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In what follows small latin letters denote rational integers 
(whole numbers) and we write 

~ , , h h _̂ h 
S, = S (a) = a, + . . . + a = S a. 

h h 1 s i 

Let us consider the system of k equations 

(1) S_(a) = S.(b) (1 < h< k) , 
n n — — 

that is 

a + . . . + a = b i . . . + b , 
1 s i s 

2 2 2 2 
a j + . , . + a = b4 + . . . + b , 

1 s i s 

k k k k 
a, + . . . + a = bJ + . . . + b 

1 s i s 

These equations are obviously satisfied if the b are a permuta­
tion of the a ; such a solution we call trivial. We prove first 
that, if s < k , then all solutions are trivial. If s < k 9 we 
put a = . . , = a, = b = . . = b = 0 . Hence we mav take 

s+1 k s+1 k 
s = k . Then (1) implies that 

S a s ï b , 2 a a , = S b b , 
1 ù \ c 

S a ia2a3 = S b lb2b3' a r • % = V - b k 

Hence the b are the roots of the same equation of the k-th 
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degree as a re the a. Thus the b are a permutation of the a 

When s > k , t h e r e may be n o n - t r i v i a l so lu t ions . Let 
us w r i t e P ( k , 2 ) for the l ea s t s such that the equa t ions (1) 
have a n o n - t r i v i a I so lu t ion. We have p roved above that 

(2) P ( k , 2 ) > k + 1 , 

a r e s u l t due to B a s t i e n [ l ] . 

We m a y g e n e r a l i s e our p r o b l e m a l i t t l e . Le t us w r i t e 

h h h 
S_ = a + a . + . . . + a 

hu l u 2u su 

and w r i t e P(k, j) for the l e a s t va lue of s such tha t the set of 
k ( j - l ) equa t ions 

(3) S = S • = . . . = S ( K h < k ) 
h i h2 hj — ~ 

is soluble with no set a , , . . . , a a p e r m u t a t i o n of any se t 
l u su 

a t , . . . , a , u n l e s s u = v . C l e a r l y 
l v sv 

(4) P (k , j ) > P ( k , 2 ) > k + 1 . 

On the o the r hand, we can p rove by an e n u m e r a t i v e 
a r g u m e n t that 

(5) P ( k , j ) < | k ( k + l ) + 1 . 

C o n s i d e r a l l the s e t s of i n t e g e r s a , a , . . . , a such tha t 
1 2 s 

1 < a. < n (1 < i <: s) . T h e r e a r e n such s e t s . F o r e a c h 

such se t 
r* / i h 

s < S, (a) < sn , 
— h ~ 

and so t h e r e a r e a t m o s t 

k h k l k ( k + 1 ) 

II s n = s n 

h = l 
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different sets S,, . . . , S, . 
1 k 

I f 1 
k -k(k+l) 

(6) nS > (sïj)s n 

there is at least one set of values S . . . , S which corresponds 
1 k 

to at least s! i different sets (a . • . . , a ). Since there are at 
I s 

most sf. different permutations of any set a , . . . ,a , this 
1 s 

set of values S , . . . , S must correspond to at least j different 
1 k 

sets a , . • • , a , no one of which is a permutation of any other. 
1 s 

Hence, provided (6) is true, the equations (3) have a non-triviaL 
1 

solution. Now (6) is satisfied if s •=—k(kfl) + 1 and n is large 

enough; in fact, it is enough if n > s! js , 

We remark that, if any set {a. } ( l < i < s , l < u < j ) 

is a solution of (3), so is the set {t + a. } for any integer t , 
1U 

since 

« . v «̂  . h . h-m ^ 
S t + a.) = S ( ) t S (a.) . 

h i n m m i 
m = 0 

Hence we need not bother whether our a are all positive. 
iu 

For odd k , we can improve (5) to 

(7) P(k,j)<|(k2+3) 

as follows. Take s even and replace a , . . . ,a by 
lu su 

b , . . . , b j - b , - b , . . , - b 
lu 1 lu 2u 1 

- 8 . U ^ S . U 

Then S, = 0 if h is odd, and we have only to satisfy (3) for 
hu 

even h . An enumerative argument, similar to our earlier one, 
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1 2 
applied only to even values of h, shows that s > —(k 4-3} is 

enough and so (7) follows. 

For even k and j = 2, we replace a , . . . ,a by 
11 si 

c , c . . . , c , -d , -d , . . . , -d , 
1 2 s/2 1 2 s/2 

and a j . . . , , a _ by the negatives of these numbers. We 
12 s2 

require that 

s/2 s/2 
2 c. = S d. (h odd, 1 < h < k) 

i=l l i=l X 

and this leads to the result that 

P(k,2)< ~(k 2 + 4) . 

The enumerative method used to establish (5) and (7) 
does not, of course, exhibit actual solutions of (3) or of (1). 
On the other hand, if we can find actual solutions for any 
particular k, j and s, this value of s provides an upper 
bound for P(k, j). Much of the work in this field consists of 
finding actual solutions to (1) or to (3). 

It seems probable that 

(8) P(k,j) = k+ 1 (all j) 

and, in view of (2), it is only necessary to show that 
P(k, j) < k + 1, i. e. , to find a solution of (3) with s = k 4- 1. 
Gloden [3] gave elegant methods of constructing such a solution 
for k = 2, 3, 5 and any j , so that (8) is proved for these three 
values of k (see pp. 330, 331 of [4] for a slightly different 
presentation of Gloden' s constructions). Whether (8) is true 
for any other k is not known. 

The result 

(9) P(k,2) = k + 1 
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i s known for k < 9, a c t u a l so lu t ions of (1) be ing known for 
t h e s e k with s = k 4- 1. Let us w r i t e (1) in the fo rm 

(10) [ a i ( . . . , a s ] k = [ V . . , b s ] k 

Then it i s not difficult to show tha t , for any d , 

(11) [a , . . . , a , b +d, . . . , b +d] = [a + d, . . . , a + d, b , . . . , b ] 
1 s i s k+1 1 s i s k+1 

fol lows f rom (1). F o r e x a m p l e , [0, 31 = [ 1 , 2 ] and so , with 
1 1 

d = 3 f we get [ 1 , 2, 3 , 6] = [0, 3 , 4, 5] , that i s [ 1 . 2 , 6 ] 

= [ 0 , 4 , 5] . Cont inuing th i s p r o c e s s with d = 5, 7, 8, 13 , 11 in 

s u c c e s s i o n , we get so lu t ions of (10) for k = 3, 4, 5, 6, 7 and 
s = 4, 5, 6, 8, 8 r e s p e c t i v e l y . Thus (9) i s t r u e for k < 5 and 
for k = 7. Othe r so lu t ions have been found for k = 6, 8 ,9 
( see [4]). 

T a r r y and E s c o t t (c. 1910, see [2]) used t h i s me thod to 

p r o v e (in the obvious way) tha t P(k, 2) < 2 . A s a r e s u l t the 
whole subjec t i s usual ly ca l l ed the T a r r y - E s c o t t p r o b l e m . 
In fac t , P r o u h e t [8] announced in 1851 a c o r r e c t r u l e for finding 

a solut ion of (3) for any j and s = j . He gave no proof, but 
h i s is the kind of r e s u l t which is e a s i e r to p rove than to g u e s s , 
His r e s u l t w a s ove r looked unt i l L e h m e r [7] r e d i s c o v e r e d his 
solut ion (in a g e n e r a l i s e d fo rm) and gave a proof. A m o r e 
su i t ab le n a m e for the whole topic i s t h e r e f o r e the P r o u h e t -
L e h m e r p r o b l e m , but , of c o u r s e , many t h e o r e m s and p r o b l e m s 
a r e wrong ly n a m e d . 

P r o u h e t ' s t h e o r e m i s a s fo l lows. E x p r e s s e a c h n u m b e r 

k+1 
a (0 < a < j » 1) a s a " d e c i m a l " in the s ca l e of j . If the 

l e a s t pos i t i ve r e s i d u e (mod j) of the sum of the d ig i t s of a in t h i s 

s c a l e i s u, a s s i g n a to the set S c • Then t h e r e a r e j u s t j 

d i f ferent a in e a c h Q , and they m a y be t aken a s the 
k U k 

a. (1 < i < j ) in a so lu t ion of (3) wi th s = j . T h e r e a r e 
iu — — 

proofs of t h i s in [7 ] , [9] and [10] ; the l a s t - n a m e d con ta in s a 
fu l le r accoun t of the h i s t o r i c a l point . 
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It is simplest to prove a slightly more general theorem 
due to Lehmer, from which Prouhet* s resul t follows. Let us 
write 

S e u (0 < c. < j - 1) 
i = 0 * x 

and 

T(r) Z £ h . 
S c. =r(mod j) 

Consider A ( r , t ) = T(r) - T(t), which is clearly a homogeneous 
polynomial of degree h in \± , [i , . . . , |JL . If u = 0 , we have 

U x JK .K. 

j - i h 

T(r) -S | = T(t), A ( r , t ) - 0 . 
co c

k.r° 

Hence A ( r , t ) has a factor UL . Similarly, it has \x ? . . . , JJL 
k 0 k- 1 

as factors and so 

A ( r , t ) = uQ. . .{jLk F ( r , t ) , 

where F( r , t ) is a polynomial in the JJL., Hence, if h < k * 1 , 

we have A ( r , t ) =0 and so 

T(0) = T{1) = . . . = T(j- l ) ( l < h < k ) . 

If we now write \x. = j , all the values of £ a re different integers 

and we have Prouhet1 s resul t . 

A related problem a r i s e s in connection with the so-called 
"eas ie r " Waring' s problem. We shall require a solution of (1), 
viz. 

(1) S.(a) - S ( b ) (1 < h < k) , 
h h — ~ 
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such that 

(12) S ^ > ) 4 S , > > • 
k+1 k+ 1 

We w r i t e M(k) for the l e a s t s for which (1) and (12) a r e both 
t r u e . Of c o u r s e P(k, 2) i s the l e a s t s for which (1) i s t r u e . 

If P(k , 2 ) = k + l , then M(k) = P(k, 2). But , if we do not 
know tha t P(k, 2) = k + l , it i s s u r p r i s i n g l y difficult to p rove tha t 
M(k) = P(k , 2) , though one c e r t a i n l y e x p e c t s th i s to be so . 
O b s e r v e tha t , for any k, e i t h e r (i) P(k, 2) = P ( k + l , 2 ) or 
(ii) M(k) = P ( k , 2 ) . 

Hua [5] p roved tha t 

M(k) < ( k f l ) 
l o g | ( k + 2 ) 

log ( 1 + 1 / k ) 
+ 1 k k log k 

for l a r g e k, and he can i m p r o v e th i s to some th ing like 
1 2 
- k log k for l a r g e k . Th i s should be c o m p a r e d wi th the 

2 
upper bound [(k +4 ) /2 ] for P(k , 2). Hua1 s i ngen ious and 
e legan t proof, whi le s t i l l " e l emen ta ry 1 1 , i s m u c h m o r e e l a b o r a t e 
than the s i m p l e e n u m e r a t i v e proof of the r e s u l t for P(k, 2). 

War ing ' s p r o b l e m is to d e t e r m i n e g(k), the l e a s t va lue 
of s such tha t e v e r y pos i t ive n can be e x p r e s s e d a s a sum of 
s n u m b e r s f r o m the se t 

n , k k k 
0, 1 , 2 , 3 , . . . . 

In g e n e r a l (with poss ib ly a few e x c e p t i o n s ) , it is known tha t 

g(k) = 2 k + [ ( 3 / 2 ) k ] - 2 . 

We w r i t e G(k) to denote the l e a s t va lue of s such tha t e v e r y 
l a r g e enough n i s the s u m of s k - th p o w e r s . 

What I c a l l ed the " e a s i e r " Waring* s p r o b l e m (in [11]) is 
tha t of finding v(k) , the l e a s t va lue of s such tha t e v e r y 
pos i t ive n can be e x p r e s s e d a s a sum of s n u m b e r s f rom the 
se t 
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^ > ^k , k k k k 
0, 1 , 2 , 3 , . . . , - 1 , - 2 , - 3 , . . . . 

It i s " e a s i e r " in the s e n s e that v(k) < g(k) but , a s v(k) i s only 
known for k = 2 , it h a s not p roved to be e a s i e r in any o the r 
s e n s e . 

F i r s t 

and 

2 2 
2m = (m+1) - m - 1 

2 2 
2m + 1 = (m+1) - m 

Hence v(2) < 3. But 6 i s n e i t h e r the s u m nor the d i f fe rence 
of two s q u a r e s and so v(2) = 3. 

Again 

3 
n - n = n ( n - l ) ( n + l ) = 6t 

and 

3 3 3 3 3 
n = n - 6t = n - (t+1) - ( t -1) + 2t , 

3 
so that v(3) < 5. Since x = 0, 1 o r - 1 (mod 9), n u m b e r s of 
the f o r m n = 9u + 4 r e q u i r e 4 cubes at l e a s t , and so v(3) = 4 
or 5. 

T h e r e e x i s t a and b such tha t 

S h S h 
Z a = Z b (1 < h < k - 2) , 

i = l i i = l * ~ " 

^ k- 1 . _ ^ k- 1 
2 a. 4 Z b . 

l l 

with s ~ M(k-2) . Hence 

Z ( x + a . ) k - Z (x+b . ) k = Cx + D (C + 0) 
l . i 
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If no more than £ (k ,C) k-th powers represent any residue 
mod C, we have 

v(k) < £ (k ,C) + 2s = A(k,C) + 2M(k-2) . 

Lower bounds for v(k) can be found by considering congruences. 

Thus I showed [14] that 8 < v(4) < 12. Davenport 
improved this to v(4) < 11 and Hunter [6] improved it further 
to 9 < v ( 4 ) < 1 0 . But it is unknown whether v(4) is 9 or 10. 

For large k, this method is surpassed by the use of 
Vinogradoff1 s inequality 

G(k) < 6 k log k + (4 + log 216) k 

and the obvious inequality v(k) < G(k) + 1 . 
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