H. Weinberger, Regular points for elliptic equations with

discontinuous coefficients, Ann. Scoula Norm. Sup. Pisa, 17 (1963), 43-77.
[ 8 ] P.A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier,

Grenoble 16 (1966), 167-208.
[ 9 ] P.A. Loeb—B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the

axiomatic system of Brelot, Ann. Inst. Fourier, Grenoble 15 (1965), 597-600.
[10] F.-Y. Maeda, Introduction to a potential theory on a differentiable manifold, Lecture notes, Kyoto

University, October 1968.
[11] J . Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.,

14 (1961), 577-591.
[12] M. Nakai, The space of bounded solutions of the equation Δu —Pu on a Riemann surface, Proc.

Japan Acad., 36 (1960), 267-272.
[13] M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17

(1960), 181-218.
[14] M. Nakai, The space of Dirichlet finite solutions of the equations Δu =Pu on a Riemann surface,

Nagoya Math. J . 18 (1961), 111-131.
[15] M. Nakai, On parabolicity and Royden compactifications of Riemannian manifolds, Proc. Inter-

national conference on functional analysis and related topics, Tokyo, 1969.
[16] M. Nakai, Royden algebras and quasi-isometries of Riemannian manifolds, Pacific J . Math, (to

appear).
[17] M. Nakai, Dirichlet finite solutions of Δu —Pu, and classification of Riemann surfaces, Bull.

Amer. Math. Soc, 77 (1971) 381-385.
[18] M. Nakai, Dirichlet finite solutions of Δu — Pu on open Riemann surfaces, Kόdai Math. Sem.

Rep, 23 (1971), 385-397.
[19] H.L. Royden, The equation Δu — Pu and the classification of open Riemann surfaces, Ann.

Acad. Sci. Fenn. Ser. AI 271 (1959).
[20] H.L. Royden, The growth of a fundamental solution of an elliptic divergence structure equation.

https://doi.org/10.1017/S0027763000014756 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014756


4 8 MOSES GLASNER AND MITSURU NAΉAI

Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford,
Calif. (1962), 333-340.

[21] L. Sario—M. Nakai, Classification Theory of Riemann Surfaces, Springer-Verlag, 1970.
[22] G. Stampacchia, Le probleme de Dirichlet pour les equations elliptiques du second ordre a coeff-

ficients discontinus, Ann. Inst. Fourier, Grenoble 15 (1965) 187-258.
[23] K. Yosida, Functional Analysis, Springer-Verlag, 1965.

https://doi.org/10.1017/S0027763000014756 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014756



