INTEGRAL GROUP RINGS OF SOME p-GROUPS

JÜRGEN RITTER AND SUDARSHAN SEHGAL

1. Introduction. The group of units, $\mathscr{U} Z G$, of the integral group ring of a finite non-abelian group G is difficult to determine. For the symmetric group of order 6 and the dihedral group of order 8 this was done by Hughes-Pearson [3] and Polcino Milies [5] respectively. Allen and Hobby [1] have computed $\mathscr{U} \mathbf{Z} A_{4}$, where A_{4} is the alternating group on 4 letters. Recently, Passman-Smith [6] gave a nice characterization of $\mathscr{U} \mathbf{Z} D_{2 p}$ where $D_{2 p}$ is the dihedral group of order $2 p$ and p is an odd prime. In an earlier paper [2] Galovich-Reiner-Ullom computed $\mathscr{U} \mathbf{Z} G$ when G is a metacyclic group of order $p q$ with p a prime and q a divisor of $(p-1)$. In this note, using the fibre product decomposition as in [2], we give a description of the units of the integral group rings of the two noncommutative groups of order p^{3}, p an odd prime. In fact, for these groups we describe the components of $\mathbf{Z} G$ in the Wedderburn decomposition of $\mathbf{Q} G$. The unit description is perhaps a little unsatisfying due to the difficulty in computing the units of commutative integral group rings. This difficulty does not arise if one considers the p-adic group ring $\mathbf{Z}_{p} G,|G|=p^{3}$, $\mathbf{Z}_{p}=$ the p-adic integers. Also, if $|G|=27$, the commutative group involved is of exponent 3 and its integral group ring has only trivial units; and we can describe $\mathscr{U} \mathbf{Z} G$ as a group of 3×3 matrices over $\mathbf{Z}[\omega], \omega^{3}=1$.

One of the groups of order p^{3} has a normal cyclic subgroup of order p^{2}. We consider in Section 2 a group of order p^{n} having a normal cyclic group of index p and specialize to the case $n=3$ in Section 3. The methods of this note can also handle extraspecial p-groups of order $p^{2 d+1}$ (see [4], p. 353) giving rise to matrices of size $p^{d} \times p^{d}$.

We are indebted to Ian Musson and the referee for improvements in this paper.
2. A group of order p^{n}. We consider the following group of order p^{n} :

$$
H=\left\langle a, b \mid a^{p^{n-1}}=1=b^{p}, b^{-1} a b=a^{p^{n-2}+1}\right\rangle
$$

We need an easy fibre product diagram of rings. Let I and J be two

[^0]ideals of a ring R such that $I \cap J=0$. Then

is a fibre product, in the sense that
$$
R \simeq\{(\alpha, \beta) \mid \alpha \in R / I, \beta \in R / J, \bar{\alpha}=\tilde{\beta}\} .
$$

This induces the fibre product of unit groups:

This is to be applied to the group ring $\mathbf{Z} X$ with $J=\Delta(X, N)$ as the kernel of the natural homomorphism $\mathbf{Z} X \rightarrow \mathbf{Z} X / N$ with $N \triangleleft X$ and $I=\hat{N} \mathbf{Z} G$ where $\hat{N}=\sum_{x \in N} x$. We shall write \hat{x} for $\langle\hat{x}\rangle$.

We shall need to number the entries of certain matrices by their pseudodiagonals. Let us describe the n diagonals of the $n \times n$ matrix $A=\left[a_{i j}\right]$ as follows

0th diagonal: $a_{1,1}, a_{2,2}, \ldots, a_{n, n}$
1st diagonal: $a_{1,2}, a_{2,3}, \ldots, a_{n-1, n}, a_{n, 1}$
2nd diagonal: $a_{1,3}, a_{2,4}, \ldots, a_{n-2, n}, a_{n-1,1}, a_{n, 2}$

$$
(n-1) \text { th diagonal: } a_{1, n}, a_{2,1}, \ldots, a_{n-1, n-2}, a_{n, n-1} \text {. }
$$

We shall have to number some matrices as $\left[x_{i j}\right]$ where $x_{i j}$ is in the i th diagonal at the j th spot in the above numbering, $0 \leqq i, j \leqq n-1$. Let ω be a primitive p th root of unity throughout this note.

Proposition 1. Suppose $x_{0}, \ldots, x_{p-1} \in \mathbf{Z}[\xi]$ are given with $\xi^{\xi^{l-1}}=\omega$. Then there exist $t_{i} \in \mathbf{Z}[\xi]$ satisfying

$$
\sum_{i=0}^{p-1} t_{i} \omega^{j i}=x_{j}, 0 \leqq j \leqq p-1 .
$$

if and only if

$$
\sum_{i=0}^{p-1} x_{i} \omega^{k i} \in p \mathbf{Z}[\xi] \quad \text { for all } 0 \leqq k \leqq p-1
$$

Proof. The given system of equations is

$$
W\left[\begin{array}{c}
t_{0} \\
\cdot \\
\cdot \\
\cdot \\
t_{p-1}
\end{array}\right]=\left[\begin{array}{c}
x_{0} \\
\cdot \\
\cdot \\
\cdot \\
x_{p-1}
\end{array}\right] \quad \text { where } W=\left[\omega^{i j}\right], 0 \leqq i, j<p
$$

Since W is a character matrix, it follows by the orthogonality relations that

$$
W^{-1}=\frac{1}{p}\left[\omega^{-i j}\right] .
$$

The system is equivalent to

$$
\left[\begin{array}{c}
t_{0} \\
t_{1} \\
\cdot \\
\cdot \\
\cdot \\
t_{p-1}
\end{array}\right]=W^{-1}\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{p-1}
\end{array}\right]
$$

Thus there is a solution $t_{0}, \ldots, p-1$ if and only if

$$
\frac{1}{p} \sum_{i=0}^{p-1} \omega^{-i k} x_{i} \in \mathbf{Z}[\xi]
$$

for all $0 \leqq k \leqq p-1$. This is equivalent to

$$
\sum_{i=0}^{p-1} \omega^{i k} x_{i} \in p \mathbf{Z}[\xi], 0 \leqq k \leqq p-1
$$

Proposition 2. Let A and B be $p \times p$ matrices over $\mathbf{Q}(\xi), \xi^{p l-1}=\omega$, given by

$$
B=\left[\begin{array}{lllll}
1 & & & & \\
& \omega & & & \\
& & . & & \\
& & & . & \\
& & & & \\
& & & & \omega^{p-1}
\end{array}\right], A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \ldots 0 \\
0 & 0 & 1 & 0
\end{array}\right] 0
$$

The $\mathbf{Z}[\xi]$-span of the matrices $\left\{B^{i} A^{j}, 0 \leqq i, j \leqq p-1\right\}$ consists of all
$p \times p$ matrices over $\mathbf{Z}[\xi]$ of the form

$$
M=\left[\begin{array}{llll}
x_{0,0} & x_{1,0} & \ldots & x_{p-1,0} \\
x_{p-1,1} & x_{0,1} & \ldots & x_{p-2,1} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & & \cdot \\
x_{1, p-1} & x_{2, p-1} & \ldots & x_{0, p-1}
\end{array}\right]
$$

such that for each j and $k, 0 \leqq j, k<p$,
$\left.{ }^{*}\right) \quad \sum_{i=0}^{p-1} x_{j i} \omega^{k i} \in p \mathbf{Z}[\xi]$.
Proof. For a fixed j, the matrices $B^{i} A^{j}, 0 \leqq i \leqq p-1$, have non-zero entries only in the j th diagonal. The $\mathbf{Z}[\xi]$-vector $\left(x_{0}, x_{1}, \ldots, x_{p-1}\right)$ is a diagonal in the span of $\left\{B^{i} A^{j}\right\}$ if and only if there exist $t_{i} \in \mathbf{Z}[\xi]$ such that

$$
\sum_{0}^{p-1} t_{i} B^{i}=\left[\begin{array}{llll}
x_{0} & & & \\
& x_{1} & & \\
& & \cdot & \\
& & & \\
& & & \\
& & & x_{p-1}
\end{array}\right]
$$

This means that

$$
\sum_{i} t_{i} \omega^{j i}=x_{j}, 0 \leqq j \leqq p-1
$$

Applying the last proposition to each diagonal we get our result.
The next proposition is well known.
Proposition 3. Let $o_{1} \subseteq o_{2}$ be \mathbf{Z}-orders in a rational algebra. If an element $\alpha \in o_{1}$ has an inverse in o_{2} then it is a unit of o_{1} already.

Proof. We have for the indices of additive groups

$$
\left(o_{2}: \alpha o_{1}\right)=\left(\alpha o_{2}: \alpha o_{1}\right) \leqq\left(o_{2}: o_{1}\right)
$$

which implies $\alpha o_{1}=o_{1}$ and the result follows.
Now, we study our group of order p^{n},

$$
H=\left\langle a, b \mid a^{p n-1}=1=b^{p}, b^{-1} a b=a^{p n-2+1}\right\rangle
$$

Writing $a^{-1} b^{-1} a b=a^{p n-2}=c$ we have $H^{\prime}=\langle c\rangle$ of order p. Thus

$$
\bar{H}=H /\langle c\rangle=\langle\bar{a}\rangle \times\langle\bar{b}\rangle
$$

Let λ be a primitive p^{n-2} th root of unity. Then

$$
\mathbf{Q} H=\mathbf{Q} \bar{H} \oplus \mathbf{Q}(\lambda)_{p \times p} .
$$

In fact,

$$
\mathbf{Q} \bar{H} \simeq \mathbf{Q} H / \Delta(H,\langle c\rangle) \simeq \mathbf{Q} H \hat{c}, \mathbf{Q}(\lambda)_{p \times p} \simeq \mathbf{Q} H / \hat{c} \mathbf{Q} H
$$

Clearly,

$$
\underset{\substack{Z H \\ \mathbf{Z} \bar{H} \\ Z H / \Delta(H,\langle c\rangle)} \mathbf{Z}[\lambda]_{p x p}}{ }
$$

with the projection onto the first component. We shall compute the projection in the second component. It is easily checked that

$$
\hat{c} \mathbf{Z} H+(1-c) \mathbf{Z} H=p \mathbf{Z} H+(1-c) \mathbf{Z} H
$$

and

$$
\hat{c} \mathbf{Z} H \cap(1-c) \mathbf{Z} H=\mathbf{0} .
$$

Thus we have the fibre product

with all maps natural. The $p \times p$ matrices

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots 0 \\
0 & 0 & 1 & 0 & \ldots 0 \\
. & & & \cdot \\
\cdot & & & \cdot \\
. & & & \cdot \\
0 & 0 & & \ldots . \\
\lambda & 0 & & \ldots .
\end{array}\right] \text { and } B=\left[\begin{array}{llll}
1 & & & \\
& \omega & & \\
& & \cdot & \\
& & \cdot & \\
& & & \cdot \\
& & & \omega^{p-1}
\end{array}\right], \lambda^{p^{n-3}}=\omega
$$

satisfy

$$
A^{p}=\lambda I, B^{p}=I, B^{-1} A B=A^{p n-2+1} .
$$

That the matrices $\left\{B^{i} A^{j}\right\}, 0 \leqq i, j<p$, are linearly independent over $\mathbf{Z}[\lambda]$ can be seen as follows.

Suppose that

$$
\sum_{i, j} z_{i j} B^{i} A^{j}=0
$$

Since A^{j} has non zero entries only in the j th diagonal we have

$$
\sum_{i} z_{i j} B^{i} A^{j}=0 \quad \text { for each } j \text {. }
$$

It follows from the nonsingularity of A that

$$
\sum_{i} z_{i j} B^{i}=0
$$

This easily implies that $z_{i j}=0$ for all i, j.
Let $S p$ be the $\mathbf{Z}[\lambda]$-span of the matrices $\left\{B^{i} A^{j} \mid 0 \leqq i, j<p\right\}$. We claim that T is isomorphic to $S p$. Consider the map

$$
\phi: \mathbf{Z} H \rightarrow S p, \phi(a)=A, \phi(b)=B .
$$

Since $\hat{c}=1+c+\ldots+c^{p-1}$ is mapped to $\left(1+\omega+\ldots+\omega^{p-1}\right) I=0$, we have an induced map

$$
\phi_{0}: T \rightarrow S p .
$$

Since $\phi\left(a^{p k} a^{i} b^{j}\right)=\lambda^{k} A^{i} B^{j}, \phi_{0}$ is onto $S p$. Also, ϕ_{0} is one to one as after tensoring with \mathbf{Q} we see that both T and $S p$ have \mathbf{Q}-dimension ($p^{n}-p^{n-1}$).

Now we give a valuation theoretical description of $S p$.
Proposition 4. The matrix $Z \in \mathbf{Z}[\lambda]_{p \times p} \in S p$ if and only if the matrix $X=Z^{\prime}$ satisfies

$$
\sum_{i=0}^{p-1} x_{j i} \omega^{k i} \in p \mathbf{Z}[\lambda], \quad \text { for all } 0 \leqq j, k<p
$$

where Z^{\prime} is obtained from Z by dividing all entries below the main diagonal by λ.

Proof. Observe that A^{i} has entries $1,1, \ldots, 1, \lambda, \ldots, \lambda$ in the i th i
diagonal and zeros elsewhere. Thus in order to compute $S p$ we need only calculate the span $\left\{B^{j} A^{i}, 0 \leqq j \leqq p\right\}$ separately for every i. Thus we need to find all $\mathbf{Z}[\lambda]$-vectors $\left(z_{i 0}, \ldots, z_{i p-1}\right)$ such that

$$
\sum_{=0}^{p-1} t_{j} B^{j}\left[\begin{array}{cccccc}
1 & & & & & \\
& \cdot & & & & \\
& \cdot & & & & \\
& & 1 & & & \\
& & & \lambda & & \\
& & & & \cdot & \\
& & & & & \cdot \\
& & & & & \lambda
\end{array}\right]=\left[\begin{array}{lllll}
z_{i 0} & & & & \\
& z_{i 1} & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & \cdot & \\
& & & & z_{i p-1}
\end{array}\right],
$$

which is equivalent to

$$
\sum_{j=0}^{p-1} t_{j} B^{j}=\left[\begin{array}{ccccccc}
z_{i 0} & & & & & & \\
& \cdot & & & & & \\
& & \cdot & & & & \\
& & & \cdot & & & \\
& & & z_{i, p-i-1} & & & \\
& & & z_{i, p-i} \lambda^{-1} & & \\
& & & & & \cdot & \\
& & & & & \cdot & \\
& & & & & & z_{i, p-1} \lambda^{-1}
\end{array}\right]
$$

The result now follows by Proposition 2.
We have the diagram

which is commutative by setting $\phi_{1}=\theta_{1} \phi_{0}{ }^{-1}$. Let us describe the map ϕ_{1}. Given $M \in S p$ we wish to write M as $\sum \alpha_{i j} B^{i} A^{j}$ with $\alpha_{i j} \in \mathbf{Z}[\lambda], 0 \leqq i, j$ $<p$. Let M^{\prime} be obtained from M by dividing all entries below the main diagonal by λ. Then the j th diagonal $x_{j 0}, \ldots, x_{j, p-1}$ of M^{\prime} is the same as the main diagonal of $\sum_{i} \alpha_{i j} B^{i}$. We have

$$
W\left[\begin{array}{c}
\alpha_{0 j} \\
\cdot \\
\cdot \\
\cdot \\
\alpha_{p-1, j}
\end{array}\right]=\left[\begin{array}{c}
x_{j 0} \\
\cdot \\
\cdot \\
\cdot \\
x_{j, p-1}
\end{array}\right], \quad W=\left[\begin{array}{ccl}
1 & 1 & \ldots 1 \\
1 & \omega & \ldots \omega^{p-1} \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
1 & \omega^{p-1} & \ldots \omega^{(p-1)^{2}}
\end{array}\right] .
$$

Thus

$$
\alpha_{i j}=\frac{1}{p} \sum_{k} \omega^{-i k} x_{j k}
$$

Writing

$$
\alpha_{i j}=\sum d_{i j k} \lambda^{k}, d_{i j k} \in \mathbf{Z}[\omega], 0 \leqq k<p^{n-3}
$$

we have

$$
\begin{aligned}
M=\sum d_{i j k} \lambda^{k} B^{i} A^{j}=\sum_{i, j}\left(\sum_{k} d_{i j k} A^{p k}\right) & B^{i} A^{j}, \\
& 0 \leqq i, j<p, 0 \leqq k<p^{n-3} .
\end{aligned}
$$

The commutative diagram implies that

$$
\phi_{1}(M)=\sum \bar{d}_{i j \bar{b}} \bar{b}^{i} \bar{a}^{j+p k}
$$

where $\bar{d}_{i j k}$ is obtained from $d_{i j k}$ by substituting $\omega=1$ and going $\bmod p$.
In view of Proposition 3, we have proved
Theorem 1. (a) $\mathbf{Z} H \simeq\left\{(\alpha, M) \in \mathbf{Z} \bar{H} \times \mathbf{Z}[\lambda]_{p \times p} \mid M^{\prime}\right.$ satisfies $\left(^{*}\right)$ and $\left.\theta_{2}(\alpha)=\phi_{1}(M)\right\}$.
(b) $\mathscr{U} \mathbf{Z} H \simeq\left\{(\alpha, M) \in \mathscr{U} \mathbf{Z} \bar{H} \times \mathbf{Z}[\lambda]_{p \times p} \mid M\right.$ is a unit of $\mathbf{Z}[\lambda]_{p \times p}, M^{\prime}$ satisfies ${ }^{*}$) and $\left.\phi_{2}(\alpha)=\phi_{1}(M)\right\}$. Here
(i) M^{\prime} is obtained from M by dividing all entries below the main diagonal by λ, λ is a primitive p^{n-2} th root of unity;
(ii) The condition $\left.{ }^{*}\right)$ is

$$
\sum_{i=0}^{p-1} x_{j i} \omega^{k i} \in p \mathbf{Z}[\lambda], 0 \leqq j, k<p, \omega=\lambda^{p^{n-3}}
$$

where $\left\{x_{i j}\right\}$ are the pseudo diagonals of M^{\prime};
(iii) $\theta_{2}: \mathbf{Z} \bar{H} \rightarrow(\mathbf{Z} / p \mathbf{Z}) \bar{H}$ is the natural map $\bmod p$;
(iv) $\phi_{1}(M)=\sum_{i, j, k} \bar{d}_{i j k} \bar{b}^{i} \bar{a}^{j+p k}$ where

$$
\alpha_{i j}=\frac{1}{p} \sum_{l} \omega^{-i l} x_{j l} \in \mathbf{Z}[\lambda]
$$

is written as $\sum_{k} d_{i j k} \lambda^{k}, d_{i j k} \in \mathbf{Z}[\omega], 0 \leqq k<p^{n-3}$ and $\bar{d}_{i j k}$ is obtained from $d_{i j k}$ by substituting $\omega=1$ and going $\bmod p$.

If we replace \mathbf{Z} by the ring of p-adic integers \mathbf{Z}_{p} then all the work above goes through. But in this case one knows explicitly that $\mathscr{U} \mathbf{Z}_{p} \bar{H}$ consists of all elements of nonzero augmentation. Therefore, a corresponding result for $\mathbf{Z}_{p} H$ is obtained.
3. Groups of order p^{3}. If p is an odd prime, the two noncommutative groups of order p^{3} are

$$
H=\left\langle a, b \mid a^{p 2}=1=b^{p}, b^{-1} a b=a^{p+1}\right\rangle
$$

and

$$
G=\left\langle a, b \mid(a, b)=a^{-1} b^{-1} a b=c, c a=a c, c b=b c, a^{p}=1=b^{p}=c\right\rangle
$$

We reserve the letters G and H for these groups throughout this section. The first one is a special case of the group discussed in the last section, obtained by taking $n=3$. We have $\omega=\lambda$, a primitive p th root of unity, $c=a^{p}$ and the fibre product diagram is as follows:

Theorem 1 specializes to
Theorem 2. (a) $\mathbf{Z} H \simeq\left\{(\alpha, M) \in \mathbf{Z} \bar{H} \times \mathbf{Z}[\omega]_{p \times p} \mid M^{\prime}\right.$ satisfies (*) * and $\left.\theta_{2}(\alpha)=\phi_{1}(M)\right\}$.
(b) $\mathscr{U} \mathbf{Z} H \simeq\left\{(\alpha, M) \in \mathscr{U} \mathbf{Z} \bar{H} \times \mathbf{Z}[\omega]_{p \times p} \mid M\right.$ is a unit of $\mathbf{Z}[\omega]_{p \times p}, M^{\prime}$ satisfies $\left(^{*}\right)$ and $\left.\theta_{2}(\alpha)=\phi_{1}(M)\right\}$. Here,
(i) M^{\prime} is obtained from M by dividing all entries below the main diagonal $b y \omega$.
(ii) The condition (*) is

$$
\sum_{i=0}^{p-1} x_{j i} \omega^{k i} \in p \mathbf{Z}[\omega], 0 \leqq j, k<p, \omega^{p}=1
$$

where $\left\{x_{i j}\right\}$ are the pseudo diagonals of M^{\prime}.
(iii) $\theta_{2}: \mathbf{Z} \bar{H} \rightarrow(\mathbf{Z} / p \mathbf{Z}) \bar{H}$ is the natural map $\bmod p$.
(iv) $\phi_{\mathbf{1}}(M)=\sum_{i, j} \bar{\alpha}_{i j} \bar{b}^{i} \bar{a}^{j}$ where

$$
\alpha_{i j}=\frac{1}{p} \sum_{l} \bar{\omega}^{i l} x_{j l} \in \mathbf{Z}[\omega]
$$

and $\bar{\alpha}_{i j}$ is obtained from $\alpha_{i j}$ by putting $\omega=1$ and going $\bmod p$.
Now, we consider our second group of order p^{3}. The factor commutator group, $\bar{G}=G /\langle c\rangle$ is elementary abelian of order $p^{2}, \bar{G}=\langle\bar{a}\rangle \times\langle\bar{b}\rangle$. We have the decomposition

$$
\mathbf{Q} G \simeq \mathbf{Q} \bar{G} \oplus \mathbf{Q}(\omega)_{p \times p},
$$

where $\mathbf{Q}(\omega)_{p \times p}$ is the ring of all $p \times p$ matrices over $Q(\omega)$. In fact

$$
\begin{aligned}
& \mathbf{Q} \bar{G} \simeq \mathbf{Q} G / \Delta(G,\langle c\rangle) \simeq \mathbf{Q} G \hat{c}, \\
& \mathbf{Q}(\omega)_{p \times p} \simeq \mathbf{Q} G / \hat{c} \mathbf{Q} G .
\end{aligned}
$$

Clearly,

$$
\begin{gathered}
\mathbf{Z} G \rightarrow \mathbf{Z} G / \Delta(G,\langle c\rangle) \oplus \mathbf{Z}[\omega]_{p x p} \\
\chi \mid \\
\mathbf{Z} \bar{G}
\end{gathered}
$$

with the projection onto the first component. We shall compute the projection in the second component. Consider the fibre product diagram

where θ_{2}, θ_{3} and θ_{4} are the natural projections and θ_{1} is the map

$$
\theta_{1}\left(\sum z c^{i} a^{j} b^{k}\right)=\sum \bar{z} \bar{a} \bar{a}^{j} \bar{b}^{k}, \quad z \in \mathbf{Z}
$$

It is worthwhile noting that $\mathbf{Z} G / \hat{c} \mathbf{Z} G$ is isomorphic to the twisted group ring $\mathbf{Z}[\omega] \circ \bar{G}$ with $\omega \bar{b} \bar{a}=\bar{a} \bar{b}$. The map θ_{1} after this identification is given by

$$
\theta_{1}\left(\sum \alpha \bar{a}^{i} \bar{b}^{j}\right)=\sum \bar{\alpha} \bar{a}^{i} \bar{b}^{j}, \quad \alpha \in \mathbf{Z}[\omega]
$$

where $\bar{\alpha}$ is obtained from α by substituting $\omega=1$.
Let us define a map ϕ_{0} from $\mathbf{Z}[\omega] \circ \bar{G}$ to $\mathbf{Z}[\omega]_{p \nless p}$ by

$$
\bar{b} \rightarrow B=\left[\begin{array}{lllll}
1 & & & & \\
& \omega & & & \\
& & . & & \\
& & . & \\
& & & . & \\
& & & & \omega^{\nu-1}
\end{array}\right], \bar{a} \rightarrow A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\cdot & & & \\
. & & & \\
. & & & \\
1 & 0 & 0 & \ldots
\end{array}\right] .
$$

Then $\omega B A=A B, A^{p}=I=B^{p}$. Moreover, if $\sum_{i, j} \alpha_{i j} B^{i} A^{j}=0, \alpha_{i j} \in$ $\mathbf{Z}[\omega]$ and $0 \leqq i, j<p$, then $\alpha_{i j}=0$ for all i, j. This can be seen as follows:

$$
\sum_{i} \sum_{j} \alpha_{i j} B^{i} A^{j}=0 \Rightarrow \sum_{i} \alpha_{i j} B^{i} A^{j}=0
$$

as A^{j} has nonzero entries only in the j th diagonal. Further, due to the nonsingularity of A it follows that $\sum_{i} \alpha_{i j} B^{i}=0$, and this implies that $\alpha_{i j}=0$ for all i, j. We have proved that

$$
\mathbf{Z} G / \hat{c} \mathbf{Z} G \simeq \mathbf{Z}[\omega] \circ \bar{G} \simeq \operatorname{span}\left\langle B^{i} A^{j}, 0 \leqq i, j<p\right\rangle=S p,
$$

the $\mathbf{Z}[\omega]$-span of the matrices $\left\{B^{i} A^{j}\right\}$. It follows by Proposition 2 that

$$
S p=\left\{M \in \mathbf{Z}[\omega]_{p \times p} \mid M \text { satisfies } \sum_{i=0}^{p-1} x_{j i} \omega^{k i} \in p \mathbf{Z}[\omega] \text { for all } 0 \leqq k, j<p\right\} .
$$

Let us understand the induced map $\phi_{1}=\theta_{1} \phi_{0}{ }^{-1}$:

Given $M \in S p$, we wish to find $\phi_{0}{ }^{-1}(M) \in \mathbf{Z}[\omega] \circ \bar{G}$. Let $\left\{x_{j, 0}, \ldots, x_{j, p-1}\right\}$ be the j th diagonal of M. We wish to find $a_{i j} \in \mathbf{Z}[\omega]$ such that $\sum_{i, j} a_{i j} B^{i} A^{j}=M$. It is necessary to find $a_{i j}$ such that

$$
\sum_{i} a_{i j} B^{i}=\left[\begin{array}{lll}
x_{j, 0} & & \\
& \cdot & \\
& \cdot & \\
& & x_{j, p-1}
\end{array}\right], 0 \leqq j \leqq p-1 .
$$

This is equivalent to

$$
W\left[\begin{array}{l}
a_{0, j} \\
\cdot \\
\cdot \\
\cdot \\
a_{p-1, j}
\end{array}\right]=\left[\begin{array}{l}
x_{j, 0} \\
x_{j, 1} \\
\cdot \\
\cdot \\
\cdot \\
x_{j, p-1}
\end{array}\right]
$$

where

$$
W=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
1 & \omega & \ldots & \omega^{p-1} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
1 & \omega^{p-1} & \ldots & \omega^{(p-1)^{2}}
\end{array}\right]
$$

Hence, we see that

$$
a_{i j}=\frac{1}{p} \sum_{k=0}^{p-1} \bar{\omega}^{k i} x_{j k} .
$$

We have

$$
\phi_{0}{ }^{-1}(M)=\sum_{i, j} a_{i j} \bar{b}^{i} \bar{a}^{j} \quad \text { and } \quad \phi_{\mathbf{1}}(M)=\sum_{i, j} \bar{a}_{i j} \bar{b}^{i} \bar{a}^{j}
$$

where $\bar{a}_{i j}$ is obtained from $a_{i j}$ by substituting $\omega=1$. We have proved the first part of the next theorem. The second part follows from Proposition 3 in view of the fact that $S p$ is an order in $\mathbf{Z}[\omega]_{p \times p}$.

Theorem 3.
(a) $\mathbf{Z} G \simeq\left\{(\alpha, M) \in \mathbf{Z} \bar{G} \times \mathbf{Z}[\omega]_{p \times p} \mid M\right.$ satisfies $\left.\left({ }^{*}\right), \theta_{2}(\alpha)=\phi_{1}(M)\right\}$.
(b) $\mathscr{U} \mathbf{Z} G \simeq\left\{(\alpha, M) \in \mathscr{U} \mathbf{Z} \bar{G} \times \mathbf{Z}[\omega]_{p \times p} \mid M\right.$ is a unit of $\mathbf{Z}[\omega]_{p \times p}, M$ satisfies $\left.\left({ }^{*}\right), \theta_{2}(\alpha)=\phi_{1}(M)\right\}$.

Here,
(i) $\theta_{2}: \mathbf{Z} \bar{G} \rightarrow(\mathbf{Z} / p \mathbf{Z}) \bar{G}$ is the natural $m a p \bmod p$;
(ii) The condition $\left({ }^{*}\right)$ is

$$
\sum_{i=0}^{p-1} x_{j i} \omega^{k i} \in p \mathbf{Z}[\omega], 0 \leqq j, k<p, \omega^{p}=1,
$$

where $\left\{x_{i j}\right\}$ are the pseudo diagonals of M;
(iii) $\phi_{1}(M)=\sum_{i, j} \bar{a}_{i j} \bar{b}^{i} \bar{a}^{j}$ where

$$
a_{i j}=\frac{1}{p} \sum_{k=0}^{p-1} \bar{\omega}^{k i} x_{j k} \in \mathbf{Z}[\omega]
$$

and $\bar{a}_{i j}$ is obtained from $a_{i j}$ by putting $\omega=1$ and $\operatorname{going} \bmod p$.
As in the case of Theorem 1 there is also a corresponding p-adic result.
4. Groups of order 27. Now, we specialize to the case $p=3 ; \omega^{3}=1$. The groups are

$$
\begin{aligned}
& \left.G=\langle a, b|(a, b)=c, c \text { central, } a^{3}=b^{3}=c^{3}=1\right\rangle, \quad \text { and } \\
& H=\left\langle a, b \mid a^{9}=1=b^{3}, b^{-1} a b=a^{4}\right\rangle .
\end{aligned}
$$

Then $\bar{G}=\langle\bar{a}\rangle \times\langle\bar{b}\rangle, \bar{H}=\langle\bar{a}\rangle \times\langle\bar{b}\rangle$ are both elementary abelian 3groups. It is well known [7, p. 57] that $\mathscr{U} \mathbf{Z} \bar{G}= \pm \bar{G}, \mathscr{U} \mathbf{Z} \bar{H}= \pm \bar{H}$. We wish to give an explicit description for $\mathscr{U} \mathbf{Z} G$ and $\mathscr{U} \mathbf{Z} H$. The diagram for $\mathbf{Z} G$ is as follows:

$$
B=\left[\begin{array}{lll}
1 & & \\
& \omega & \\
& & \omega^{2}
\end{array}\right], \quad A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right],
$$

Specializing the condition $\left(^{*}\right)$ to $p=3$, we see that the matrix

$$
M=\left[\begin{array}{lll}
x_{0,0} & x_{1,0} & x_{2,0} \\
x_{2,1} & x_{0,1} & x_{1,1} \\
x_{1,2} & x_{2,2} & x_{0,2}
\end{array}\right] \in \mathbf{Z}[\omega]_{3 \times 3}
$$

belongs to S_{p} if and only if it satisfies for each $0 \leqq i \leqq 2$ the conditions

$$
\begin{aligned}
& x_{i 0}+x_{i 1}+x_{i 2} \in 3 \mathbf{Z}[\omega] \\
& x_{i 0}+x_{i 1} \omega+x_{i 2} \omega^{2} \in 3 \mathbf{Z}[\omega] \\
& x_{i 0}+x_{i 1} \omega^{2}+x_{i 2} \omega \in 3 \mathbf{Z}[\omega] .
\end{aligned}
$$

To find $\boldsymbol{\phi}_{1}(M)$ we need $a_{i j} \in \mathbf{Z}[\omega]$ such that $M=\sum a_{i j} B^{i} A^{j}$. This gives

$$
\left[\begin{array}{l}
a_{0 j} \\
a_{1 j} \\
a_{2 j}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right]\left[\begin{array}{l}
x_{j 0} \\
x_{j 1} \\
x_{j 2}
\end{array}\right]
$$

and

$$
\left(\begin{array}{l}
a_{0 j}=\frac{1}{3}\left(x_{j 0}+x_{j 1}+x_{j 2}\right) \\
a_{1 j}=\frac{1}{3}\left(x_{j 0}+\omega^{2} x_{j 1}+\omega x_{j 2}\right) \\
a_{2 j}=\frac{1}{3}\left(x_{j 0}+\omega x_{j 1}+\omega^{2} x_{j 2}\right) .
\end{array}\right.
$$

We have $\phi_{1}(M)=\sum \bar{a}_{i j} \bar{b}^{i} \bar{a}^{j}$. We know that the units of $\mathbf{Z} G$ are pairs $(\alpha, M), \alpha \in \mathscr{U} \mathbf{Z} \bar{G}, M \in S p$ with $\phi_{1}(M)=\phi_{2}(\alpha)$. But, since $\mathscr{U} \mathbf{Z} \bar{G}= \pm \bar{G}$ we need matrices M such that

$$
\phi_{1}(M)=\sum \bar{a}_{i j} \bar{b}^{i} \bar{a}^{j}= \pm \bar{a}^{l} \bar{b}^{m}=\theta_{2}\left(\pm a^{l} b^{m}\right)
$$

for some l, m. This means that if $\pi=\omega-1$,
(1) For two values of i and all $j, a_{i j} \equiv 0(\bmod \pi)$;
(2) For the third value of i either

$$
\begin{array}{ll}
a_{i 0}= \pm 1, a_{i 1} \equiv a_{i 2} \equiv 0(\bmod \pi) & \text { or } \\
a_{i 1}= \pm 1, a_{i 0} \equiv a_{i 2} \equiv 0(\bmod \pi) & \text { or } \\
a_{i 2}= \pm 1, a_{i 0} \equiv a_{i 1} \equiv 0(\bmod \pi)
\end{array}
$$

We have proved
Theorem 4. $\mathscr{U} \mathbf{Z} G \simeq\left\{M \in \mathscr{U} \mathbf{Z}[\omega]_{3 \times 3} \mid M\right.$ satisfies (1) and (2) where $a_{i j}$ are given by (**) ${ }^{*}$.

It is clear that the matrices $Y \in \mathscr{U} \mathbf{Z}[\omega]_{3 \times 3}$ which are congruent to $I \bmod \pi^{3}$ are contained in $\mathscr{U} \mathbf{Z} G$ and hence $\mathscr{U} \mathbf{Z} G$ is a congruence subgroup in $S L(3, \mathbf{Z}[\omega])$.

Now, we describe $\mathscr{U} \mathbf{Z} H$. Recall that if we have a matrix

$$
X=Z^{\prime}=\left[\begin{array}{lll}
x_{0,0} & x_{1,0} & x_{2,0} \\
x_{2,1} & x_{0,1} & x_{1,1} \\
x_{1,2} & x_{2,2} & x_{0,2}
\end{array}\right]
$$

satisfying $\left({ }^{*}\right)$ then the corresponding matrix in $S p$ is

$$
Z=\left[\begin{array}{lll}
x_{0,0} & x_{1,0} & x_{2,0} \\
\omega x_{2,1} & x_{0,1} & x_{1,1} \\
\omega x_{1,2} & \omega x_{2,2} & x_{0,2}
\end{array}\right] .
$$

If we write $Z=\sum a_{i j} B^{i} A^{j}$ then it can be checked that $\phi_{1}(Z)= \pm h$, $h \in H$ if and only if the matrix X satisfies (1) and (2). We have

Theorem 5. $\mathscr{U} \mathbf{Z} H \simeq\left\{Z \in \mathscr{U} \mathbf{Z}[\omega]_{3 \times 3} \mid Z^{\prime}\right.$ satisfies (1) and (2) where $a_{i j}$ are given by (**) $\}$.

It is easily seen that $\mathscr{U} \mathbf{Z} H$ is a congruence subgroup in $S L(3, \mathbf{Z}[\omega])$.

References

1. P. J. Allen and C. Hobby, A characterization of units in $Z\left[A_{4}\right]$, J. Algebra 66 (1980), 534-543.
2. S. Galovich, I. Reiner and S. Ullom, Class groups for integral representations of metacyclic groups, Mathematika 19 (1972), 105-111.
3. I. Hughes and K. R. Pearson, The group units of the integral group rings $Z S_{3}$, Can. Math. Bull. 15 (1972), 529-534.
4. B. Huppert, Endliche Gruppen I (Springer-Verlag, Heidelberg, 1967).
5. C. Polcino Milies, The units of the integral group ring $\mathbf{Z} D_{4}$, Bol. Soc. Brasil. Mat. 4 (1972), 85-92.
6. D. S. Passman and P. F. Smith, Units in integral group rings, J. Algebra 69 (1981), 213-239.
7. S. K. Sehgal, Topics in group rings (Dekker, New York, 1978).

University of Heidelberg,
Heidelberg, West Germany;
University of Alberta, Edmonton, Alberta

[^0]: Received October 13, 1980 and in revised form April 14, 1981. This work has been supported by NSERC Grant A-5300 and a DFG Travel Fellowship.

