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ON STRICT INCLUSIONS OF
WEIGHTED DIRICHLET SPACES OF MONOGENIC FUNCTIONS

K. GURLEBECK AND H.R. MALONEK

We consider a scale of weighted spaces of quaternion-valued functions of three real
variables. This scale generalises the idea of Qp-spaces in complex function theory.
The goal of this paper is to prove that the inclusions of spaces from the scale are
strict inclusions. As a tool we prove some properties of special monogenic polynomials
which have an importance in their own right independently of their use in the scale
of Qp-spaces.

1. INTRODUCTION

In 1995 a new class of holomorphic functions, the scale of so-called Qp-spaces, was
introduced (see [6]) and subsequently studied intensively by several authors (see for
example, [3, 5]). Let A = {2 : \z\ < 1} be the complex unit disk. The Bloch space is
then defined by

B = {/ : / analytic in A and B(f) = sup(l - |z|2)|/'(z)| < 00}
*• zSA '

while the Dirichlet space is given by

D = • ! / : / analytic in A and f\f'(z)\2dxdy < 001.

A

The weight function g{z,a) = ln|(l - az)/(a - z)\ is defined as the composition of the
Mobius transformation (pa(z) = (a — z)/(l - az) and the fundamental solution of the
two-dimensional real Laplacian. Then the spaces

QP = \f '• / analytic in A and sup / | / ' (z) | gp(z, a) dxdy < 00 >, 0 < p
I aeA J J

< 00

are called Qp-spaces. This approach was motivated by attempts to substitute a general
parameter p for the parameter 2 in the definition of the Bloch space and to define spaces
which are invariant under Mobius transformations. Another idea which leads to these
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34 K. Gurlebeck and H.R. Malonek [2]

Qp-spaces is to find spaces with D and B, respectively, "at both the end points" of the
range. Already before the idea of Qp-spaces, spaces of analytic functions between the
Hardy and the Dirichlet space were studied in [1], based on the similar weight function
(1 — |x|)Q. A lot of basic results are already known, such as for instance

D c Q p C Q q C BMOA 0 < p < q < 1 (see [6])

(1) Qi = BMOA see [6]

Q p = B Vp > 1 (see [3]).

This means that the spaces Q p form a scale as desired and for special values of the
scale parameter p these spaces are connected with other known and important spaces
of analytic functions. Surveys about special results, boundary values of Qp-functions,
equivalent definitions, applications, and open problems are given in [7, 13] (see therein
also for a detailed bibliography). There are several attempts to generalise these ideas and
the corresponding approaches to higher dimensions [26, 27, 9, 29] or to other classes of
functions. One idea is to treat the case of the unit ball in C". Basic ideas are to replace
the derivative / ' by the complex gradient of / and the measure dxdy by a weighted
measure d\{z) = (dv)/(l - |z | 2)n + 1 , where dv stands for the usual Lebesgue measure. By
using an invariant Green function, some results similar to the complex one-dimensional
case were proved. The most important results are that

Q p = B for 1 < p < n/{n - 1) and Qj = BMOA(dB),

where dB is the surface of the unit ball in C". But, for p $ ((n - l)/n,n/(n - 1))
all Qp-spaces are trivial, that is, only constant functions belong to Qp. Other gener-
alisations of Qp-spaces to higher real dimensions have been published for instance in
[21, 10, 14]. These approaches are related to harmonic analysis and try to transfer
the Mobius invariance of the spaces. Because the differentiability is lost, the complex
derivative is replaced by partial derivatives, the gradient, or by finite differences. Never-
theless, a lot of properties analogous to the complex case have already been proved. Our
aim is to look for other generalisations of the complex (one-dimensional) ideas, where
on the one hand most of the advantages of holomorphic functions (including the differ-
entiability) are preserved and on the other hand the Cn-problems do not appear. In
this paper we study hypercomplex generalisations of Qp-spaces. Instead of holomorphic
functions in the unit disk we study regular functions / : Rn i-» Clo,n-i (that is, solutions
of generalised Cauchy-Riemann systems). These functions can be considered in all real
space dimensions. Applying the generalised Cauchy-Riemann operator D, its adjoint JD,
the hypercomplex Mobius transformation <pa{x) = (a — x)(l — ax)"1, and a modified
fundamental solution g of the real Laplacian, we consider generalised Qp-spaces defined
by

Qp = (/€ker£>: sup [ \Df(x)\2(g(<pa(x))Ydx < ool.
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where Bi(O) stands for the unit ball in Kn. This definition generalises the complex
(one-dimensional) case because for n — 2 the definitions coincide. Furthermore, it is
known that the function theory of monogenic functions has a very similar structure
to the complex (one-variable) function theory (see [8, 18, 12, 20]). The first paper
following this way was [16]. Later on it was proved in [17] that Df can be considered
to be the derivative of a monogenic function / for all dimensions n. For the case of
functions / : R4 >-» H it is already known from [30, 25] that D may be interpreted
as the derivative of a quaternion-valued regular function. That is why the definition
of Q p in [16] seems to generalise the complex one-dimensional case. In [10] another
generalisation of the complex case is considered which is also related to the approaches
in [21, 1]. Instead of the derivative of the function the partial derivatives were used
weighted by a more general weight function. The main goal in [10] was to construct
generalisations of the complex Qp-spaces conserving the Mobius invariance and at the
same time the principal idea of a weight function with some kind of mass concentration
around the singularity. The result were Qp-spaces defined with the help of a weighted
gradient norm. A summary and a comparison of different approaches for the case of
monogenic functions can be found in [11]. Continuing this comparison, it is shown in
[15] that the norms from [10] are equivalent to weighted Sobolev norms and that the
norms defined by the gradient in [10] and the derivative in [16], respectively, are not
equivalent in higher dimensions. It should be mentioned that in the complex case all the
above approaches define equivalent norms. For better understanding we shall comment in
Section 3 of this paper on the essential results of [16]. It was there left unsolved whether
the inclusions of Qp-spaces with different parameter p are strict inclusions or not. The
positive answer to this question will be proved in Section 4. Additionally, we prove a
characterisation of Qp-functions by characterising their Taylor coefficients.

2. PRELIMINARIES

Let d , . . . , em be an orthonormal basis in Rm. Consider the 2m-dimensional Clifford
algebra C/0,m generated from Rm equipped with a negative inner product. Then we have
the anti-commutation relationship eje, -t-ej-e,- = — 2<5y-eo, i,j = l,...,m, where <5y is the
Kronecker delta symbol and e0 = 1 is the identity of Cl0<m. It may be observed that each
element of the algebra can be represented in the form

A

where aA are real numbers and eA,A Q {!,..., m } , with eA = eit... eit, e{i) = e{, i =

1, . . . , m, and eg = e0, are the basis elements of C/o,m-
In what follows identify each element x = (x i , . . . , xm) of Rm with the element

m

x = ^2 xkek
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of the Clifford algebra. In this way the vector space Rm is embedded in C/0,m and we
shall call these elements x of C/0,m vectors. By

a = 22 QA^A,
A

where e^ = eik... eh, e, = -a,-, j = 1 , . . . , m, we define a conjugate element.

For C^-functions defined on a domain fi C R' we introduce a generalised Cauchy-

Riemann operator by
" d

Note that DD = A, where A is the Laplacian in W.

A function / : Q i-> Clo<m is said to be left-monogenic if it satisfies the equation
(Df)(x) = 0 for each x € fi.

In Section 3 we shall work in H, the skew field of quaternions. As usual we identify M

with Clo,2 and write { l , i , j ,k} instead of {eo,ei,e2,eie2}. Points of R3 have coordinates
(XQ, Xi,x2), and we use the Cauchy-Riemann operator

D-— i— • —
dx dx\ 6x2

r\ r\ r\

D = -r i-^ j - ^ — is the conjugate Cauchy-Riemann operator.
oxo axi 0x2
Another important tool in the context of Qp-spaces is the appropriate explicit form

of the Taylor series of a monogenic function. An elementary explanation of this question
for Euclidean spaces of arbitrary dimension can be found in [22]. To be short we shall only
refer to the main facts corresponding to R3. The major difference to power series in the
complex case consists in the absence of regularity of the basic variable x = x0 + xxi + x j
and of all of its natural powers xn, n = 2, This means that we should expect other
types of terms which could be designated as generalised powers. Indeed, following [22]
we use a pair z = (zi,z2) of two regular variables (see [18]) given by

zx=x\- LE0 and z2 = x2 - j z 0

and a multi-index u = {vx, i/2), \v\ = (vi + u2) to define the i/-power of z by a |i/|-ary
product.

DEFINITION 2.1: Let v\ elements of the set a i , . . . , a\v\ be equal to z\ and v^ ele-
ments be equal to z2. Then the i/-power of z is defined by

(2) - " : = i ^
1 •' (M tM)6ir(l,...M)

where the sum runs over all permutations of ( 1 , . . . , 1̂ 1).
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R E M A R K 2 . 1 . It is evident that for a fixed value of \u\ — d there exist exactly (d + 1)

different i/-powers of z. To distiguish between them we sometimes also use the notation

z" = zi"1 x Z2"2 = z2"
2 x zi"1 but the meaning of the last expressions is slightly different

from the usual one in commutative rings and should be understood in the sense of formula

(2). We shall use parentheses if the separated powers of z\ or 22 have to be understood

in the ordinary way. Notice that the algebraic fundamentals for such a definition of

generalised powers lie in the application of the symmetric product between d elements

of a non-commutative ring as discussed in [22]. In this sense the variables zk, k = 1,2,

themselves are symmetric products of x = XQ + xji + 12J with (—i), respectively (— j ) , in

the form

zi — xi —ix0 ——-(ix +xi) and z2 = x2 — ix0 = - - ( j x + xj).

With this the definition of the i/-power of 2, [22, Theorem 2] implies that all polynomials

in zk, k = 1,2, homogeneous of degree \u\ and of the form

with v = (1/1,1/2) an arbitrary multi-index, are both left and right monogenic and

H-linearly independent. Therefore they can serve as basis for generalised power se-

ries. In particular, we are interested in left power series with centre at the origin and

ordered by such homogeneous polynomials. It was shown in [22] that the general form of

the Taylor series of left monogenic functions in the neighbourhood of the origin is given

by

(3) P{x) = 2 ^ I 2 ^ zucu ), with c € H.
n=0 \t/|=n '

In Section 4 we need the following estimate.

THEOREM 2 . 1 . Let g(x) be left monogenic in a neighbourhood of the origin with

the Taylor series given in the form (3). Then

(4)
n=l >|=n

PROOF: By applying the general formula for the monogenic derivative of generalised

powers in [17] to our case, we get

(5) -IDZ?

where all the powers have to be understood in the sense of formula (2). Together with
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38 K. Giirlebeck and H.R. Malonek [6]

as a consequence of (2) and of the relation of Zk, k = 1,2, to x in the form of symmetric
products with (—i), respectively (— j), we obtain the desired result (4) after direct esti-
mation of the modulus of the sums in the monogenic derivative of 5Z i."cv I* follows

that

n=0 <-k=0

[[
n = l L * =

•) = E
n=0
oo

= E
n-l
oo

= £*r
n=l

Then we get for the modulus

\D(g(x))
oo

k=0

- k , k +

-*.*+(*

n = l

E
n=l

n—1 n—2

E(
fc=0

n = l

n—2

= E h|Cn-01+E(n -
n - 2

1 ) ^ - n\co,n
*=o

n=l

n = l

In what now follows we shall work in i?i(0) C R3, the unit ball in real three-
dimensional space. Moreover, we shall consider functions / defined on B\ (0) with values
in H. The contents of Section 3 give an outline of [16] and its basic results.

3. DEFINITION OF QP-SPACES IN R3

For |o| < 1 we shall denote by

fa(x) - (a- x)(l - ax)"1
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the Mobius transform, which maps the unit ball onto itself. Furthermore, let

be the modified fundamental solution of the Laplacian in R3 composed with the Mobius
transform (fa(x). We denote for all p > 0

Let / : .Bi(O) K l b e a monogenic function. We shall use, as in [16], the seminorms

. B(f) = sup (1 - \x\2)W\Df(x)\,
x6Bi(0)

• Qp(f)= sup f m\Df(x)\*g'(x,a)dBx,
o6Bi(0) 1W

which lead to the following definitions:

DEFINITION 3.1: The spatial (or three-dimensional) Bloch space B is the right

H-module of all monogenic functions / : Bi(0) •-> H with B(f) < oo.
DEFINITION 3.2: The right H-module of all quaternion-valued functions / defined

on the unit ball, which are monogenic and satisfy Qp{f) < oo, is called the Qp-space.

REMARK 3.1. Because of the special structure of g(x, a), the seminorms Qp(f) make
sense only for p < 3 and for increasing dimension s of the space the possible range for
p will become smaller and smaller (the same problem as in the Cn-approach). We shall
at first in this section consider Qp-spaces for p < 3. In Subsection 3.2 we shall describe
another characterisation of Qp-spaces which is equivalent to the definition above for p < 3
and which makes sense for p ^ 3 and for higher dimensions also.

Obviously, these spaces are not Banach spaces. Nevertheless, if we consider a small
neighbourhood of the origin Ue, with an arbitrary but fixed e > 0, then we can add the
Li-norm of / over Ue to our seminorms and B as well as Q p will become Banach spaces.
Because this additional term is independent of p we shall consider in the following only
the spaces with the corresponding seminorm, but we have to keep in mind that all our
results are also true in the case of the norm.

DEFINITION 3.3: The right H-module of monogenic functions / : BX(Q) H-» H with

f \Df(x)\2dB
^Bi(O)

x < oo,

is called the spatial (or three-dimensional) Dirichlet space D.

REMARK 3.2. Using the special properties of g{x, a) in £i(0) one can prove that

D C Q P , 0 < p < 3 .
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3.1. PROPERTIES OF Q P -SPACES. First we refer to the main steps (see [16]) to show
that the Qp-spaces form a range of Banach H-modules (with our additional term added
to the seminorm), connecting the spatial Dirichlet space with the spatial Bloch space.
In order to do this several lemmas are needed. Although some of these lemmas are only
of a technical nature we shall at least state these results to show that the approach to
Qp-spaces in higher dimensions which is sketched in this section is strongly based on
properties of monogenic functions.

PROPOSITION 3 . 1 . Let f be monogenic and 0 < p < 3, then we have

(e) (i - HTP/WI' < cfjomf^ -1) V ,
wiere the constant C\ does not depend on a and f.

The inequality has the same structure as in the complex one-dimensional case (see for
example, [6]). Only the exponent 3 on the left hand side shows how the real dimension
of the space influences the estimate. To prove this proposition we need a mean value
formula coming from properties of the hypercomplex Cauchy integral (see [19]), some
geometrical properties of the Mobius transformation and the equality

which links properties of the (special) Mobius transformation <pa with the weight function
1 — |x|2. This equality generalises in a direct way the corresponding property from the
complex one-dimensional case. By considering the supremum on both sides of (6) we
obtain the following corollary.

COROLLARY 3 . 1 . For 0 < p < 3 we have Qp c B.

This corollary means that all Qp-spaces are subspaces of the Bloch space. We recall that
in the complex one-dimensional case all Qp-spaces with p > 1 are equal and coincide
with the Bloch space. This leads to a corresponding question in the three-dimensional
case considered here. In [16] the following theorem is proved.

THEOREM 3 . 1 . Let f be monogenic in the unit ball. Then the following condi-
tions are equivalent:

1. feB;
2- Qpif) < oo for ali 2 < p < 3;
3- Qpif) < oo for some p > 2.

Theorem 3.1 means that all Qp-spaces for p > 2 coincide and are identical with the Bloch

space.

3.2. ANOTHER CHARACTERISATION OF QP-SPACES. The one-dimensional analogue

of Definition 3.2 was the first definition of Qp-spaces. This was motivated by the idea to
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have a range of spaces "approaching" the space BMOA and the Bloch space. Comparing

the original definition and one of the equivalent characterisations of BMOA in [7] it is

obvious that Q i = BMOA. Another motivation is given by some invariance properties of

the Green function used in the definition. Recent papers (see for example, [2]) show that

the ideas of these weighted spaces can be generalised in a very direct way to the case of

Riemannian manifolds. Caused by the singularity of the Green function, difficulties arise

in proving some properties of the scale. One of these properties is the inclusion property

with respect to the index p. Considering ideas from [1] also the use of polynomial weights

seems to be natural and more convenient in the case of increasing space dimension. The

idea to relate the Green function with more general weight functions of the type (1 — |rc|2)p

is not new. For the complex case it has already been mentioned in [6, 4]. Another idea

is to prove also a relation of gp{x,a) with (1 - |y a | 2 ) p - This way saves on the one hand

the advantages of the simple term (1 — \x\2)p and preserves on the other hand a special

behaviour of the weight function under Mobius transforms. As hint we refer to equation

(7)-

In this subsection we relate these possibilities to characterise Qp-spaces. Among

others, this new (in our case equivalent) characterisation implies the proof of the fact

that the Qp-spaces are a scale of function, spaces with the Dirichlet space at one extreme

point and the Bloch space at the other.

THEOREM 3 . 2 . [16] Let f be monogenic in Bi(0) . Then, for 1 ̂  p < 2.99,

/ 6 Q p « sup f \Df(x)\2(l-\<pa{x)\2)'dBx<oo.

o€Bi(0) JBi{0) V '

At first glance, the condition p < 2.99 looks strange. But we have to keep in mind that

Theorem 3.1 means that all Qp-spaces for p > 2 are the same, so in fact this condition

is only of technical nature caused by the singularity of gp(x, a) for p — 3.

Especially for the proof of this theorem we need the properties of monogenic functions

and of the Mobius transformation. The main idea is a change of variables w = <pa(x).

(The Jacobian determinant ((1 - |a|2)/(|l - aw\2)) has no singularities.) The problem

here is that, while Dxf(x) is monogenic, after the change of variables Dxf(jpa(w)) is

not monogenic. But we know from [28] that n l — uJa)/(|l — aw\3) jDxf((pa{w)) is

again monogenic. We also refer to Sudbery [30] who studied this problem for the four-

dimensional case already in 1979.

The same characterisation can be shown by a different proof [16] also in the case

that p < 1.

PROPOSITION 3 . 2 . Let f be monogenic in Bi{0). Then, for 0 < p ̂  1,

/ e Q P « sup f \Df{x)\a(l-\ipa(x)\2)'dBt<oo.
aefii(O) JBi(0) V '
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Using the alternative definition of Qp-spaces it can be shown that the Qp-spaces form a

scale of Banach spaces. This is a consequence of using the weight function (l — |<pa(x) | ).

PROPOSITION 3 . 3 . For 0 < p < q < 2 we have: Qp C Qq.

4. STRICT INCLUSIONS OF QP-SPACES

To prove the strict inclusions of the Qp - spaces we need more special tools. One of
the basic inequalities is a result on weighted Lp-norms of real analytic functions.

LEMMA 4 . 1 . Let a > 0, p > 0, n > 0, an > 0, /„ = {k : 2" ̂  A; < 2n+1, k € N},
oo

tn = H a* aa<^ f(x) = 12 anx" • Then there exists a constant K depending only on p
keln n=l

and a such that

(8) h J
n=0 { n=0

For the proof and a lot more information on weighted Qp-spaces, Hardy spaces, Bergman
spaces, and their connections we refer to [23].

For technical reasons it is necessary to evaluate some special integrals.

LEMMA 4 . 2 . , ,

JJ \l-ax\*ai (l-|aP)2'

P R O O F : We begin with the case a = ao > 0 and use spherical coordinates. Then we
have to evaluate

K 2K

ff- 5 I
J J (1 + og — 2aosini£>2cos(£>i)
0 0

( - 2og + aj
o

To prove the general case we use the orthogonal transformation R : R3 -> R3 with
(\a\\ (ao\

R\ 0 = ai I and let y = RTx. Then we have
\ \a2)

= ff <*« ff ^y =
 47r

JJ (l-2(i^a,j,)+|a|2|y|2)2 JJ (1 - Hy)4 (1-H2)2'
8Bi{0) V X ' " ' ' ' "" ' SBi(0)

Here (•, •) stands for the usual scalar product in R3. D
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LEMMA 4 . 3 .

The proof is based on the same ideas as the proof of Lemma 4.2.

LEMMA 4 . 4 . Let 0 < p < 2, |a| < 1, r < 1. Tien

PROOF: For 1 < p ^ 2 we conclude as follows

dB\

0fli

For 0 < p ^ 1 we estimate

V

Using
2TT 1 + |a|r in

^—r-ln- rv- ^i i i i i ^ i i i\a\r 1 — \a\r 1 — |a|r

we obtain the desired result.

From [24] we shall now use the idea of characterising Qp-functions with the help of
the coefficients of their Taylor series expansions.

According to formula (3) of Section 2 the Taylor series expansion of a left monogenic
function has the form

(
n=0 >|=n

In order to formulate the next theorem we introduce the abbreviated notation Hn(x) :=
X) S."0" f°r s u c n a homogeneous monogenic polynomial of degree n and consider mono-

genie functions composed by Hn(x) in the following form:

n=0
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Taking into account formula (4) we see that in this way we get for this type of function

(9) l
n=0 >|=n

This is the motivation for another shorthand notation, namely an := I Yl \CA ) 16«|,
\|H=n /

(an ^ 0) and we get finally

(10)
n=0

THEOREM 4 . 1 . Let In = <A : 2" ^ k < 2n + 1, k € N), f(x) = £ Hn{x)bn,
n=0

bn € H, Hn be a homogeneous monogenic polynomial of degree n of the aforementioned
type, and an be defined as before, 0 < p < 2. Then

2

< oo => / € Qp.
n=0 v

PROOF: Assume that
n=0 \keln )

< OO.

8Bi dBi

'(1 - N

•dBx

C22" / (j2 n an r
n~l) (1 - r)" r2 dr = C22' f (f^nan rn) \l - rf dr

= CK
n=0

= CK22p+2

n=0
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Therefore,

l l / lk= sup f(\\Df (1 - \Va\
2)p dG < oo.

B ( ) D

To prove a reverse theorem which connects Qp-functions with weighted norms of
the sequence of Taylor coefficients it is necessary to investigate norm relations between a
monogenic homogeneous polynomial and its derivative. In the complex (one-dimensional)
case all proofs are based on the equality dzn — nzn~1 and corresponding norm equalities.

One way to achieve the goal in the three dimensional case is the application of
monogenic homogeneous polynomials of the form

n s \

k=0 ^ '

with the hypercomplex derivative given by

(12) ( - - P ) #„,„(*) = ni7n_1,a(a;)(a1i + ad ) .

The L2(dBi)-norm of such a special monogenic homogeneous polynomial of type (11)
can be determined explicitly. We get

LEMMA 4 . 5 . Let a = (ai,a2), a; € R, i = 1,2, be the vector of real
coefficients defining the monogenic homogeneous polynomial

Hn,a(x) = (ZiOn + Z2Ct2)
n.

Suppose that |a|2 = a\ + a2 ^ 0. Then the L2-norm of this special monogenic
homogeneous polynomial is equal to

on+2n|_|_,|2n

(13) | |# n , , " 9 2 n ' 7 r | Q l

PROOF:

2ir ir

/ / (sin2 </?! (a! cos 1̂2 + a2smip2)
2 + (aj + a%) cos2 ipi)n sin pi dipi

0 0
2JT JT

/ / (\a\2 + sin2 (pi [(ai cos <p2 + a2 sin (p2)
2 — |a |2] J sin ipi d<p\ d(p2

o o

o o
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2JT ir

f f(, 19 i 12 i r i, x ^\n

— I I I \a + \a sin <Pi s m (w + <P2i — 11) sin a?! aw! aa32
0 0

2ir ir

= I (|a|2 — |a|2sin2</5icos2(w +^2))nsini^id(^idv'2
0 0

2* v

(14) =\a\2n j (l — sin2 (fi cos2(CJ + (p2))" sin ipi d(fii d(p2

o o

where w is a fixed angle defined uniquely by

sino; := . and COSCJ := . as usual.

Then we get from formula (14)

2 * 7T

| | - f fn ,a | l i 2 (0Bi ) = l ^ l " 1 1 ( 1 ~ s m flCOS (ui + V ^ ) ) s m Vl ^ V l ^ V 2
J J
0 0

/ 2" \ / i

V^ AA / / 1 / /

r^ V*/ W 2 2 | l i
*-° \o / \o

Both integrals in the last formula (15) can be evaluated with integration by parts. We
have

n

/U:=|sin2*+S
o

and similarly
f 2k, w (2*-l)!!

hk ••= J cos^u; + (pi) d(p2 = TTV
 2k_^ .

o
These values and formulae (14) and (15) together lead to

cos2*(a» + <p2)d(f2 J I sin2k+1 <pi d(pi

J \o
- 1)!! ik!2*+1

The last step in proving the lemma is the application of the relation

(17)
V \ 1 2"n!

k=0 ,kj(2k-
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which results from a recursive formula of the form

sn = 2n + l • sn- i with s0 = 1.

To obtain these relations in an elementary way one has only to use well known properties
of the binomial coefficients. Inserting (17) in (16) we obtain immediately

~ ( 2 n + 1)M

and the lemma is proved. D

COROLLARY 4 . 1 . With the help of (12) we get immediately the quotient of the
norms ofHntOl and its hypercomplex derivative —l/2(£>/fniQ) in t ie simple form:

Notice that the quotient does not depend on the choice of a but only on the degree of
the homogeneous monogenic polynomial.

THEOREM 4 . 2 . Let 0 < p ^ 2,

Then £ 2*<1-p>|a*|2 < oo.

PROOF:

ll/lfc, >ff\\Df\\l-\x\*)pdG
Bi(0)

= ff Y ( - \ D ) (UIS
H2!;'a—)o* V - \x\2)pdG = (*)

Bi(0) *"*Bi(0)

l|L2(aB1))) is a homogeneous monogenic polynomial of degree

2k - 1 and will be written in the form

with
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Then we continue

*-ws 2

(*) /
J

r2(l-r2ydTdr

0 8Bi(0) * = 1 ^ = l

0 K~l

r oo
/ ^ " " ^ I 12 2 ( 2 * — 1 ) f t \ h i \ 2 3 / 1 * 2 \ i > J

0 * = 1

= k Y |afc|
2x2 -'(2* - l)2x(l - x)"dx

o *-v

i

1 0°

g *=1

Here we used the quaternion-valued inner product

(f,9)naBl)= [ l{x)g{x)dY
JdBi

and the orthogonality of the spherical monogenics $* (see [8]).

REMARK. Theorem 4.1 and Theorem 4.2 prove that

/ = E \\H "T a* € Qr. *=* E ^ ' k l 2 < oo.

THEOREM 4 . 3 . The inclusions Qp, c Q p are strict for aJJ 0 < px <p^ 2.

P R O O F : Let

*) = E I.» ff

~ ||«2»,
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Then,

n=0 n=0

and

n=0 n=0

By Theorem 4.1 and Theorem 4.2 we have that / € Q p but / £ Q P l . The idea of the
proof is completely analogous to the ideas used in [23]. 0
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