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Methane (CH,) production is a ubiquitous, apparently unavoidable side effect of fermentative fibre digestion by symbiotic
microbiota in mammalian herbivores. Here, a data compilation is presented of in vivo CH, measurements in individuals of 37
mammalian herbivore species fed forage-only diets, from the literature and from hitherto unpublished measurements. In contrast
to previous claims, absolute CH, emissions scaled linearly to DM intake, and CH, yields (per DM or gross energy intake) did not
vary significantly with body mass. CH, physiology hence cannot be construed to represent an intrinsic ruminant or herbivore body

size limitation. The dataset does not support traditional dichotomies of CH, emission intensity between ruminants and
nonruminants, or between foregut and hindgut fermenters. Several rodent hindgut fermenters and nonruminant foregut
fermenters emit CH, of a magnitude as high as ruminants of similar size, intake level, digesta retention or gut capacity. By
contrast, equids, macropods (kangaroos) and rabbits produce few CH, and have low CH,: CO, ratios for their size, intake level,
digesta retention or gut capacity, ruling out these factors as explanation for interspecific variation. These findings lead to the
conclusion that still unidentified host-specific factors other than digesta retention characteristics, or the presence of rumination or
a foregut, influence CH, production. Measurements of CH, yield per digested fibre indicate that the amount of CH, produced
during fibre digestion varies not only across but also within species, possibly pointing towards variation in microbiota
functionality. Recent findings on the genetic control of microbiome composition, including methanogens, raise the question about
the benefits methanogens provide for many (but apparently not to the same extent for all) species, which possibly prevented the
evolution of the hosting of low-methanogenic microbiota across mammals.
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Implications

This work reviews existing data on in vivo methane emissions
in mammalian herbivores, demonstrating no constraint
of methane physiology on body size, and no consistent
difference between ruminants and nonruminants, or
between foregut and hindgut fermenters. However, it singles
out three groups — horses, kangaroos and rabbits — as model
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animals in which to investigate adaptations for low methane
emissions.

Introduction

Methanogenesis is ubiquitous

The presence of methanogenic archaea appears to be nearly
inevitable in the digestive tracts of animals. Methanogenesis
has been reported in a wide array of arthropods (Hackstein
and Stumm, 1994) and in the faeces of a large number of
vertebrates, including not only herbivores, but also carnivo-
rous reptiles and myrmecophageous mammals (Hackstein
and Van Alen, 1996; Lambert and Fellner, 2012). Reports
stating that various vertebrate groups do not produce methane
(CHy) or do not harbour methanogens were met by opposite
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evidence. This includes the ostrich (Struthio camelus) (Swart
et al, 1993; Miramontes-Carrillo et al.,, 2008; Matsui et al.,
2010), kangaroos (Dellow et al., 1988; Vend| et al., 2015),
mammalian carnivores (Hackstein and Van Alen, 1996;
Middelbos et al, 2008; Tun et al, 2012), sea cows (Marsh
et al, 1978; Goto et al, 2004), colobus monkeys (Bauchop
and Martucci, 1968; Ohwaki et al., 1974) and arvicoline
rodents (Hackstein and Van Alen, 1996; this study).
Supplementary Material Table S1 gives an exemplary
overview over mammal species in which CH, emissions or
methanogen presence has been detected. It generally
appears prudent to assume that all mammals harbour some
methanogens, and produce some CHg4, until consistently
proven otherwise. Hence, differences between species are
most likely only of a quantitative nature.

Why harbour methanogens?

The likely ubiquitous presence of methanogens in digestive
microbiota raises the question about their value for the host.
Is their presence the consequence of a convergent adaptation
of herbivores in the sense that they provide an adaptive
advantage? Or can their presence simply not be avoided
because the host animal does not have the means to control
the composition of its microbiota? In trying to answer these
questions, the loss of ingested energy via CH4 and the func-
tion of methanogens as efficient hydrogen (H,) removers
need to be weighed against each other.

In humans, the presence of methanogens/CH, emissions is
linked to longer digesta retention and higher human body
mass (BM) (Nakamura et al., 2010), suggesting that metha-
nogens improve the digestive efficiency of the gut micro-
biota. The presence of CH, delays peristaltic action in the
exenterated dog or guinea pig small intestine (Pimentel
et al, 2006; Jahng et al., 2012). For the large intestine —
the main site of microbial action in monogastric species —
no direct in vitro effect of CHy, but a passage-accelerating
effect of H,, was demonstrated in guinea pigs (Jahng
et al,, 2012). By removing H,, methanogens might thus pre-
vent expeditious gut clearance. In mice, the presence of
methanogens led to a more efficient carbohydrate digestion
and higher body fat stores (but not higher BM) at similar food
intakes, compared to animals without methanogens or those
inoculated with a sulphate-reducing bacterium as an alterna-
tive H, sink (Samuel and Gordon, 2006). In rats, reducing
methanogens led to a less efficient use of carbohydrates,
but no change in BM over 6 weeks (Yang et al, 2016).
Reducing methanogens/CH, emissions in humans has been
associated with a decrease in digesta retention (Ghoshal
etal., 2018). Accordingly, the main mode of action of metha-
nogens appears to be H, removal that facilitates a higher rate
of acetate production than with any other H, sinks, and a
putative increase in digesta retention. Concerns about
human obesity and constipation notwithstanding, the pres-
ence of methanogens in monogastric animals could be inter-
preted as facilitating an efficient resource use.

Most studies on CH, in mammals stem from domestic
ruminants, where CH, is, by contrast, mainly considered
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an unavoidable, unwelcome loss of energy and contribution
to greenhouse gas emissions. As in humans, intra-specific
variation in CH,4 production in ruminants has been linked
to digesta retention: animals with longer digesta retention,
either due to more voluminous rumens at similar intake,
or due to lower intake at uncontrolled rumen capacity, gen-
erally produce more CH,4 per ingested DM (Pinares-Patifio
et al, 2003; Goopy et al, 2014; Hammond et al,, 2014;
Barnett et al., 2015; Cabezas-Garcia et al., 2017). Here, how-
ever, it is the retention time that is considered the cause,
where more time available is considered responsible for more
fermentative digestion with an ensuing increased CH, pro-
duction. When manipulating digesta retention by other
means than varying intake, namely by the addition of
weights into the rumen, a shorter retention time in the rumen
was correspondingly associated with a lower CH4 production
(Okine et al., 1989). On the other hand, when manipulating
the CH, available in the rumen and accounting for variation
in food intake in a cross-over study, a higher presence of CH,
was associated with shorter retention and increased motility,
possibly indicating a mechanism that aims at keeping losses
at bay (Dittmann et al., 2016). These findings apparently con-
tradict those made in monogastrics. From settings without
cross-over design, no effect of CH,4 inhibition on digesta
retention was reported (Nolan et al, 2010; Knight et al,
2011). Evidently, more work is required to understand the
effects of CH, on peristalsis and digesta kinetics in ruminants.

In ruminants, the absence of methanogens in gnotobioti-
cally raised animals (Fonty et al, 2007), or the chemical
inhibition of methanogenesis, do not appear to have evident
negative effects. Although on roughage diets food intake
may be reduced, this does not translate into BM losses,
but may, on the contrary, be linked with higher feed conver-
sion efficiency (McCrabb et al,, 1997; Hristov et al,, 2015;
Dittmann et al., 2016). However, natural variation in residual
BM gain or residual feed efficiency was not related to CH,
production (Freetly et al, 2015; McDonnell et al., 2016;
Alemu et al., 2017), and selection for high feeding efficiency
might even be associated with increased CH, yields (Flay
et al, 2019). Yet, CH, inhibition has been reported to facili-
tate higher milk or milk protein yields (Abecia et al., 2012;
Hristov et al., 2015). Therefore, the presence of methanogens
in ruminants is considered somewhat similar to the presence
of protozoa — most likely unavoidable, but with no or only
minor disadvantages when lacking. The possibility remains
that putatively positive effects of methanogens would only
be detectable, for both monogastrics and foregut-fermenting
animals, under certain conditions of reduced quality, natural
forages.

The comparative approach

With respect to CH,4 physiology, the classification of species
and species groups as emitters/non-emitters, or as high v.
low emitters, has a certain tradition (Crutzen et al., 1986;
Hackstein and Van Alen, 1996). Differences in the methano-
genic potential of the microbiome of different herbivore
species have been long acknowledged (Jensen, 1996;
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Fievez et al,, 2001; Ouwerkerk et al., 2009), but the causes of
these differences remain elusive. An evident outcome of
comparative studies are predictive equations related to the
scaling of CH,; emissions with BM (Franz et al, 2011;
Pérez-Barberia, 2017), with the intention to reconstruct CH,
budgets for fossil megafaunas (Smith et al., 2010; Wilkinson
et al, 2012; Smith et al.,, 2016). Additionally, comparative
approaches have favoured a dichotomy either between
foregut-fermenting and monogastric herbivores (Jensen,
1996; Smith et al, 2015), or between ruminating and
non-ruminating herbivores (Franz et al., 2011).

In the present study, data were collated on CH4 emissions
from in vivo measurements of herbivores fed diets consisting
of forages, such as pasture, or grass or lucerne hay in whole,
chopped or pelleted form, without the addition of concen-
trates, drawing on a collection of literature data and our
own measurements. Objectives included a test for scaling
of CH, emissions with BM, not only using all available emis-
sion data, but also those data for which food intake had been
recorded in parallel, to assess whether CH, emissions actually
scale differently than food intake and thus represent a puta-
tive disadvantage at increasing herbivore body size (Franz
et al., 2010; Franz et al., 2011), or whether CH, emissions
and food intake scale in parallel. Other objectives were test-
ing differences between foregut and hindgut fermenters, and
between ruminating and non-ruminating herbivores. Based
on intra-specific findings in domestic ruminants, negative
relationships on an inter-specific level between the level of
total food intake and CH, yield were expected, as well as
positive relationships between the digesta mean retention
time (MRT) or gut capacity and the CH, yield.

Methods

A literature data compilation (Franz et al., 2010; Franz et al.,
2011) was expanded to comprise the sources indicated in
Supplementary Material Table S2. Only diets made of forages
(either fed whole, chopped or pelleted) were accepted, and
the minimum information required was BM and CH,
production. A variety of measurement techniques was
included, mainly chamber respirometry, and the SFq tracer
method where CH, production is estimated from the ratio
of CH, to a tracer gas that is released from the rumen at
a known rate. When available, data on DM intake (DMI), diet
composition (including NDF), digestibility coefficients, MRTs
of solute or particle markers in the gastrointestinal tract and
CO, production were noted. Whenever possible, missing
values were calculated (e.g., if CH4 yield per DMI and DMI
were specified, absolute CH, emission was calculated).
Transformations of units (grams to litres, or litres to joules)
were made using standard conversion factors (Brouwer,
1965).

Hitherto unpublished results derived from experiments (of
which in some cases other measures than CH, have been
published) were included as well. They include CH, measure-
ments in various ruminants (gazelles down to a body size of
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dikdik Madoqua saltiana of approximately 1.5 kg), hystrico-
morph and arvicoline rodents, a giant rabbit breed, and in
some cases retention time data for specimens whose intake,
digestibility and CH; measurements have already been
reported (Supplementary Material Table S2). The experimen-
tal methods followed those described, for example, in
Dittmann et al. (2014) or Hagen et al. (2019). With data
on DMI, DM digestibility and small particle MRT in the total
gastrointestinal tract, the DM gut fill of the specimen was
calculated according to the occupancy principle (Holleman
and White, 1989; linear approach). Species were classified
as ruminants or nonruminants, and as foregut or hindgut
fermenters. The full dataset is provided as a supplement.

First, all available data for a set of measures (starting from
absolute CH4 emissions and BM) or the corresponding aver-
ages per species were used. Subsequently, entries that did
not qualify for the next step, for example, did not include data
on food intake, were excluded, and again analyses were
performed on the total of the remaining data and the corre-
sponding species averages. Results are thus reported for
absolute CH,4 emission (the whole dataset), for CH, yield
(in % of gross energy intake (GEI)), for CH4: CO2 ratios,
for parallel measures of DMI, for parallel measures of intake
and fibre digestibility, and for parallel measures of intake and
digesta retention.

To assess scaling relationships and their exponents, log-
transformed data were submitted to linear regression in R
v 3.3.2 (R_Core_Team, 2015) with the package 'nlme’
(Pinheiro et al, 2011) in generalised least squares (GLS),
for all available data and the species averages, indicating
the 95% confidence intervals (Cls) for parameter estimates.
To account for phylogeny, species averages were additionally
analysed by phylogenetic generalised least squares (PGLS)
with package ‘caper’ (Orme et al., 2013), using a mammalian
supertree (Fritz et al., 2009), pruned to include the relevant
taxa in our dataset. To retain the two rabbit breeds, the wapiti
(contrasted to the red deer) and the alpaca, these groups were
linked to the closest relatives of their original species in
the tree (Bunolagus, Rucervus and Vicugna, respectively).
The strength of the phylogenetic signal (4, varying from
0 to 1, indicating phylogenetic structure in the dataset)
was estimated by maximum likelihood. The analyses were
repeated including species classification as ruminant or non-
ruminant (Rum) and as foregut or hindgut fermenter (Fore),
first including the respective interactions with the indepen-
dent variable (e.g., when relating absolute CH, production
to BM, Rum, Fore, and the BM—Rum and BM-Fore inter-
actions were included). If the interactions were not significant,
the model was repeated without them. Scaling relationships
for four (non-exclusive) herbivore groups (functional ruminants
including camelids, taxonomic ruminants without camelids,
foregut fermenters including ruminants and hindgut
fermenters) are given in the Supplementary Material (for
species overlap between groups, see Supplementary
Material Table S2). For the dataset that included measure-
ments of MRT, individual relationships were only calcula-
tedfor small (lagomorphs, rodents) and large (all other)
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Table 1 Scaling relationships in mammalian species between CH, (in L/day or as % GEl) or the CH, : CO, ratio and body mass (BM, kg) according to
y=a BMP

P Interactions
BM x Rum BM X Fore

P Factors (direction)
95% Cl P Rum Fore

Data A a 95% Cl P b

CH,4 (L/day) (n=693, 37 species)

all 0.538 0.486 0.595 <0.001 096 094 098 <0.001 <0.001(+) <0.001(-) 0.004 <0.001
av 0.609 0.451 0.822 0.003 0.88 081 096 <0.001 <0.001 (+) 0.030 (-) 0.166 0.080
av 0.97 0.447 0.202 0.989 0.055 0.84 077 092 <0.001 0.401 0.994 0.648 0.489
CHg (% GEI) (n=463, 34 species)

all 3.014 2734 3322 <0.001 0.14 0.12 0.16 <0.001 <0.001 (+) 0.037 (+) 0.400 0.385
av 2.727 2.070 3.591 <0.001 0.11 0.04 0.18 0.005 0.042 (+) 0.826 0.402 0.612
av 0.98 2287 0.939 5.569 0.078 0.02 -0.06 0.11 0.599 0.488 0.287 0.678 0.922
CH,: CO; ratio (L/L) (n= 168, 26 species)

all 0.031 0.027 0.034 <0.001 0.12 0.09 0.15 <0.001 <0.001(+) <0.001 (-) 0.001 0.024
av 0.035 0.028 0.043 <0.001 0.09 0.03 0.15 0.007 0.003 (+) 0.451 0.150 0.194
av 0.82 0.028 0.016 0.048 <0.001 0.06 0.00 0.13 0.080 0.038 (+) 0.798 0.198 0.325

GEI = gross energy intake; BM = body mass; 95% Cl=95% confidence interval.

Using either all individual values (all) in generalised least squares (GLS), or species averages (av) in GLS or in phylogenetic generalised least squares (PGLS, indicating the
phylogenetic signal 4). Significant parameter estimates as well as 2 significantly different from 0 are set in bold. Results of additional models that include whether a
species is a ruminant or nonruminant (Rum) or a foregut or hindgut fermenter (Fore) are indicated in their direction (if interaction terms were nonsignificant, models were

repeated without them). Scaling relationships for individual species groups are given in Supplementary Material Tables S3 to S5.

herbivores. The significance level was set to 0.05. Additional
explanations on the statistical approach are given in the
Supplementary Material S1.

Results

Complete dataset (absolute CH; emission and body mass)
Using the complete dataset and species averages, absolute
CH,4 emission (L/day) had a significant phylogenetic signal
and scaled to BM%84, with the 95% CI for the exponent
ranging from 0.77 to 0.92 (Table 1). Using all individual
data instead of species averages led to a slightly steeper
scaling (BM®%) that did not include linearity in the 95% Cl.
In GLS, when using species averages, being a ruminant had
a positive, and being a foregut fermenter a negative effect
on CHy emissions. Nevertheless, the 95% Cl of the parameter
estimates for the scaling relationships of ruminants, nonrumi-
nants and hindgut fermenters overlapped (Supplementary
Material Table S3). The 95% Cl of the scaling exponent
included linearity only in taxonomic ruminants. The single
elephant measurement, horses, macropods and rabbits were
on a generally lower level than ruminants, whereas many
hystricomorph rodents as well as the nonruminant foregut
fermenters peccary and pygmy hippo had levels similar to those
of similar-sized ruminants (Figure 1a).

CH, yield in % gross energy intake

Whereas CHy (in % of GEIl) showed some scaling with BM
when all individual data or species averages were used in
GLS, indicating that ruminants were on a generally higher
level, this was not the case when accounting for phylogeny,
indicating no scaling within related groups (Table 1).
Correspondingly, there was also no scaling of CH, (in %
GEl) in any of the four individual herbivore groups
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(Supplementary Material Table S4). Generally, CH, losses
(in %GEIl) appear to be constrained to a maximum of 10%
(Figure 1B).

CH, : CO;, ratio

The CH,4 : CO;, ratio showed some BM scaling when phylog-
eny was not controlled for. There were significant interactions
between BM and digestion types when all individual data
were used, and indication that ruminants generally have
higher ratios using species averages, even when accounting
for phylogeny (Table 1). Within herbivore groups, this mea-
sure again showed no scaling (Supplementary Material
Table S5). Ruminants, camelids and hystricomorph rodents
as well as hippos can achieve high ratios of 0.06 and higher,
whereas equids, macropods and rabbits appear limited to
lower ratios; therefore, average estimates for nonruminants
or hindgut fermenters are lower than those of ruminants
(Supplementary Material Table S5). At BM below 1 kg, mea-
sured ratios appear limited to below 0.04 (Figure 1C).

CH, in relation to DM intake

Dry matter intake scaled to an exponent close to metabolic
BW, with scaling exponents for ruminants being higher than
those of nonruminants or hindgut fermenters (Tables 2 and
Supplementary Material Table S6). Apart from the compara-
tively high intake in the smallest species, arvicoline rodents,
no deviation from the overall pattern was apparent
(Supplementary Material Figure S1A). The absolute CH4 emis-
sion scaled very similarly to DMI with overlapping 95% Cl for
the scaling exponents when using species averages,
when controlling for phylogeny or for individual herbivore
groups (Tables 2 and Supplementary Material Table S6).
Correspondingly, the scaling of absolute CH, emissions to
DMl included linearity in the 95% Cl for the scaling exponent
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Figure 1 Relationship of body mass (BM) and (a) absolute daily CH, emission, (b) CH4 yield (in % gross energy intake), (c) the CH, : CO, ratio in the data
collection of the present study. Domestic ruminants comprise goat, sheep and cattle. For a complete list of species, cf. Supplementary Material Table S2; for
statistics, Table 1. Note that while horses, macropods (kangaroos) and rabbits generally have lower values than ruminants, hystricomorph rodents as well as the
nonruminant foregut fermenters peccary and hippo are in the ruminant range. GEI = gross energy intake.

in all groups (Tables 2 and Supplementary Material Table S6).
Only when using all individual data or species averages
without controlling for phylogeny, this scaling exceeded
linearity, due to an effect of ruminants in these datasets.
Similar to the CH, yield (in % gross energy), the CH, yield
(per DMI) did not scale with BM, again except when using
all individuals or uncontrolled averages, because of the
ruminants (Supplementary Material Figure S1B). When using
all individuals, and when controlling averages for phylogeny,
there was a negative relationship between the relative DM
and CH, yield (per DMI), with ruminants on a higher level
than nonruminants (Table 2). In datasets using all individuals,
this effect was driven by the ruminants, and in datasets using
species averages, by the arvicoline rodents (Supplementary
Material Figure S1C).

CHy in relation to digested fibre

In the dataset for which NDF intake and digestibility were
available, DMI and absolute CH4; emissions again scaled
closely to each other, and the scaling of NDF intake was sim-
ilar as that of DMI, as was the scaling of digestible NDF intake
(Supplementary Material Tables S7 and S8). Neither NDF
digestibility (Supplementary Material Figure S2A) nor CH, yield
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(per kg digested NDF) scaled with BM (Supplementary
Material Tables S7 and S8), with the exception of the func-
tional ruminants, in which this scaling was negative (due to
the inclusion of Bactrian camels in this subset). Absolute
CH, emissions scaled to digestible NDF intake below linearity
when controlling for phylogeny (Supplementary Material
Table S7), also in ruminants but not in nonruminants or
hindgut fermenters (Supplementary Material Table S8).
There was a negative relationship between NDF digestibility
and CH, yield (per digested NDF) when accounting for phylog-
eny (Supplementary Material Table S7), and the effect occurred
also within the nonruminants and hindgut fermenters
(Supplementary Material Table S8). In all groups, there was
a negative relationship between the relative intake of digest-
ible NDF and CH, yield (per digested NDF) (Supplementary
Material Figure S2B, Tables S7 and S8).

CH, in relation to digesta retention and gut capacity

In the dataset of experiments in which the MRT of small par-
ticles (and solute markers) had been measured in parallel to
CH4 measurements, DMI and absolute CH,4 emissions again
scaled nearly identically when controlling for phylogeny
(Supplementary Material Table S9). The scaling of small
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Table 2 Scaling relationships in mammalian species between DMI or CH, (in L/day or as L/kg DMI) and BM or absolute or relative DMI according to

y=a BMP

P Factors (direction) P Interactions
Data 1 a 95% Cl P b 95% Cl P Rum Fore BM x Rum BM x Fore
DMI (kg/day) ~ BM (kg)
all 0.046 0.043 0.050 <0.001 0.78 0.76 0.80 <0.001 0.938 <0.001 (-) 0.718 0.016
av 0.056 0.046 0.068 <0.001 0.76 0.71 0.81 <0.001 0.19 0.226 0.840 0.144
av 1.0 0.043 0.023 0.080 <0.001 0.83 0.77 0.88 <0.001 0.990 0.263 0.784 0.634
CH,4 (L/day) ~ BM (kg)
all 0.578 0.524 0.638 <0.001 0.94 0.92 0.97 <0.001 <0.001(+) <0.001 (<) 0.064 <0.001
av 0.656 0.493 0.873 0.007 0.88 0.80 0.95 <0.001 0.002(+) 0.47 0.273 0.124
av 1.0 0.439 0.185 1.044 0.072 0.84 0.76 092 <0.001 0.490 0.777 0.700 0.747
CH, (L/day) ~ DMI (kg/day)
all 23.598 22584 24.657 <0.001 1.16 1.13 1.19 <0.001 <0.001 (+) 0.003 (+) 0.060 0.274
av 18.450 15.166 22.445 <0.001 1.14 1.05 1.24 <0.001 0.024 (+) 0.627 0.256 0.450
av 096 10.742 4.770 24.193 <0.001 1.01 0.91 1.11 <0.001 0.388 0.209 0.557 0.928
CH, (Lkg DMI) ~ BM (kg)
all 1248 11.41 13.64 <0.001 0.16 0.14 0.18 <0.001 <0.001(+) 0.119 0.015 0.032
av 11.80 9.12 15.26 <0.001 0.12 0.06 0.19 0.001 0.049 (+) 0.646 0.460 0.725
av 0.95 10.09 4,51 2260 <0.001 0.04 -0.04 0.13 0317 0438 0.223 0.695 0.985
CH, (L/kg DMI) ~ relative DMI (g/kg®” per day)
all 69.4 46.0 104.7 <0.001 -0.28 -0.38 -0.17 <0.001 0.035 (+) 0.057 (=) 0.629 0.043
av 834 9.1 768.2 <0.001 -0.40 -0.94 0.15 0.163 0.115 0.039 (-) 0.158 0.035
av 1.0 1155 17.0 786.3 <0.001 -0.59 -1.03 -0.16 0.012 0.387 0.259 0.524 0.409

DMI = dry matter intake; BM = body mass; 95% Cl =95% confidence interval.

From experiments where CH, and intake were measured in parallel (n=573, 34 species), using either all individual values (all) in generalised least squares (GLS), or
species averages (av) in GLS or in phylogenetic generalised least squares (PGLS, indicating the phylogenetic signal A). Significant parameter estimates as well as A
significantly different from 0 are set in bold. Results of additional models that include whether a species is a ruminant or nonruminant (Rum) or a foregut or hindgut
fermenter (Fore) are indicated in their direction if they were significant. Scaling relationships for individual species groups of this dataset are given in Supplementary

Material Table S6.

particle MRT with BM differed distinctively between models
that did not and did account for phylogeny (Supplementary
Material Table S9), because MRT increased particularly with
BM among rodents but less so across larger herbivores
(Supplementary Material Figure S3A and Table S10). Dry mat-
ter gut fill scaled slightly below linearity (Supplementary
Material Table S9 and Figure S3B). While absolute CH4 emis-
sions scaled positively with MRT in all datasets, MRT was less
clearly related to CH4 yield (per DMI) (Supplementary
Material Tables S9 and $10). Although there was a positive
relationship between the two measures (Supplementary
Material Table S9), rabbits, macropods and horses had lower
CH,4 yields at similar MRT than other species, and in particu-
larly hystricomorph rodents were very variable in this rela-
tionship (Supplementary Material Figure S3C). The relative
DM gut fill did not scale with CH, yield (Supplementary
Material Tables S9 and $10), and again, rabbits, macropods
and horses had lower CH, yields at similar relative gut fills
than other species (Supplementary Material Figure S3D).

In an expanded model, using CH, yield (per DMI) as the
dependent variable and not only small particle MRT but
also the ratio of MRTparticles:MRTsolute as a covariable,
both MRT and the ratio had a positive relationship when
using all individuals (P<0.001 and 0.014, respectively),
but only MRT was significant when using species averages
(P=0.049 and P=0.635), and there was no significance
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when accounting for phylogeny (P=10.168 and P=0.975).
The effect in the dataset with individual data was considered
due to the presence of rodents and in particular lagomorphs,
that have very small MRTparticles:MRTsolute ratios due to
their wash-back colonic separation mechanism. When
repeating the analyses for large herbivores only, neither
MRT nor the ratio were significant in any model (individual
data, species averages, phylogeny control; Palways >0.233).

Discussion

The present study represents a compilation of in vivo mea-
surements of CH, emissions in mammals and shows up scal-
ing relationships with BM, food intake, digesta retention
times and gut capacity that lead to modifications of existing
concepts. This holds in particular for the presumed dichotomy
between foregut and hindgut fermenters, or between rumi-
nant and nonruminant herbivores, which is not consistent in
the dataset. Rather, individual herbivore species — in particu-
lar horses, macropods (kangaroos) and rabbits stand out as
peculiar with respect to their low CH,4 emissions.

Limitations
Typical limitations of comparative data compilations occur,
where measurements from different researchers are compiled
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in one catalogue. Because of the well-known effect that diets
with concentrates lead to lower CH4 emissions, the present
data compilation included only experiments in which animals
were fed diets without concentrates, excluding for example
the hyrax or the sloth (cf. Supplementary Material Table S1).
The case of the hyrax data (von Engelhardt et al., 1978) pro-
vides an instructive example: the animals of that study had
not only been fed mixed diets, but also been fasted prior to
respiration measurements; nevertheless, the data had been
used prominently by ourselves (Franz et al,, 2011) and others
(Smith et al., 2010; Smith et al., 2015) for the establishment
of hindgut fermenter-specific regression equations.

There was evident variation in the fibre content of the
roughage diets used in the different experiments. Across
experiments, such variation may contribute to reductions
of CH, yield per digestible fibre, when fibre digestibility var-
ied as a function of diet. Potentially, additional analyses
could account for variation in dietary fibre levels, or in varia-
tion between CH,; measuring methods. Both would have
made the approach in the present study additionally com-
plex, but the information is retained in the supplementary
datafile and can be used in further approaches.

Scaling relationships may not be appropriately captured in
simple allometric power functions, as in the log-log regres-
sions performed in the present study. Various examples of
'quadratic’ scaling exist (Miiller et al., 2012), including mea-
sures of food intake and digesta retention in mammalian her-
bivores (Miiller et al., 2013). The data from the present study,
which are largely independent from those used by Miiller
et al. (2013), indicate a similar pattern with a particularly
high intake, and short retention, in arvicoline rodents
(Supplementary Material Figures STA and S3A), and in the
different scaling exponents for several measurements
between small and large herbivores (Supplementary
Material Table S10). While our approach of simple allome-
tries, using various measurements taken simultaneously for
the same animals, can be used to compare species groups,
a more detailed model using quadratic scaling may be more
appropriate to extrapolate data for species not measured, but
within the BM range of our data compilation. Actually, Smith
etal. (2015) developed a complex regression equation for the
extrapolation of CH, emissions of hindgut-fermenting mam-
mals. However, that regression estimation should be consid-
ered with caution, because the hyrax data mentioned above
(taken from fasted animals) represent the data entry of the
lowest BM in their collection. In a similar way, predictive
equations for carbon isotope signature related to CH4 physi-
ology for hindgut and foregut fermenters presented by
Tejada-Lara et al. (2018) depend critically on individual data
points at the low end of the body size range.

One important limitation in the current dataset is the der-
ivation of gut capacity as DM gut fill from data on intake,
digestibility and retention following Holleman and White
(1989). Although the method has been validated, and
deviation from measurements by dissection can be explained
by variable food intake prior to slaughter (Munn et al., 2012),
there is a systematic underestimation of the real DM gut fill in
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ruminants if retention time is measured (as in the current
dataset) by a small particle marker (Munn et al, 2015).
However, Supplementary Material Figure S3D indicates that
even if data for ruminants would be increased (following
Munn et al., 2015, by a factor of 1.2), the explanatory power
of gut fill for differences in CH4; physiology would not
increase.

Scaling with body mass: no size constraint
In previous work of our group (Franz et al., 2010; Franz et al.,
2011) and of others (Smith et al., 2010), linear scaling rela-
tionships between CH4 emissions and BM had been sug-
gested. Given that energy intake by herbivores is generally
not assumed to scale linearly with BM but to a lower (allometric)
exponent, the logic implication was to construe a CH4-driven
body size limit for herbivores, because at some point, ener-
getic losses as CH,; would become prohibitive (Clauss and
Hummel, 2005; Clauss et al., 2013). Correspondingly, posi-
tive scaling relationships of CH, yield (per unit of energy
intake) were detected (Franz et al., 2011), with the attractive
side effect that the models indicated that ruminants would
reach any putative threshold at lower BM than hindgut
fermenters, thus offering an explanation for an apparent, intrin-
sic body size limitation in ruminants (Clauss et al., 2003).
This concept needs to be revised. An analysis of ruminant
data by Pérez-Barberia (2017) already questioned whether
CH, emissions really scaled higher than food intake.
Consistent with those findings, our dataset not only suggests
that CH, yield is not related to BM, but that in subsets where
food intake was measured in parallel to CH, emissions, both
measures show a more or less identical scaling (Tables 2,
Supplementary Material Tables S6, S7, S9 and $10).
Correspondingly, when scaling CH,4 emissions against intake,
a linear relationship results. Current evidence suggests that
the process of methanogenesis resulting from fermentative
digestion does not represent a body size limitation.

Digestive strategy: no clear dichotomies

In contrast to a seemingly clear dichotomy between ruminant
and nonruminant herbivores (Crutzen et al, 1986; Franz
et al,, 2011) or between ruminants/foregut fermenters and
hindgut fermenters (Smith et al, 2010; Smith et al,, 2015;
Tejada-Lara et al, 2018), the current data indicate that
no simple categories might apply to classify herbivores in
relation to CH4. The historical intermingling of the terms
‘ruminants’ and "foregut fermenters’ notwithstanding (Clauss
et al,, 2010), the CH, literature does not treat these catego-
ries consistently, for example, when the hippopotamus
(a nonruminant foregut fermenter) CH4 emission is extrapo-
lated based on ‘nonruminants’ by Crutzen et al. (1986) and
based on ‘ruminants’ by Smith et al. (2015). No simple rule
can be established: Among the nonruminant foregut
fermenters, macropods have particularly low comparative
CH,4 emissions, peccaries and hippos are at the lower range
of ruminants, and the sloth — excluded from the present data
analysis to remain consistent as to the diets used — is in the
upper range of ruminants even on a low-fibre diet (Vend|
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et al, 2016b). Similarly, no clear pattern seems to apply for
the hindgut fermenters. Although the dichotomy between
horses and ruminants is evident, additional measurements
of other hindgut fermenters, mainly by our group
(Table 2), do not yield a simple pattern, but indicate that sev-
eral hystricomorph rodent species can have CH4 emissions of
a magnitude expected for ruminants of similar size. In
Figure 1A, the absolute CH, emissions of the smallest gazelle,
the dikdik, and the hystricomorph rodent nutria, are identical.
While a focus on ruminants with respect to mitigation strat-
egies follows logically from their great relevance as food pro-
ducing production animals with an enormous greenhouse
gas footprint (Steinfeld et al., 2006), these findings indicate
that one should not consider the ruminant digestive tract as
the only one capable of harbouring intensely productive
methanogenic microbiota.

One possible approach to determine the CH, strategy of a
larger number of species could be the diet-bioapatite carbon
isotope enrichment offset. Studies in which such data have
been applied to herbivores have implied a difference in
CH,4 emissions between herbivore digestion types (Codron
et al, 2018; Tejada-Lara et al,, 2018). However, the data
from Codron et al. (2018) suggest little differences between
the hindgut fermenters rock hyrax, black and white rhinoc-
eros (Diceros bicornis, Ceratotherium simum), warthog
(Phacochoerus africanus) or even a zebra species (Equus
quagga) and ruminants. The data from Tejada-Lara et al.
(2018) potentially corroborate the finding of CH, emission
in arvicoline rodents (voles) of the present study and indicate
little difference between the hindgut fermenters African
elephant (Loxodonta africana), the black rhinoceros, the
horse, a zebra species (Equus burchelli) and the pig and
the ruminants giraffe (Giraffa camelopardalis), Bactrian
camel and guanaco (Lama guanicoe). At other places in
the body size range of that study, little differences appear
evident in foregut-fermenting sloth species (Choloepus hoff-
manni and Bradypus variegatus) paired each with a hindgut
fermenter (the rabbit and the koala, respectively). These
datasets might be better comprehensible if no clear separa-
tion between general digestion types would be assumed.

Relationships with intake and digesta retention

Abandoning clear categories of CHs-producing digestion
types raises the question whether other rules can be gleaned
from the comparative dataset. There are well-established
relationships between food intake or digesta retention
and CH, yield in domestic ruminants (Okine et al., 1989;
Lassey et al., 1997; Barnett et al, 2012; Hammond et al.,
2014; Barnett et al.,, 2015) and in individual groups of non-
domestic species (Frei et al., 2015; Vend| et al., 2015; Vend|
et al,, 2016a). In addition, the intra-individual variation in
CH; emission in domestic ruminants is explained by
differences in digesta retention, possibly linked to digestive
tract capacity (Pinares-Patifio et al,, 2003; Goopy et al., 2014;
Cabezas-Garcia et al, 2017). Therefore, species were
expected to vary in their CH, yield depending on their
species-specific food intake levels, digesta retention times
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and DM gqut fill. The first two predictions were met
(Supplementary Material Figures S1C and S3B); however,
the respective datasets failed to provide an explanation
why certain species, such as horses, macropods or rabbits,
had lower CH, yields at similar intake levels or retention
times than others.

Additionally, the combination of an apparent evolution of
a high fluid throughput or ‘digesta washing' in macropods,
and results from various in vitro studies led to an additional
hypothesis (Vendl et al,, 2015): A large difference in the MRT
of fluids and particles (measured as a high MRTparticle:
MRTsolute ratio and leading to a high outwash rate of
microbes from the fermentation chamber) might create con-
ditions favourable of a microbiome tuned towards growth
rather than CH,4 production. However, in spite of a similar
pattern of fluid and particle retention in pygmy hippos as
in macropods (Supplementary Material Figure S4), no similar-
ity in CH4 emissions were evident between these species.
When adding the ratio between particle and fluid retention
to a regression of CH, yield against particle retention, no sig-
nificant relationship resulted.

Clauss and Hummel (2017) suggested that adaptations in
so-called ‘cattle-type’ ruminants towards a high fluid through-
put might have a similar effect, and that variation in the
amount of fluid passing through the rumen, because of
differences in saliva production, might contribute to inter-
individual variation in CH, emissions. The authors specifically
referred to evidence from breeding experiments against the
susceptibility to frothy bloat in cattle, which is considered
linked to low saliva production of individual animals
(Gurnsey et al, 1980; Morris et al, 1997). The assumption
of Pinares-Patifio et al. (2008) that bloat-susceptible cattle,
with less fluid flow, have higher CH, yields, based on the obser-
vation of slightly higher proportions of CH, in rumen gases of
bloat-susceptible animals (Moate et al, 1997), would match
this hypothesis. However, the same authors demonstrated
no difference in CH, vyields between cattle of low and
high bloat susceptibility (Pinares-Patifio et al, 2008).
Additionally, Grandl et al. (2018) did not find an association
of inter-individual CH, yield differences and the MRTparticle:
MRTsolute ratio in cattle. Should the CH4-saving effect of
increased fluid throughput that is so evident in in vitro fermen-
tation experiments (Isaacson et al, 1975; Pfau et al, 2019)
occur in herbivores in vivo, it remains to be demonstrated.

Relationship with fibre digestion

Similar to the moderate scaling of digesta retention with BM
detected in the present study, the absence of a body size
effect on the digestibility of NDF across herbivore species
is in congruence with previous findings (Miiller et al,
2013; Steuer et al, 2014). The results indicate that the
amount of CH4 produced per unit of fibre digested is not nec-
essarily constant. The scaling relationship between digestible
NDF intake and absolute CH4 emission included linearity in
nonruminants and hindgut fermenters, but this was not
the case in ruminants (Supplementary Material Table S8),
where digested NDF translated to a less-than-linear scaling
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(albeit on a generally higher level) into CH4. In all data
subsets, the relative intake of digestible NDF was negatively
related to the CH, yield per unit of digested fibre, and in some
subsets, a similar negative CH, yield scaling was evident with
NDF digestibility. While it cannot be excluded that these pat-
terns reflect differences in diet, they also hold for some
groups in Supplementary Material Figure S2B fed a consistent
diet for the measurements, and thus resemble a finding made
in three different cattle feeding groups by Grandl et al.
(2018). It is tempting to speculate that conditions leading
to a higher fibre digestibility are linked to microbiota func-
tions that are characterised by fibre digestion at reduced
CH,4 production. While promising, the pattern again cannot
explain fundamental differences in CH, emission between
all species.

Conclusion and outlook

While many of the species investigated by our team have only
been assessed once, results on domestic ruminants, South
American camelids, horses, macropods and rabbits have
been reproduced in more than a single study, suggesting that
CHy-related characteristics represent repeatable, species-
specific characteristics. Given the absence of generalisable
patterns, all that is left is the suggestion that yet-to-be-
defined, species-specific characteristics determine the com-
position and activity of the microbiota of herbivores, and that
across species, these characteristics may not be linked to
digesta retention mechanisms of gut anatomy. Such a host
specificity has been shown within cattle (Weimer et al,
2010; Weimer et al., 2017) or humans (Goodrich et al.,
2014), or across species in a famous cross-over experiment
with mice and fish microbiota (Rawls et al, 2006).
Differences in the methanogenic potential of the microbiota
of cattle have been identified (Zhou et al., 2009; Danielsson
etal.,, 2012; Ben Shabat et al,, 2016), and studies indicate the
heritability of the microbiome composition, that is, its genetic
control (Goodrich et al, 2014; Roehe et al, 2016). These
results open the possibility of selecting domestic animals
for their microbiome composition. Yet, they also raise again
the question of the Introduction why, if microbiome and
hence methanogen control by the host is possible, evolution-
ary adaptations have not led to the exclusion but to a promi-
nent role of methanogens in many herbivore species.

Our study suggests that CH, production may be more
uniform across many herbivore species, that perceived
differences between digestion types are due to a historical
focus on certain animal groups, and that ruminants should
possibly not be considered peculiar in this respect. Further
studies elucidating the peculiar conditions that result in
the comparatively low CH4 emissions in macropods, equids,
and, possibly, rabbits are warranted. For a reliable
reconstruction of past CH, budgets, the use of domestic
equids as model animals for ‘hindgut fermenters’ must be
questioned, and additional measurements in other, non-
rodent hindgut fermenters would be needed. This could be
rhinoceroses, tapirs, (forage-fed and non-fasted) hyraxes,
or pigs fed forage-only diets. Finally, the relevance of
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methanogens for the digestive physiology of primates
remains to be explored.
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