EQUAL SUMS OF LIKE POWERS
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In what follows srpall latin letters denote rational integers
(whole numbers) and we write

Let us consider the system of k equations

= S <h< ,
(1) 5,(a) = S, (b) (1 <h<Kk)
that is
a, + + a = b + +b ,
1 s ]
2 2 2 2
a,  + t a = b, + +b
1 s 1 s
k k k k
a, + +a = b, + + b
1 s 1 s

These equations are obviously satisfied if the b are a permuta-
tion of the a ; such a solution we call trivial. We prove first
that, if s < k; then all solutions are trivial. If s <k, we

put as+1 =. .. :akzb&H =... =bk=0. Hence we may take

s =k . Then (1) implies that

T a = Z b, = )
= 24122 102

"
4
o
o

z = X , =
a1a2a3 b1b2b3 a1 ak b1 bk

Hence the b are the roots of the same equation of the k-th
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degree as are the a. Thus the b are a permutation of the a.

When s> k, there may be non-trivial solutions. Let
us write P(k,2) for the least s such that the equations (1)
have a non-trivial solution. We have proved above that

(2) P(k,2) >k + 1,
a result due to Bastien [1].
We mav generalise our problem a little. Let us write

S = a h+ h+ + a h
hu  “Mu 224 su

and write P(k,j) for the least value of s such that the set of
k(j-1) equations

3 S =S . = ... =8 1<h<k
(3) hi h2 hj (1<h<k
is soluble with no set a1 s ,asu a permutation of any set
u
a, ,...,a_ , unless u=v . Clearly
iv sV
(4) P(k,j) > P(k,2) > k+ 1.

On the other hand, we can prove by an enumerative
argument that

(5) P(k,j) < %k(k-ri) +1.

Consider all the sets of integers a2 .,a _such that
s

R
1<a. <n (1 < i_f s). There are n° such sets. For each

-1 -

such set
h
<S <s s
s < h(a)__ n

and so there are at most
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different sets Si' ... ,Sk .

If 1
Ek(k+1)
(6) nsz (stj)s n ,

there is at least one set of values Si,. . ,Sk which corresponds

to at least s!'j different sets (a .,as). Since there are at

o

most s! different permutations of any set a a2 this

EE
set of values Si' R ,Sk must correspond to at least j different
sets a1, Ce ,as, no one of which is a permutation of any other.
Hence, provided (6) is true, the equations (3) have a non-trivial
solution. Now (6) is satisfied if s =%k(k+1)+ 1 and n is large

enough; in fact, it is enough if n > s!js

We remark that, if any set {a, } (1<i<s, 1<u<j)
iu - = - =
is a solution of (3), so is the set {t+ a, } for any integer t,
iu

since

h
Sit+a) = T (Ht"™s (@).
h i m m i

Hence we need not bother whether our a, are all positive.
iu

For odd k, we can improve (5) to

1.2
(7) P(k, j) < 5(k"+3)
as follows. Take s even and replace a, ,...,a by
1u su
b I ] s = » = 9 ety T
iu b_s u biu qu b_i_s u
2™’ 2™’

Then Shu =0 if h is odd, and we have only to satisfy (3) for

even h. An enumerative argument, similar to our earlier one,
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applied onlv to even values of h, shows that s 2%(k2+ 3) is

enough and so (7) follows.

F en k and j =2, 1 N /
or even nd j we replace a11 a51 by
» C_, ’ ’ -d ’ -d ’ T »
‘1 %2 “s/2’ "% 7% 4s/2
and CFPIRRRRL by the negatives of these numbers. We
require that
s/2 h s/2 h
z ¢, = z d (h odd, 1<h<Kk)
i=1 i=1

and this leads to the result that
1,2
P(k,2) < E(k + 4) .

The enumerative method used to establish (5) and (7)
does not, of course, exhibit actual solutions of (3) or of (1).
On the other hand, if we can find actual solutions for any
particular k,j and s, this value of s provides an upper
bound for P(k,j). Much of the work in this field consists of
finding actual solutions to (1) or to (3).

It seems probable that
(8) P(k,j) = k+1 (all j)
and, in view of (2), it is only necessary to show that
P(k, j) <k+1, ie., to find a solution of (3) with s=k+ 1.
Gloden [3] gave elegant methods of constructing such a solution
for k=2,3,5 and any j, so that (8) is proved for these three
values of k (see pp. 330,331 of [4] for a slightly different
presentation of Gloden's constructions). Whether (8) is true
for any other k is not known.

The result

(9) P(k,2) = k+ 1
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is known for k<9, actual solutions of (1) being known for
these k with s = k+ 1. Let us write (1) in the form

(10) [a1,...,a =[b,....,b ]

s]k 1 s k

Then it is not difficult to show that, for any d,

, y eee s = d,...,a +d,
(11) [ai, 2 b +d bs+d]k+1 [a1+ a_ d,b b

1 1’77 s]k+1

follows from (1). For example, [0, 3]1 =[1,2]1 and so, with
d=3, we get [1,2,3,6]2=[0,3,4,5]2, that is [1,2,6]2
= [0, 4, 5]2. Continuing this process with d =5,7,8,13,11 in

succession, we get solutions of (10) for k=3,4,5,6,7 and
s=4,5,5,88 respectively. Thus (9) is true for k<5 and
for k=7. Other solutions have been found for k=6¢,¢,9

(see [4]).

Tarry and Escott (c. 1910, see [2]) used this method to

k
prove (in the obvious way) that P(k,2) <2 . As a result the
whole subject is usually called the Tarry-Escott problem.
In fact, Prouhet [&] announced in 1851 a correct rule for finding

a solution of (3) for any j and s =jk. He gave no proof, but
his is the kind of result which is easier to prove than to guess.
His result was overlooked until Lehmer [7] rediscovered his
solution (in a generalised form) and gave a proof. A more
suitable name for the whole topic is therefore the Prouhet-
Lehmer problem, but, of course, many theorems and problems
are wrongly named.

Prouhet' s theorem is as follows. Express each number

a (Oé a< jk+1 - 1) as a "decimal" in the scale of j. If the
least positive residue (mod j) of the sum of the digits of a in this

scale is u, assign a to the set Qu. Then there are just j
different a 1in each Qu' and they may be taken as the

k k
aiu (1 <i<j ) in a solution of (3) with s =j . There are

proofs of this in [7], [9] and [10]; the last-named contains a
fuller account of the historical point.

197

https://doi.org/10.4153/CMB-1965-015-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-015-7

It is simplest to prove a slightly more general theorem
due to Lehmer, from which Prouhet's result follows. Let us
write

c.u (Ofcif_]-i)

T(r) = = gh .
= ciir(mod j)

Consider A (r,t) = T(r) - T(t), which is clearly a homogeneous
polynomial of degree h in Mgrbyse e oo by If B = 0, we have

T(r) = = £ = T(t), A(r,t) = 0.

Hence A (r,t) has a factor My Similarly, it has R S

as factors and so

A(r,t) = Bom oMy F(r,t),

where F(r,t) is a polynomial in the M- Hence, if h<k+ 1,

we have A (r,t) =0 and so
T(0) = T(41) = ... = T(j-1) (15h§ k) .

If we now write p. =j1, all the values of § are different integers
i

and we have Prouhet's result.
A related problem arises in connection with the so-called
"easier' Waring's problem. We shall require a solution of (1),

viz.

(1) 5.(a) = S (b) (1<h<k,
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such that

(12) Sieqld) 7 Sk+1(b)'

We write M(k) for the least s for which (1) and (12) are both
true. Of course P(k,2) is the least s for which (1) is true.

If P(k,2) =k+1, then M(k) = P(k,2). But, if we do not
know that P(k, 2) =k+1, it is surprisingly difficult to prove that
M(k) = P(k, 2), though one certainly expects this to be so.
Observe that, for any k, either (i) P(k,2) = P(k+1,2) or
(ii) M(k) = P(k, 2).

Hua [5] proved that

1
log ~(k+2)

2
M(k) < (kt1)| [—2—— 1+ 1 |~ k" log k
(k) < N 10 10 °8

for large k, and he can improve this to something like
1.2
-Zk log k for large k. This should be compared with the

2
upper bound [(k +4)/2] for P(k,2). Hua's ingenious and
elegant proof, while still '"elementary', is much more elaborate
than the simple enumerative proof of the result for P(k, 2).

Waring's problem is to determine g(k), the least value

of s such that every positive n can be expressed as a sum of
s numbers from the set

In general (with possibly a few exceptions), it is known that

k) = 25+ [3/2)5] - 2 .

We write G(k) to denote the least value of s such that every
large enough n is the sum of s k-th powers.

What I called the "easier'" Waring's problem (in [11]) is
that of finding v(k), the least value of s such that every

positive n can be expressed as a sum of s numbers from the
set
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It is "easier' in the sense that v(k) < g(k) but, as v{k) is only
known for k =2, it has not proved to be easier in any other
sense.
First
2 2

2m = (m+1) -m -1

and
2 2
2m+ 41 = (m+1) - m .

Hence v(2) < 3. But ¢ is neither the sum nor the difference
of two squares and so v(2) = 3.

Again
n -n = n(n-1)}(n+1) = 6t
and
n =n -6t =n - ('c+1)3 - (t-1)3+ 2t3 ,

3
so that v(3) < 5. Since x =0,1 or -1 (mod 9), numbers of
the form n =9u+ 4 require 4 cubes at least, and so v(3) =4
or 5.

There exist a and b such that

S S
h h
X a, = Z b, (1<h<k-2),
. 1 1 bl -
i=1 i=1
k-1 k-1
> a + Z b,
1 1

with s = M(k-2). Hence

Z(x+ai)k - Z(x+bi)k = Cx+D (C#£0).
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If no more than A(k,C) k-th powers represent any residue
mod C, we have

vik) < A(k,C) + 2s = A(k,C) + 2M(k-2) .
Lower bounds for v(k) can be found by considering congruences.
Thus I showed [11] that 8 <v(4) < 12. Davenport
improved this to v(4) < 11 and Hunter [6] improved it further

to 9 <v(4) < 10. But it is unknown whether v(4) is 9 or 10.

For large k, this method is surpassed by the use of
Vinogradoff' s inequality

G(k) < 6 klog k+ (4 + log 216) k

and the obvious inequality v(k) < G(k)+ 1.
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