DEGREES GIVING INDEPENDENT EDGES
 IN A HYPERGRAPH

David E. Daykin and Roland Häggkvist

For r-partite and for r-uniform hypergraphs bounds are given for the minimum degree which ensures d independent edges.

1. Introduction and statement of results
(i) HYPERGRAPHS

Let c, r, s be positive integers with $2 \leq r$ and let
$S=\{1,2, \ldots, s\}$. A set H of subsets of S is a hypergraph. The members of H are called edges. Two edges $\alpha, \beta \in H$ are independent if $\alpha \cap \beta=\emptyset$. The degree $\operatorname{deg}_{H}(x)$ of $x \in S$ in H is the number of members of H containing x. We write $\delta(H)$ for $\min \left\{\operatorname{deg}_{H}(x)\right\}$ over $x \in S$. Let B be the set of all $\alpha \subset S$ of cardinality $|\alpha|=r$. In this paper each $H \subset B$ so H is an r-graph or r-uniform hypergraph. We are concerned with the least number ω such that every H with $\omega<\delta(H)$ has more than d independent edges. Related problems are dealt with in the references.
(ii) r-PARTITE r-GRAPHS

Suppose S is a disjoint union $S=R_{1} \cup \ldots \cup R_{r}$ with $\left|R_{i}\right|=c$
for $1 \leq i \leq r$ so $s=c r$. Let A be the set of all $\alpha \subset S$ such that $\left|\alpha \cap R_{i}\right|=1$ for $1 \leq i \leq r$. In this case any $H \subset A \subset B$ is an r-partite hypergraph.

Received 14 August 1980.

THEOREM 1. If $0 \leq d<c$ and H is r-partite as above with

$$
\delta(H)>\left\{c^{r-1}-(c-d)^{r-1}\right\}(r-1) / r
$$

then H has more than d independent edges.
To see how close this theorem gets to ω consider
EXAMPLE 1. Put $d=q r+p$ with $0 \leq p<r$. For $1 \leq i \leq p$ select $q+1$ elements of R_{i}. For $p<i \leq r$ select q elements of R_{i}. Let H consist of all $\alpha \in A$ which contain at least one of the d selected elements. Then $\delta(H)$ is approximately $c^{r-1}-\left(c-r^{-1} d\right)^{r-1}$ but H does not have $d+1$ independent edges.
(iii) GENERAL r-GRAPHS

EXAMPLE 2. Select d elements of S and let H consist of all $\alpha \in B$ which contain at least one of the selected elements. Then $\delta(H)=\binom{s-1}{r-1}-\binom{s-d-1}{r-1}$ but H does not have $d+1$ independent edges.

THEOREM 2 (Bollobás, Daykin and Erdös). If $0 \leq d$ and $2 r^{3}(d+2)<s$ and

$$
\delta(H)>\binom{s-1}{r-1}-\binom{s-d-1}{r-1}
$$

then H has more than d independent edges.
That this theorem has evaluated ω is shown by Example 2. It appears in [1] where it is in fact proved that all H with a fixed number of independent edges and high $\delta(H)$ are subhypergraphs of Example 2. In Theorem 2 it is required that s be large. Without this requirement we bound ω in

THEOREM 3. If r divides s and

$$
\delta(H)>\left\{\binom{s-1}{r-1}-\binom{s-d r-1}{r-1}\right\}(r-1) / r
$$

then H has more than d independent edges.
For Theorems 1 and 3 we prove slightly more than what is stated. Namely that if C_{1}, \ldots, C_{d} is any maximum set of independent edges, and if E is any possible edge in $S \backslash\left\{C_{1} \cup \ldots \cup C_{d}\right\}$ then E has low average
degree. We believe the condition r divides s can be removed but were not able to do so.

2. Proof of Theorem 1

Part (i). Assume that $1 \leq d<c$ and H has d independent edges c_{1}, \ldots, c_{d} but not $d+1$. Choose arbitrarily members c_{d+1}, \ldots, c_{c} of A so that S is the disjoint union $S=C_{1} \cup \ldots \cup C_{c}$. We label the elements $x(i, j)$ of S so that

$$
\begin{align*}
& C_{j}=\{x(1, j), \ldots, x(r, j)\} \text { for } 1 \leq j \leq c, \tag{1}\\
& R_{i}=\{x(i, 1), \ldots, x(i, c)\} \text { for } 1 \leq i \leq r . \tag{2}
\end{align*}
$$

The reader will probably find it helpful to think of S as the elements of a matrix. Then c, C refer to columns and r, R to rows. We write D for the union of the d independent edges $D=C_{1} \cup \ldots \cup C_{d}$ and E for C_{c} the end column in the matrix.

We will use the cyclic permutation σ on n distinct positive integers $\omega_{1}, \ldots, w_{n}$ defined by $\sigma w_{n}=w_{1}$ and $\sigma w_{i}=\omega_{i+1}$ otherwise. We proceed to partition A.

Part (ii). Given $\alpha=\left\{x\left(1, j_{1}\right), \ldots, x\left(r, j_{r}\right)\right\} \in A$ let $\left\{w_{1}, \ldots, w_{n}\right\}=\left\{j_{1}, \ldots, j_{r}\right\}$ with $1 \leq w_{1}<\ldots<\omega_{n} \leq c$. Note that $n \leq r$. Then put.

$$
\begin{equation*}
K(\alpha)=\left\{\left\{x\left(1, \sigma^{e} j_{1}\right), \ldots, x\left(r, \sigma^{e} j_{r}\right)\right\}: 1 \leq e \leq n\right\} . \tag{3}
\end{equation*}
$$

We say that the members of $K(\alpha)$ are obtained by rotating α. The sets $K(\alpha)$ are the equivalence classes of our partition of A.

Part (iii). Let $X=\{\alpha: \alpha \in A, \alpha \cap D \neq \varnothing\}$. Then by definition of d we have $H \subset X$. Let K be the set of equivalence classes in the partition of A. If $K \in K$ then either $K \subset X$ or $K \cap X=\varnothing$. For $L \subset A$ define

$$
\Delta(L)=\sum(x \in E) \operatorname{deg}_{L}(x)
$$

Let $Y=\{\alpha: \alpha \in A, \alpha \cap E \neq \varnothing\}$. If $K \in K$ then either $K \cap Y=\varnothing$ or
$K \subset Y$ according as $0=\Delta(K)$ or not. For all $L \subset A$ we have $\Delta(L)=\Delta(L \cap Y)$ and in particular $\Delta(H)=\Delta(H \cap X \cap Y)$.

Assume for the moment that

$$
\begin{equation*}
r \Delta(H \cap K) \leq(r-1) \Delta(K) \text { for all } K \in K \text { with } K \subset X \cap Y . \tag{4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
r \Delta(H)=r \sum \Delta(H \cap K) \leq(r-1) \sum \Delta(K)=(r-1) \Delta(X \cap Y), \tag{5}
\end{equation*}
$$

where summation is over $K \in K$ with $K \subset X \cap Y$.
Part (iv). Clearly $\Delta(A)=r c^{r-1}$ and $\Delta(X \cap Y)=r\left(c^{r-1}-(c-d)^{r-1}\right)$. So the result follows by (5). It remains to prove (4).

Part (v). Suppose $K \in K$ and $K \subset X \cap Y$. If $\alpha \in K$ then the other members of K are obtained by rotating α. Hence every $x \in E$ is in exactly one member of K and so $\Delta(K)=r$. If $k=|K|$ then K consists of k independent members of A. Again by the rotation $K \cap C_{j} \neq \varnothing$ for less than k of the j in $1 \leq j \leq d$. Therefore if $K \subset H$ we could remove these C_{j} from C_{1}, \ldots, C_{d} and adjoin K to get more than d independent edges of H. Hence $K \notin H$ and so $\Delta(H \cap K) \leq r-1$ and this proves (4).

3. Proof of Theorem 3

We use ideas from the last proof. In fact we have chosen our notation so that parts of the last proof carry over unchanged, provided A now means the set B of all $\alpha \subset S$ with $|\alpha|=r$. Do not be deceived. Although the writing is the same the meaning is different.

Part (i). As before. Note that before the $R^{\prime} \mathrm{s}$ were given but now they are defined by (2).

Part (ii). Given a row vector $v=(v(1), \ldots, v(c))$ of non-negative integers $v(j)$ let

$$
w=\left\{w_{1}, \ldots, w_{n}\right\}=\{j: 1 \leq j \leq c \text { and } 0<v(j)\},
$$

with $1 \leq w_{1}<\ldots<w_{n}$. Note that $n \leq c$. Now define a permutation π of $\{1, \ldots, c\}$ by $\pi j=\sigma j$ if $j \in W$ but $\pi j=j$ otherwise. Finally
put

$$
V=V(v)=\left\{\left(v\left(\pi^{e} 1\right), \ldots, v\left(\pi^{e} c\right)\right): 1 \leq e \leq n\right\}
$$

For example if $v=(1,0,2,1,0,0,2)$ then $n=4$ and $W=\{1,3,4,7\}$ and V is v and $(2,0,1,2,0,0,1)$.

Given $\alpha \in A$ put $v(j)=\left|\alpha \cap C_{j}\right|$ for $1 \leq j \leq c$. In this way α yields a row vector v. In turn v yields a set V of row vectors as above. We use $V=V(\alpha)$ to define $K \subset A$ by

$$
K=K(\alpha)=\{\beta: \beta \in A, \text { row vector of } \beta \in V(\alpha)\}
$$

Clearly the set K of all sets $K(\alpha)$ over $\alpha \in A$ are the equivalence classes of a partition of A.

Part (iii). As before.
Part (iv). Clearly $\Delta(A)=r\binom{s-1}{r-1}$ and $\Delta(X \cap Y)=r\left\{\binom{s-1}{r-1}-\binom{s-d r-1}{r-1}\right\}$.
So the result follows by (5). It remains to prove (4).
Part (v). Choose any $K \in K$ with $K \subset X \cap Y$ and fix it. An ordering of C_{j} is a bijection $\lambda_{j}: C_{j} \rightarrow\{1,2, \ldots, r\}$ and the number of these is r ! . For $1 \leq j \leq c$ let λ_{j} be an ordering of C_{j}. We say that $\alpha \in K$ is good in $\lambda=\left(\lambda_{1}, \ldots, \lambda_{c}\right)$ if

$$
\bigcup_{1 \leq j \leq c}\left\{U_{x \in \alpha \cap C_{j}} \lambda_{j}(x)\right\}=\{1,2, \ldots, r\}
$$

If we think of λ as reordering the columns of S as a matrix then α is good in λ if it has exactly one element in each row of the reordered S.

If $\alpha, \beta \in K$ then the numbers $\left|\alpha \cap C_{j}\right|$ are the same as the numbers $\left|\beta \cap C_{j}\right|$ in some order. Hence α and β are good in the same number t of the λ. For each λ let $F(\lambda)$ and $G(\lambda)$ be the set of all α in K and $H \cap K$ respectively which are good in λ. Then

$$
\begin{equation*}
\Delta(H \cap K)=t \sum \Delta(G(\lambda)) \text { and } \Delta(K)=t \sum \Delta(F(\lambda)) \tag{6}
\end{equation*}
$$

where summation is over λ. Assume for the moment that

$$
\begin{equation*}
r \Delta(G(\lambda)) \leq(r-1) \Delta(F(\lambda)) \quad \text { for all } \lambda . \tag{7}
\end{equation*}
$$

Then (4) follows immediately using (6).
Part (vi). Choose any λ and fix it. For simplicity write F, G instead of $F(\lambda), G(\lambda)$. After S has been reordered by λ we renumber the elements $x(i, j)$ of S so that (I) and (2) again hold. Given any $\alpha \in F$ we define the set $K(\alpha)$ exactly as in (3). To avoid confusion let $K(\alpha)$ be called J. Because the members of J are obtained by rotating α they are all in K. Also by construction they are all good in λ. In fact the various J partition F. Exactly as in Part (v) of the proof of the last theorem we find that $\Delta(J)=r$ and $\Delta(H \cap J) \leq r-1$. Hence

$$
r \Delta(G)=r \sum \Delta(H \cap J) \leq r \sum(r-1)=(r-1) \sum r=(r-1) \sum \Delta(J)=(r-1) \Delta(F),
$$

where summation is over the equivalence classes J which partition F, and this proves (7).

References

[1] B. BollobSs, D.E. Daykin and P. Erdös, "Sets of independent edges in a hypergraph", Quart. J. Math. Oxford Ser. (2) 27 (1976), 25-32.
[2] Alan Brace, "Some combinatorial cover theorems" (PhD thesis, University of Western Australia, Nedlands, 1971).
[3] Alan Brace and D.E. Daykin, "A finite set covering theorem", Bull. Austral. Math. Soc. 5 (1971), 197-202.
[4] Alan Brace and D.E. Daykin, "A finite set covering theorem II", Bull. Austral. Math. Soc. 6 (1972), 19-24.
[5] Alan Brace and D.E. Daykin, "A finite set covering theorem III", Bull. Austral. Math. Soc. 6 (1972), 417-433.
[6] A. Brace, D.E. Daykin, "A finite set covering theorem. IV", Infinite and finite sets, Vol. I, 199-203 (Colloq., Keszthely, 1973. Colloq. Math. Soc. János Bolyai, 10. North-Holland, Amsterdam, 1975).
[7] Alan Brace, D.E. Daykin, "Sperner type theorems for finite sets", Combinatorics, 18-37 (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972. Inst. Math. Appl., Southend-on-Sea, 1972).
[8] D.E. Daykin, "Minimum subcover of a cover of a finite set", Problem E2654, Amer. Math. Monthly 85 (1978), 766.

Department of Mathematics,
University of Reading,
Whiteknights,
Reading,
Berkshire RG6 2AX,
England;
Institut Mittag-Leffler,
Auravägen 17,
S-182 62 Djursholm,
Sweden.

