## INTEGRAL GROUP RINGS OF SOME p-GROUPS

JÜRGEN RITTER AND SUDARSHAN SEHGAL

**1. Introduction.** The group of units,  $\mathscr{U}ZG$ , of the integral group ring of a finite non-abelian group G is difficult to determine. For the symmetric group of order 6 and the dihedral group of order 8 this was done by Hughes-Pearson [3] and Polcino Milies [5] respectively. Allen and Hobby [1] have computed  $\mathscr{U}ZA_4$ , where  $A_4$  is the alternating group on 4 letters. Recently, Passman-Smith [6] gave a nice characterization of  $\mathscr{U}\mathbf{Z}D_{2p}$  where  $D_{2p}$  is the dihedral group of order 2p and p is an odd prime. In an earlier paper [2] Galovich-Reiner-Ullom computed  $\mathscr{U}ZG$  when G is a metacyclic group of order pq with p a prime and q a divisor of (p-1). In this note, using the fibre product decomposition as in [2], we give a description of the units of the integral group rings of the two noncommutative groups of order  $p^3$ , p an odd prime. In fact, for these groups we describe the components of  $\mathbf{Z}G$  in the Wedderburn decomposition of  $\mathbf{Q}G$ . The unit description is perhaps a little unsatisfying due to the difficulty in computing the units of commutative integral group rings. This difficulty does not arise if one considers the p-adic group ring  $\mathbb{Z}_{p}G$ ,  $|G| = p^{3}$ ,  $\mathbf{Z}_p$  = the *p*-adic integers. Also, if |G| = 27, the commutative group involved is of exponent 3 and its integral group ring has only trivial units; and we can describe  $\mathscr{U}\mathbf{Z}G$  as a group of  $3 \times 3$  matrices over  $\mathbf{Z}[\omega], \, \omega^3 = 1.$ 

One of the groups of order  $p^3$  has a normal cyclic subgroup of order  $p^2$ . We consider in Section 2 a group of order  $p^n$  having a normal cyclic group of index p and specialize to the case n = 3 in Section 3. The methods of this note can also handle extraspecial p-groups of order  $p^{2d+1}$  (see [4], p. 353) giving rise to matrices of size  $p^d \times p^d$ .

We are indebted to Ian Musson and the referee for improvements in this paper.

**2.** A group of order  $p^n$ . We consider the following group of order  $p^n$ :

$$H = \langle a, b | a^{p^{n-1}} = 1 = b^p, b^{-1}ab = a^{p^{n-2}+1} \rangle.$$

We need an easy fibre product diagram of rings. Let I and J be two

Received October 13, 1980 and in revised form April 14, 1981. This work has been supported by NSERC Grant A-5300 and a DFG Travel Fellowship.

ideals of a ring R such that  $I \cap J = 0$ . Then



is a fibre product, in the sense that

 $R \simeq \{ (\alpha, \beta) | \alpha \in R/I, \beta \in R/J, \overline{\alpha} = \widetilde{\beta} \}.$ 

This induces the fibre product of unit groups:

This is to be applied to the group ring  $\mathbb{Z}X$  with  $J = \Delta(X, N)$  as the kernel of the natural homomorphism  $\mathbb{Z}X \to \mathbb{Z}X/N$  with  $N \triangleleft X$  and  $I = \hat{N}\mathbb{Z}G$  where  $\hat{N} = \sum_{x \in N} x$ . We shall write  $\hat{x}$  for  $\langle \hat{x} \rangle$ .

We shall need to number the entries of certain matrices by their pseudodiagonals. Let us describe the *n* diagonals of the  $n \times n$  matrix  $A = [a_{ij}]$  as follows

0th diagonal:  $a_{1,1}, a_{2,2}, \ldots, a_{n,n}$ 1st diagonal:  $a_{1,2}, a_{2,3}, \ldots, a_{n-1,n}, a_{n,1}$ 2nd diagonal:  $a_{1,3}, a_{2,4}, \ldots, a_{n-2,n}, a_{n-1,1}, a_{n,2}$   $\vdots$ (n-1)th diagonal:  $a_{1,n}, a_{2,1}, \ldots, a_{n-1,n-2}, a_{n,n-1}$ .

We shall have to number some matrices as  $[x_{ij}]$  where  $x_{ij}$  is in the *i*th diagonal at the *j*th spot in the above numbering,  $0 \leq i, j \leq n - 1$ . Let  $\omega$  be a primitive *p*th root of unity throughout this note.

PROPOSITION 1. Suppose  $x_0, \ldots, x_{p-1} \in \mathbb{Z}[\xi]$  are given with  $\xi^{p^{l-1}} = \omega$ . Then there exist  $t_i \in \mathbb{Z}[\xi]$  satisfying

$$\sum_{i=0}^{p-1} t_i \omega^{ji} = x_j, 0 \le j \le p - 1.$$

if and only if

$$\sum_{i=0}^{p-1} x_i \omega^{ki} \in p \mathbb{Z}[\xi] \quad \text{for all } 0 \leq k \leq p-1.$$

Proof. The given system of equations is

$$W\begin{bmatrix} t_0 \\ \cdot \\ \cdot \\ \cdot \\ t_{p-1} \end{bmatrix} = \begin{bmatrix} x_0 \\ \cdot \\ \cdot \\ \cdot \\ x_{p-1} \end{bmatrix} \quad \text{where } W = [\omega^{ij}], 0 \leq i, j < p.$$

Since W is a character matrix, it follows by the orthogonality relations that

$$W^{-1} = \frac{1}{p} \left[ \omega^{-ij} \right].$$

The system is equivalent to

$$\begin{bmatrix} t_{0} \\ t_{1} \\ \vdots \\ \vdots \\ \vdots \\ t_{p-1} \end{bmatrix} = W^{-1} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ \vdots \\ \vdots \\ x_{p-1} \end{bmatrix}.$$

Thus there is a solution  $t_0, \ldots, p-1$  if and only if

$$\frac{1}{p}\sum_{i=0}^{p-1}\omega^{-ik}x_i\in\mathbf{Z}[\xi]$$

for all  $0 \leq k \leq p - 1$ . This is equivalent to

$$\sum_{i=0}^{p-1} \omega^{ik} x_i \in p \mathbf{Z}[\xi], 0 \leq k \leq p-1.$$

PROPOSITION 2. Let A and B be  $p \times p$  matrices over  $\mathbf{Q}(\xi)$ ,  $\xi^{p^{l-1}} = \omega$ , given by

The  $\mathbb{Z}[\xi]$ -span of the matrices  $\{B^iA^j, 0 \leq i, j \leq p - 1\}$  consists of all

 $p \times p$  matrices over  $\mathbb{Z}[\xi]$  of the form

$$M = \begin{bmatrix} x_{0,0} & x_{1,0} & \dots & x_{p-1,0} \\ x_{p-1,1} & x_{0,1} & \dots & x_{p-2,1} \\ \vdots & & \vdots \\ \vdots & & \ddots \\ x_{1,p-1} & x_{2,p-1} & \dots & x_{0,p-1} \end{bmatrix}$$

such that for each j and  $k, 0 \leq j, k < p$ ,

$$(*) \qquad \sum_{i=0}^{p-1} x_{ji} \omega^{ki} \in p \mathbb{Z}[\xi].$$

*Proof.* For a fixed j, the matrices  $B^i A^j$ ,  $0 \leq i \leq p - 1$ , have non-zero entries only in the *j*th diagonal. The  $\mathbb{Z}[\xi]$ -vector  $(x_0, x_1, \ldots, x_{p-1})$  is a diagonal in the span of  $\{B^i A^j\}$  if and only if there exist  $t_i \in \mathbb{Z}[\xi]$  such that

$$\sum_{0}^{p-1} t_{i}B^{i} = \begin{bmatrix} x_{0} & & & \\ & x_{1} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & x_{p-1} \end{bmatrix}$$

This means that

$$\sum_{i} t_{i} \omega^{ji} = x_{j}, 0 \leq j \leq p - 1.$$

Applying the last proposition to each diagonal we get our result.

The next proposition is well known.

PROPOSITION 3. Let  $o_1 \subseteq o_2$  be Z-orders in a rational algebra. If an element  $\alpha \in o_1$  has an inverse in  $o_2$  then it is a unit of  $o_1$  already.

*Proof.* We have for the indices of additive groups

 $(o_2: \alpha o_1) = (\alpha o_2: \alpha o_1) \leq (o_2: o_1),$ 

which implies  $\alpha o_1 = o_1$  and the result follows.

Now, we study our group of order  $p^n$ ,

$$H = \langle a, b | a^{p^{n-1}} = 1 = b^p, b^{-1}ab = a^{p^{n-2}+1} \rangle.$$

Writing  $a^{-1}b^{-1}ab = a^{p^{n-2}} = c$  we have  $H' = \langle c \rangle$  of order p. Thus

$$\bar{H} = H/\langle c \rangle = \langle \bar{a} \rangle \times \langle \bar{b} \rangle.$$

Let  $\lambda$  be a primitive  $p^{n-2}$ th root of unity. Then

 $\mathbf{Q}H = \mathbf{Q}\bar{H} \bigoplus \mathbf{Q}(\lambda)_{p \times p}.$ 

In fact,

$$\mathbf{Q}\overline{H} \simeq \mathbf{Q}H/\Delta(H, \langle c \rangle) \simeq \mathbf{Q}H\hat{c}, \mathbf{Q}(\lambda)_{p \times p} \simeq \mathbf{Q}H/\hat{c}\mathbf{Q}H.$$

Clearly,

$$ZH \to ZH/\Delta(H, \langle c \rangle) \oplus \mathbb{Z}[\lambda]_{pxp}$$

$$\downarrow |$$

$$\mathbb{Z}\overline{H}$$

with the projection onto the first component. We shall compute the projection in the second component. It is easily checked that

$$\hat{c}\mathbf{Z}H + (1-c)\mathbf{Z}H = p\mathbf{Z}H + (1-c)\mathbf{Z}H$$

and

$$\hat{c}\mathbf{Z}H \cap (1-c)\mathbf{Z}H = 0.$$

Thus we have the fibre product

$$\begin{array}{cccc}
\mathbf{Z}H & \xrightarrow{\mathrm{mod} \langle c \rangle} & \mathbf{Z}\bar{H} \\
\end{array} \\
\mathrm{mod} \hat{c} & & \theta_{4} & \theta_{2} & & \\
\end{array} \\
\mathcal{T} & = \mathbf{Z}H/\hat{c}\mathbf{Z}H & \xrightarrow{\theta_{1}} & \mathbf{Z}\bar{H}/p\mathbf{Z}\bar{H}
\end{array}$$

• / \

with all maps natural. The  $p \times p$  matrices

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & & \dots & 1 \\ \lambda & 0 & & \dots & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & & & & \\ & \omega & & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & \omega^{p-1} \end{bmatrix}, \lambda^{p^{n-3}} = \omega$$

satisfy

$$A^{p} = \lambda I, B^{p} = I, B^{-1}AB = A^{p^{n-2}+1}$$

That the matrices  $\{B^i A^j\}, 0 \leq i, j < p$ , are linearly independent over  $\mathbb{Z}[\lambda]$  can be seen as follows.

Suppose that

$$\sum_{i,j} z_{ij} B^i A^j = 0.$$

Since  $A^{j}$  has non zero entries only in the *j*th diagonal we have

$$\sum_{i} z_{ij} B^{i} A^{j} = 0 \quad \text{for each } j.$$

It follows from the nonsingularity of A that

$$\sum_{i} z_{ij} B^{i} = 0.$$

This easily implies that  $z_{ij} = 0$  for all i, j.

Let Sp be the  $\mathbb{Z}[\lambda]$ -span of the matrices  $\{B^i A^j | 0 \leq i, j < p\}$ . We claim that T is isomorphic to Sp. Consider the map

$$\phi: \mathbb{Z}H \to Sp, \phi(a) = A, \phi(b) = B.$$

Since  $\hat{c} = 1 + c + \ldots + c^{p-1}$  is mapped to  $(1 + \omega + \ldots + \omega^{p-1})I = 0$ , we have an induced map

 $\phi_0: T \to Sp.$ 

Since  $\phi(a^{pk}a^ib^j) = \lambda^k A^i B^j$ ,  $\phi_0$  is onto Sp. Also,  $\phi_0$  is one to one as after tensoring with **Q** we see that both *T* and *Sp* have **Q**-dimension  $(p^n - p^{n-1})$ .

Now we give a valuation theoretical description of *Sp*.

PROPOSITION 4. The matrix  $Z \in \mathbb{Z}[\lambda]_{p \times p} \in Sp$  if and only if the matrix X = Z' satisfies

$$\sum_{i=0}^{p-1} x_{ji} \omega^{ki} \in p\mathbf{Z}[\lambda], \hspace{0.2cm} \textit{for all } 0 \leq j,k < p$$

where Z' is obtained from Z by dividing all entries below the main diagonal by  $\lambda$ .

*Proof.* Observe that  $A^i$  has entries 1, 1, ..., 1,  $\lambda, \ldots, \lambda$  in the *i*th i

diagonal and zeros elsewhere. Thus in order to compute Sp we need only calculate the span  $\{B^{j}A^{i}, 0 \leq j \leq p\}$  separately for every *i*. Thus we need to find all  $\mathbb{Z}[\lambda]$ -vectors  $(z_{i0}, \ldots, z_{ip-1})$  such that



238

which is equivalent to

$$\sum_{j=0}^{p-1} t_j B^j = \begin{bmatrix} z_{i0} & & & & \\ & \ddots & & & \\ & & z_{i,p-i-1} & & \\ & & & z_{i,p-i} \lambda^{-1} & & \\ & & & \ddots & & \\ & & & & z_{i,p-1} \lambda^{-1} \end{bmatrix}$$

The result now follows by Proposition 2.

We have the diagram



which is commutative by setting  $\phi_1 = \theta_1 \phi_0^{-1}$ . Let us describe the map  $\phi_1$ . Given  $M \in Sp$  we wish to write M as  $\sum \alpha_{ij}B^iA^j$  with  $\alpha_{ij} \in \mathbb{Z}[\lambda], 0 \leq i, j < p$ . Let M' be obtained from M by dividing all entries below the main diagonal by  $\lambda$ . Then the *j*th diagonal  $x_{j0}, \ldots, x_{j,p-1}$  of M' is the same as the main diagonal of  $\sum_i \alpha_{ij}B^i$ . We have

$$W\begin{bmatrix} \alpha_{0j} \\ \vdots \\ \vdots \\ \alpha_{p-1,j} \end{bmatrix} = \begin{bmatrix} x_{j0} \\ \vdots \\ \vdots \\ x_{j,p-1} \end{bmatrix}, \quad W = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega & \dots & \omega^{p-1} \\ \vdots \\ \vdots \\ 1 & \omega^{p-1} & \dots & \omega^{(p-1)^2} \end{bmatrix}$$

Thus

$$\alpha_{ij} = \frac{1}{p} \sum_{k} \omega^{-ik} x_{jk}.$$

Writing

$$lpha_{ij} = \sum d_{ijk} \lambda^k, \, d_{ijk} \in \mathbf{Z}[\omega], \, 0 \leq k < p^{n-3}$$

we have

$$M = \sum d_{ijk} \lambda^k B^i A^j = \sum_{i,j} \left( \sum_k d_{ijk} A^{pk} \right) B^i A^j,$$
  
$$0 \le i, j < p, 0 \le k < p^{n-3}.$$

The commutative diagram implies that

$$\phi_1(M) = \sum \bar{d}_{ijk} \bar{b}^{i} \bar{a}^{j+pk}$$

where  $\bar{d}_{ijk}$  is obtained from  $d_{ijk}$  by substituting  $\omega = 1$  and going mod p. In view of Proposition 3, we have proved

THEOREM 1. (a)  $\mathbb{Z}H \simeq \{(\alpha, M) \in \mathbb{Z}\overline{H} \times \mathbb{Z}[\lambda]_{p \times p} | M' \text{ satisfies (*) and } \theta_2(\alpha) = \phi_1(M) \}.$ 

(b)  $\mathscr{U}\mathbf{Z}H \simeq \{(\alpha, M) \in \mathscr{U}\mathbf{Z}\overline{H} \times \mathbf{Z}[\lambda]_{p \times p} | M \text{ is a unit of } \mathbf{Z}[\lambda]_{p \times p}, M' \text{ satisfies } (*) \text{ and } \phi_2(\alpha) = \phi_1(M) \}.$  Here

(i) M' is obtained from M by dividing all entries below the main diagonal by  $\lambda$ ,  $\lambda$  is a primitive  $p^{n-2}$ th root of unity;

(ii) The condition (\*) is

$$\sum_{i=0}^{p-1} x_{ji} \omega^{ki} \in p\mathbf{Z}[\lambda], 0 \leq j, k < p, \omega = \lambda^{p^{n-3}}$$

where  $\{x_{ij}\}$  are the pseudo diagonals of M';

(iii)  $\theta_2 : \mathbf{Z}\bar{H} \to (\mathbf{Z}/p\mathbf{Z})\bar{H}$  is the natural map mod p; (iv)  $\phi_1(M) = \sum_{i,j,k} \bar{d}_{ijk}\bar{b}^i \bar{a}^{j+pk}$  where

$$lpha_{ij} = rac{1}{p} \sum_{l} \omega^{-il} x_{jl} \in \mathbf{Z}[\lambda]$$

is written as  $\sum_{k} d_{ijk}\lambda^{k}$ ,  $d_{ijk} \in \mathbb{Z}[\omega]$ ,  $0 \leq k < p^{n-3}$  and  $\bar{d}_{ijk}$  is obtained from  $d_{ijk}$  by substituting  $\omega = 1$  and going mod p.

If we replace  $\mathbb{Z}$  by the ring of *p*-adic integers  $\mathbb{Z}_p$  then all the work above goes through. But in this case one knows explicitly that  $\mathscr{U}\mathbb{Z}_p\overline{H}$  consists of all elements of nonzero augmentation. Therefore, a corresponding result for  $\mathbb{Z}_pH$  is obtained.

**3.** Groups of order  $p^3$ . If p is an odd prime, the two noncommutative groups of order  $p^3$  are

$$H = \langle a, b | a^{p^2} = 1 = b^p, b^{-1}ab = a^{p+1} \rangle$$

and

$$G = \langle a, b | (a, b) = a^{-1}b^{-1}ab = c, ca = ac, cb = bc, a^{p} = 1 = b^{p} = c \rangle.$$

We reserve the letters G and H for these groups throughout this section. The first one is a special case of the group discussed in the last section, obtained by taking n = 3. We have  $\omega = \lambda$ , a primitive *p*th root of unity,  $c = a^p$  and the fibre product diagram is as follows:



Theorem 1 specializes to

THEOREM 2. (a)  $\mathbb{Z}H \simeq \{(\alpha, M) \in \mathbb{Z}\overline{H} \times \mathbb{Z}[\omega]_{p \times p} | M' \text{ satisfies (*) and } \theta_2(\alpha) = \phi_1(M) \}.$ 

(b)  $\mathscr{U}\mathbf{Z}H \simeq \{(\alpha, M) \in \mathscr{U}\mathbf{Z}\overline{H} \times \mathbf{Z}[\omega]_{p \times p} | M \text{ is a unit of } \mathbf{Z}[\omega]_{p \times p}, M' \text{ satisfies } (*) \text{ and } \theta_2(\alpha) = \phi_1(M) \}.$  Here,

(i) M' is obtained from M by dividing all entries below the main diagonal by  $\omega$ .

(ii) The condition (\*) is

$$\sum_{i=0}^{p-1} x_{ji} \omega^{ki} \in p \mathbf{Z}[\omega], 0 \leq j, k < p, \omega^p = 1$$

where  $\{x_{ij}\}$  are the pseudo diagonals of M'.

(iii)  $\theta_2: \mathbf{Z}\overline{H} \to (\mathbf{Z}/p\mathbf{Z})\overline{H}$  is the natural map mod p.

(iv)  $\phi_1(M) = \sum_{i,j} \bar{\alpha}_{ij} \bar{b}^i \bar{a}^j$  where

$$\alpha_{ij} = \frac{1}{p} \sum_{l} \bar{\omega}^{il} x_{jl} \in \mathbf{Z}[\omega]$$

and  $\bar{\alpha}_{ij}$  is obtained from  $\alpha_{ij}$  by putting  $\omega = 1$  and going mod p.

Now, we consider our second group of order  $p^3$ . The factor commutator group,  $\overline{G} = G/\langle c \rangle$  is elementary abelian of order  $p^2$ ,  $\overline{G} = \langle \overline{a} \rangle \times \langle \overline{b} \rangle$ . We have the decomposition

$$\mathbf{Q}G\simeq\mathbf{Q}\bar{G}\oplus\mathbf{Q}(\omega)_{p\times p},$$

where  $\mathbf{Q}(\omega)_{p \times p}$  is the ring of all  $p \times p$  matrices over  $Q(\omega)$ . In fact

$$\begin{aligned} \mathbf{Q}\bar{G} \simeq \mathbf{Q}G/\Delta(G, \langle c \rangle) \simeq \mathbf{Q}G\hat{c}, \\ \mathbf{Q}(\omega)_{p \times p} \simeq \mathbf{Q}G/\hat{c}\mathbf{Q}G. \end{aligned}$$

Clearly,

$$\begin{array}{c} \mathbf{Z}G \to \mathbf{Z}G/\Delta(G, \langle c \rangle) \oplus \mathbf{Z}[\omega]_{pxp} \\ & \downarrow \\ & \mathbf{Z}\bar{G} \end{array}$$

with the projection onto the first component. We shall compute the projection in the second component. Consider the fibre product diagram

$$\begin{array}{cccc}
 \mathbf{Z}G & \xrightarrow{\mathrm{mod} \langle c \rangle} & \mathbf{Z}\bar{G} \\
 \mathrm{mod} & \hat{c} \middle| \theta_4 & \theta_2 \middle| \mathrm{mod} & p \\
 \mathbf{Z}G/\hat{c}\mathbf{Z}G & \xrightarrow{\theta_1} & (\mathbf{Z}/p\mathbf{Z})\bar{G}
 \end{array}$$

where  $\theta_2$ ,  $\theta_3$  and  $\theta_4$  are the natural projections and  $\theta_1$  is the map

$$heta_1(\sum zc^ia^jb^k) = \sum ar z ar a^jar b^k, \ z \in \mathbf{Z}.$$

It is worthwhile noting that  $\mathbb{Z}G/\partial \mathbb{Z}G$  is isomorphic to the twisted group ring  $\mathbb{Z}[\omega] \circ \overline{G}$  with  $\omega \overline{b} \overline{a} = \overline{a} \overline{b}$ . The map  $\theta_1$  after this identification is given by

$$heta_1(\sum lpha ar{a}^i ar{b}^j) = \sum ar{lpha} ar{a}^i ar{b}^j, \ \ lpha \in \mathbf{Z}[\omega]$$

where  $\bar{\alpha}$  is obtained from  $\alpha$  by substituting  $\omega = 1$ .

Let us define a map  $\phi_0$  from  $\mathbb{Z}[\omega] \circ \overline{G}$  to  $\mathbb{Z}[\omega]_{p \times p}$  by

Then  $\omega BA = AB$ ,  $A^p = I = B^p$ . Moreover, if  $\sum_{i,j} \alpha_{ij} B^i A^j = 0$ ,  $\alpha_{ij} \in \mathbb{Z}[\omega]$  and  $0 \leq i, j < p$ , then  $\alpha_{ij} = 0$  for all i, j. This can be seen as follows:

$$\sum_{i} \sum_{j} \alpha_{ij} B^{i} A^{j} = 0 \Longrightarrow \sum_{i} \alpha_{ij} B^{i} A^{j} = 0$$

as  $A^{j}$  has nonzero entries only in the *j*th diagonal. Further, due to the nonsingularity of A it follows that  $\sum_{i} \alpha_{ij}B^{i} = 0$ , and this implies that  $\alpha_{ij} = 0$  for all *i*, *j*. We have proved that

$$\mathbb{Z}G/\widehat{c}\mathbb{Z}G \simeq \mathbb{Z}[\omega] \circ \overline{G} \simeq \operatorname{span} \langle B^{i}A^{j}, 0 \leq i, j$$

the  $\mathbb{Z}[\omega]$ -span of the matrices  $\{B^{i}A^{j}\}$ . It follows by Proposition 2 that

$$Sp = \left\{ M \in \mathbb{Z}[\omega]_{p \times p} | M \text{ satisfies} \sum_{i=0}^{p-1} x_{ji} \omega^{ki} \in p\mathbb{Z}[\omega] \text{ for all } 0 \leq k, j$$

Let us understand the induced map  $\phi_1 = \theta_1 \phi_0^{-1}$ :



Given  $M \in Sp$ , we wish to find  $\phi_0^{-1}(M) \in \mathbb{Z}[\omega] \circ \overline{G}$ . Let  $\{x_{j,0}, \ldots, x_{j,p-1}\}$  be the *j*th diagonal of M. We wish to find  $a_{ij} \in \mathbb{Z}[\omega]$  such that  $\sum_{i,j} a_{ij} B^i A^j = M$ . It is necessary to find  $a_{ij}$  such that

$$\sum_{i} a_{ij} B^{i} = \begin{bmatrix} x_{j,0} & & \\ & \ddots & \\ & & \ddots & \\ & & & x_{j,p-1} \end{bmatrix}, 0 \leq j \leq p - 1.$$

This is equivalent to

$$W\begin{bmatrix} a_{0,j} \\ \cdot \\ \cdot \\ \cdot \\ a_{p-1,j} \end{bmatrix} = \begin{bmatrix} x_{j,0} \\ x_{j,1} \\ \cdot \\ \cdot \\ \cdot \\ x_{j,p-1} \end{bmatrix}$$

where

$$W = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \dots & \omega^{p-1} \\ \cdot & & & \\ \cdot & & & \\ \cdot & & & \\ 1 & \omega^{p-1} & \dots & \omega^{(p-1)^2} \end{bmatrix}$$

Hence, we see that

$$a_{ij} = \frac{1}{p} \sum_{k=0}^{p-1} \bar{\omega}^{ki} x_{jk}.$$

We have

$$\phi_0^{-1}(M) = \sum_{i,j} a_{ij} \bar{b}^i \bar{a}^j$$
 and  $\phi_1(M) = \sum_{i,j} \bar{a}_{ij} \bar{b}^i \bar{a}^j$ 

where  $\bar{a}_{ij}$  is obtained from  $a_{ij}$  by substituting  $\omega = 1$ . We have proved the first part of the next theorem. The second part follows from Proposition 3 in view of the fact that Sp is an order in  $\mathbb{Z}[\omega]_{p \times p}$ .

THEOREM 3.

(a) 
$$\mathbb{Z}G \simeq \{(\alpha, M) \in \mathbb{Z}\overline{G} \times \mathbb{Z}[\omega]_{p \times p} | M \text{ satisfies } (*), \theta_2(\alpha) = \phi_1(M) \}$$

(b)  $\mathscr{U}\mathbb{Z}G \simeq \{(\alpha, M) \in \mathscr{U}\mathbb{Z}\overline{G} \times \mathbb{Z}[\omega]_{p \times p} | M \text{ is a unit of } \mathbb{Z}[\omega]_{p \times p}, M \text{ satisfies } (*), \theta_2(\alpha) = \phi_1(M) \}.$ 

Here,

- (i)  $\theta_2: \mathbf{Z}\bar{G} \to (\mathbf{Z}/p\mathbf{Z})\bar{G}$  is the natural map mod p;
- (ii) The condition (\*) is

$$\sum_{i=0}^{p-1} x_{ji} \omega^{ki} \in p \mathbb{Z}[\omega], 0 \leq j, k < p, \omega^p = 1,$$

where  $\{x_{ij}\}$  are the pseudo diagonals of M; (iii)  $\phi_1(M) = \sum_{i,j} \bar{a}_{ij} \bar{b}^i \bar{a}^j$  where

$$a_{ij} = \frac{1}{p} \sum_{k=0}^{p-1} \tilde{\omega}^{ki} x_{jk} \in \mathbf{Z}[\omega]$$

and  $\bar{a}_{ij}$  is obtained from  $a_{ij}$  by putting  $\omega = 1$  and going mod p.

As in the case of Theorem 1 there is also a corresponding *p*-adic result.

**4. Groups of order 27.** Now, we specialize to the case p = 3;  $\omega^3 = 1$ . The groups are

$$G = \langle a, b | (a, b) = c, c \text{ central}, a^3 = b^3 = c^3 = 1 \rangle$$
, and  
 $H = \langle a, b | a^9 = 1 = b^3, b^{-1}ab = a^4 \rangle$ .

Then  $\bar{G} = \langle \bar{a} \rangle \times \langle \bar{b} \rangle$ ,  $\bar{H} = \langle \bar{a} \rangle \times \langle \bar{b} \rangle$  are both elementary abelian 3groups. It is well known [7, p. 57] that  $\mathscr{U} \mathbb{Z} \bar{G} = \pm \bar{G}$ ,  $\mathscr{U} \mathbb{Z} \bar{H} = \pm \bar{H}$ . We wish to give an explicit description for  $\mathscr{U} \mathbb{Z} G$  and  $\mathscr{U} \mathbb{Z} H$ . The diagram for  $\mathbb{Z} G$  is as follows:

$$B = \begin{bmatrix} 1 & & \\ & \omega & \\ & & \omega^2 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$



Specializing the condition (\*) to p = 3, we see that the matrix

$$M = \begin{bmatrix} x_{0,0} & x_{1,0} & x_{2,0} \\ x_{2,1} & x_{0,1} & x_{1,1} \\ x_{1,2} & x_{2,2} & x_{0,2} \end{bmatrix} \in \mathbf{Z}[\omega]_{3\times 3}$$

belongs to Sp if and only if it satisfies for each  $0 \leq i \leq 2$  the conditions

To find  $\phi_1(M)$  we need  $a_{ij} \in \mathbb{Z}[\omega]$  such that  $M = \sum a_{ij} B^i A^j$ . This gives

$$\begin{bmatrix} a_{0j} \\ a_{1j} \\ a_{2j} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix} \begin{bmatrix} x_{j0} \\ x_{j1} \\ x_{j2} \end{bmatrix}$$

and

$$a_{0j} = \frac{1}{3}(x_{j0} + x_{j1} + x_{j2})$$
(\*\*)
$$a_{1j} = \frac{1}{3}(x_{j0} + \omega^2 x_{j1} + \omega x_{j2})$$

$$a_{2j} = \frac{1}{3}(x_{j0} + \omega x_{j1} + \omega^2 x_{j2}).$$

We have  $\phi_1(M) = \sum \bar{a}_{ij} \bar{b}^i \bar{a}^j$ . We know that the units of  $\mathbb{Z}G$  are pairs  $(\alpha, M), \alpha \in \mathscr{U}\mathbb{Z}\bar{G}, M \in Sp$  with  $\phi_1(M) = \phi_2(\alpha)$ . But, since  $\mathscr{U}\mathbb{Z}\bar{G} = \pm \bar{G}$  we need matrices M such that

$$\phi_1(M) = \sum \bar{a}_{ij} \bar{b}^i \bar{a}^j = \pm \bar{a}^i \bar{b}^m = \theta_2(\pm a^i b^m)$$

for some l, m. This means that if  $\pi = \omega - 1$ ,

- (1) For two values of *i* and all *j*,  $a_{ij} \equiv 0 \pmod{\pi}$ ;
- (2) For the third value of i either

 $a_{i0} = \pm 1, a_{i1} \equiv a_{i2} \equiv 0 \pmod{\pi}$  or  $a_{i1} = \pm 1, a_{i0} \equiv a_{i2} \equiv 0 \pmod{\pi}$  or  $a_{i2} = \pm 1, a_{i0} \equiv a_{i1} \equiv 0 \pmod{\pi}.$  We have proved

THEOREM 4.  $\mathscr{U}\mathbb{Z}G \simeq \{M \in \mathscr{U}\mathbb{Z}[\omega]_{3\times 3} | M \text{ satisfies (1) and (2) where } a_{ij} are given by (**)\}.$ 

It is clear that the matrices  $Y \in \mathscr{U}\mathbb{Z}[\omega]_{3\times 3}$  which are congruent to  $I \mod \pi^3$  are contained in  $\mathscr{U}\mathbb{Z}G$  and hence  $\mathscr{U}\mathbb{Z}G$  is a congruence subgroup in  $SL(3, \mathbb{Z}[\omega])$ .

Now, we describe  $\mathscr{U}\mathbf{Z}H$ . Recall that if we have a matrix

$$X = Z' = \begin{bmatrix} x_{0,0} & x_{1,0} & x_{2,0} \\ x_{2,1} & x_{0,1} & x_{1,1} \\ x_{1,2} & x_{2,2} & x_{0,2} \end{bmatrix}$$

satisfying (\*) then the corresponding matrix in Sp is

$$Z = \begin{bmatrix} x_{0,0} & x_{1,0} & x_{2,0} \\ \omega x_{2,1} & x_{0,1} & x_{1,1} \\ \omega x_{1,2} & \omega x_{2,2} & x_{0,2} \end{bmatrix}.$$

If we write  $Z = \sum a_{ij}B^iA^j$  then it can be checked that  $\phi_1(Z) = \pm h$ ,  $h \in H$  if and only if the matrix X satisfies (1) and (2). We have

THEOREM 5.  $\mathscr{U}ZH \simeq \{Z \in \mathscr{U}Z[\omega]_{3\times 3} | Z' \text{ satisfies (1) and (2) where } a_{ij} are given by (**)\}.$ 

It is easily seen that  $\mathscr{U}\mathbf{Z}H$  is a congruence subgroup in  $SL(3, \mathbf{Z}[\omega])$ .

## References

- 1. P. J. Allen and C. Hobby, A characterization of units in  $Z[A_4]$ , J. Algebra 66 (1980), 534-543.
- 2. S. Galovich, I. Reiner and S. Ullom, Class groups for integral representations of metacyclic groups, Mathematika 19 (1972), 105-111.
- I. Hughes and K. R. Pearson, The group units of the integral group rings ZS<sub>3</sub>, Can. Math. Bull. 15 (1972), 529-534.
- 4. B. Huppert, Endliche Gruppen I (Springer-Verlag, Heidelberg, 1967).
- 5. C. Polcino Milies, The units of the integral group ring ZD<sub>4</sub>, Bol. Soc. Brasil. Mat. 4 (1972), 85–92.
- 6. D. S. Passman and P. F. Smith, Units in integral group rings, J. Algebra 69 (1981), 213-239.
- 7. S. K. Sehgal, Topics in group rings (Dekker, New York, 1978).

University of Heidelberg, Heidelberg, West Germany;

University of Alberta, Edmonton, Alberta