BULL. AUSTRAL. MATH. SOC. Vol. 39 (1989) [471-476]

ON THE SUPERPOSTITION OF FUNCTIONS IN CARLEMAN CLASSES

Mostefa Ider

In this paper we deal with classes of infinitely differentiable functions known in the literature as Carleman classes. Our main result is a characterisation of those Carleman classes that are closed under superposition. This result enables us to give a complete solution to a problem that has been considered by Gevrey, Cartan and Bang.

Let $M = \{M_n\}$ be a sequence of positive numbers and let $C_M(I)$ denote the Carleman class of functions $f \in C^{\infty}(I)$ which satisfy the following inequalities

$$\left\|f^{(n)}\right\|_{\infty} \leq A\lambda^{n}M_{n}, n \geq 0, A = A(f), \lambda = \lambda(f)$$

where I is a linear interval.

A class $C_M(I)$ is said to be stable under superposition if for every $g \in C_M(J)$ and $f \in C_M(I)$, where $I \supset \overline{g(J)}$, the composite function $f \circ g$ is also in the class C_M . The problem of finding conditions on M in order that the class C_M be stable under superposition was first considered by Gevrey [3] for the particular Carleman classes C_M where $M = \{(n!)^{\alpha}\}(\alpha > 1)$. For the general Carleman classes Cartan [2] showed that if the sequence $A = \{A_n\}$ where $A_n = \{(M_n/n!)^{1/n}\}$ is increasing then C_M is stable under superposition. The question as to whether the converse of this result is true remains unsolved. However if we suppose that the class C_M is differentiable, in the sense that $f \in C_M$ implies $f' \in C_M$, we are able to give a complete solution to this problem by showing that in this case a condition weaker than that of Cartan is both necessary and sufficient. We recall that the class $C_M(I)$ is inverse-closed if for every $f \in C_M(I)$ such that $f(x) \neq 0$, $f^{-1} \in C_M(I)$. It was Malliavin [4] who first gave a sufficient condition in order that $C_M(I)$ be inverse-closed, by showing that if the sequence A is almost increasing, that is $(\exists K > 0, s.t \ \forall n \leq m, A_n \leq KA_m)$, then the class C_M is inverseclosed. Rudin [6] proved that if C_M is a non-quasianalytic class of 2π -periodic functions then the converse of Malliavin's result is also true. To avoid the trivial cases we will suppose that $\lim_{n\to\infty} M_n^{1/n} = \infty$ and hence the class $C_M(\mathsf{R}) \equiv C_{M^c}(\mathsf{R})$ where $\{\log M_n^c\}$ is the largest convex minorant of $\{\log M_n\}$ (see Madelbrojt [5]). If $\lim_{n\to\infty} M_n^{1/n} = 0$,

Received 23 August 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

then $C_M(\mathbb{R})$ is reduced to the class of constant functions (see Madelbrojt [5]) which is obviously inverse-closed and if $\lim_{n\to\infty} M_n^{1/n} < +\infty$, then $C_M(\mathbb{R}) \equiv C_{\{1\}}(\mathbb{R})$ which is not inverse-closed, since if $f(x) = \sin x$, $f \in C_{\{1\}}(\mathbb{R})$ but $f \circ f \notin C_{\{1\}}(\mathbb{R})$ (see Bang [1]). Without loss of generality we will therefore suppose that $M = M^c$. Using the techniques developed in [7] we are now in the position to prove the following

THEOREM 1. The following assertions are equivalent

- (i) the sequence A is almost increasing;
- (ii) if $f \in C_M(R)$ and f is analytic in a domain containing the closure of the range of g then $f \circ g \in C_M(\mathbb{R})$;
- (iii) $C_M(\mathbf{R})$ is inverse-closed.

PROOF: That (i) implies (ii) follows directly from the formula of Faà Di Bruno, namely

(1)
$$(f \circ g)^{(n)}(x) = \sum \frac{n!}{k_1!k_2!\dots k_n} f^{(k)}[g(x)] \left(\frac{g'(x)}{1!}\right)^{k_1} \dots \left(\frac{g^{(n)}(x)}{n!}\right)^{k_n}$$

where the summation is over all the n-tuples (k_1, k_2, \ldots, k_n) such that $k_1 + k_2 + \ldots + k_n = k$ and $k_1 + 2k_2 + \ldots + nk_n = n$.

Trivially (ii) implies (iii). We now show that (iii) implies (i). Let

(2)
$$g(x) = \sum_{v=1}^{\infty} \frac{1}{2^{v}} \frac{e^{ik_{v}x}}{T_{M}(k_{v})}$$

where (see Madelbrojt [5])

$$T_M(r) = \sup_{n>0} \frac{r^n}{M_n}$$

and

$$M_n = \sup_{r>0} \frac{r^n}{T_M(r)}.$$

It can be easily seen that

$$\forall x \in \mathbf{R}$$
 $|g^{(n)}(x)| \leq M_n, n \geq 0,$

and that

$$g^{(n)}(0) = i^n s_n$$

where

$$s_n \geqslant \frac{1}{2^n} M_n.$$

Choose $f(x) = 1/(\lambda - x)$, where $\lambda > M_0$. Since $\lambda - g \in C_M(\mathbf{R})$ and $C_M(\mathbf{R})$ is inverse closed, it follows that $(f \circ g) = (\lambda - g)^{-1} \in C_M(\mathbf{R})$. Now choosing $k_s = k$, $k_j = 0$ for $j \neq s$, n = ks in the formula (1) applied to the composite function $f \circ g$ at the point x = 0 we get

$$\left(\frac{M_s}{s!}\right)^{1/s} \leqslant K \left(\frac{M_n}{n!}\right)^{1/n}$$

If n is not a multiple of s, let sm < n < s(m+1) and so using the fact that $\{M_n^{1/n}\}$ is increasing we obtain

$$\frac{M_n^{1/n}}{n} \geq \frac{M_{sm}^{1/sm}}{s(m+1)} \geq \frac{M_{sm}^{1/sm}}{sm} \cdot \frac{sm}{s(m+1)} \geq \frac{1}{2} \frac{M_s^{1/s}}{s}.$$

Thus for $s \leq n$

$$\left(\frac{M_s}{s!}\right)^{1/s} \leqslant K\left(\frac{M_n}{n!}\right)^{1/n}$$

where K is independent of s and n, that is A is almost increasing.

As remarked earlier Cartan [2] has shown that if A is increasing then the class C_M is stable under superposition. We now show that this result remains true if we suppose more generally that the sequence $A' = \{(M_n/n!)^{1/n-1}\}$ is almost increasing. In fact we have the following

THEOREM 2. If the sequence A' is almost increasing then the class $C_M(I)$ is stable under superposition.

PROOF: Let $g \in C_M(J)$ and $f \in C_M(I)$, where $I \supset \overline{g(J)}$, then applying formula (1) we get

(3)
$$\left| (f \circ g)^{(n)}(x) \right| \leq C \mu^n \sum \frac{n!}{k_1! \dots k_n!} M_k \left(\frac{M_1}{1!} \right)^{k_1} \dots \left(\frac{M_n}{n!} \right)^{k_n}.$$

But, since A' is almost increasing, we have

$$\left(\frac{M_2}{2!}\right)^{k_2} \cdots \left(\frac{M_n}{n!}\right)^{k_n} \leqslant K^{n-k} \left(\frac{M_n}{n!}\right)^{(k_2+2k_3+\ldots+(n-1)k_n)/(n-1)}$$

and

$$M_k \leqslant k! K^{k-1} \left(\frac{M_n}{n!}\right)^{(k-1)/(n-1)}$$

And so from (3) it follows that

$$\left|(f \circ g)^{(n)}(x)\right| \leq B_1 \lambda^n M_n \sum \frac{k!}{k_1! \dots k_n!}$$

[4]

M. Ider

Now using the identity

$$\sum \frac{k!}{k_1! \dots k_n!} = 2^{n-1}$$
$$\left| (f \circ g)^{(n)}(x) \right| \leq B \lambda^n M_n.$$

we obtain

We now prove that the converse of Theorem 2 is true if the class $C_M(\mathbf{R})$ is differentiable. In face we prove the following

THEOREM 3. The following assertions are equivalent

- (i) the sequence A is almost increasing;
- (ii) the class $C_M(\mathbf{R})$ is stable under superposition, provided that A is not bounded.

PROOF: (i) implies (ii). If A is almost increasing, then

$$\forall s \leqslant n \qquad \left(\frac{M_s}{s!}\right)^{1/s} \leqslant K\left(\frac{M_n}{n!}\right)^{1/s},$$

and so

$$\left(\frac{M_s}{s!}\right)^{1/s-1} \leqslant K\left(\frac{M_n}{n!}\right)^{1/n-1} \cdot \left(\frac{M_s}{s!}\right)^{1/n(s-1)}.$$

But since the class $C_M(\mathbf{R})$ is differentiable, we have

$$\left(\frac{M_s}{s!}\right)^{1/n(s-1)} \leqslant K_1,$$

and so the sequence $\{(M_n/n!)^{1/n-1}\}$ is almost increasing. Now by Theorem 2, we get that $C_M(\mathbf{R})$ is stable under superposition. Thus (i) implies (ii). Conversely, if $C_M(\mathbf{R})$ is stable under superposition and A is not bounded, then $C_M(\mathbf{R})$ is stable under composition with analytic functions and so it is inverse-closed. It follows by Theorem 1 that the sequence $\{(M_n/n!)^{1/n}\}$ is almost increasing. Thus (ii) implied (i). Now, someone may ask if it is possible to find a Carleman class for which our result applies but Cartan's does not, and the answer is positive. Let $M = \{M_n\}$ be the following sequence

$$M_n^{1/n} = n + 1.$$

Then it is clear that M is log-convex, the class $C_M(\mathbf{R})$ is differentiable, the associated sequence $A = (M_n/n!)^{1/n}$ is almost increasing but not increasing.

We now show that if the sequence A is bounded, then, in general, $C_M(\mathbf{R})$ is not stable under superposition. In fact we have the following result.

THEOREM 4. If the sequence A is decreasing to 0, then there exist two functions $g \in C_M(\mathbb{R})$ and $f \in C_M(J)$ where $J \supset \overline{g(\mathbb{R})}$ such that $f \circ g \notin C_M$.

PROOF: Since the sequence A is decreasing to 0, this enables us to construct a function f belonging to $C_M(\mathbb{R})$ such that $f^{(n)}(0) = M_n$, for all $n \ge 0$. In fact since A is decreasing, then there exists a constant K such that

(4)
$$\forall s \leq n \qquad \frac{M_n}{n!} \leq K^{n+1} \frac{M_s}{s!}$$

Puting s = 0 in (4) we get

$$M_n \leqslant K^{n+1}n!$$

and so it follows that the series

$$f(x) = \sum_{n=0}^{\infty} \frac{M_n}{n!} x^n$$

converges for |x| < 1/K, and hence $f^{(k)}(0) = M_k$. We have also

$$\left|f^{(k)}(x)\right| \leq \sum_{n=0}^{\infty} \left|\frac{x^{n-k}M_n}{(n-k)}\right| \leq \sum_{n=0}^{\infty} \left|x^{n-k}\right| K^{n+1}\binom{n}{k} M_k.$$

But since $\binom{n}{k} \leq 2^n$ we have

$$\left|f^{(k)}(x)\right| \leqslant A\lambda^k M_k.$$

Thus f belongs to $C_M(\mathbf{R})$ in a neighbourhood of the origin. But since $C_M(\mathbf{R})$ is analytic, $f \in C_M(\mathbf{R})$. Choose now

$$g(x) = \sum_{v=1}^{\infty} \frac{e^{ik_v x}}{T_M(k_v)}$$

We have already shown that $g \in C_M(\mathbf{R})$ and that

$$g^{(n)}(0) = i^n s_n$$

where

$$s_n \geqslant \frac{1}{2^n} M_n.$$

Suppose now that the composite function $f \circ g \in C_M(\mathbf{R})$. Then applying formula (1) to $f \circ g$ at the point x = 0 and $\forall j \neq s$, choosing $k_s = k$, $k_j = 0$ where n = ks we have

$$\frac{n!M_k}{2^nk!}\left(\frac{M_s}{s!}\right)^k \leqslant B\mu^n M_n.$$

Thus

(5)
$$\left(\frac{M_k}{k!}\right) \left(\frac{M_s}{s!}\right)^k \leq B2\mu^n\left(\frac{M_n}{n!}\right).$$

Now, using the fact that the sequence A is decreasing, and taking the n th root of both sides, we get

$$\left(\frac{M_{\mathfrak{s}}}{\mathfrak{s}!}\right)^{1/\mathfrak{s}} \leqslant B^{1/k\mathfrak{s}} 2\mu \left(\frac{M_n}{n!}\right)^{(1/k\mathfrak{s})\mathfrak{s}-(1/\mathfrak{s})}$$

If now we let k tend to infinity we have

$$M_s = 0, \forall s \ge 0$$

that is the class $C_M(\mathbb{R})$ is trivial, which is not the case and so $f \circ g \notin C_M(\mathbb{R})$. If n is not a multiple of s we proceed as in Theorem 1 and the proof of the Theorem is complete.

REFERENCES

- [1] T. Bang, On quasi-analytisk funktioner (Nyt Norclisk Forlag, Copenhagen, 1946).
- H. Cartan, Sur les classes de fonctions définies par des inégalités sur leurs dérivées successives (Actualités Scientifiques et industrielles numéro 897, 1940).
- [3] M. Gevrey, Oeuvres complètes (Editions du Centre National de la recherche scientifique, Paris, 1970).
- [4] P. Malliavin, 'Calcul symbolique et sous algèbres de L¹(G)', Bull. Soc. Math. France 87 (1959), 181-190.
- [5] S. Mandelbrojt, Series adhérentes, régularisation des suites, applications (Gauthier-Villars, Paris, 1952).
- [6] W. Rudin, 'Division in algebras of infinitely differentiable functions', J. Math. Mech 11 (1962), 797-809.
- [7] J.A. Siddiqi and M. Ider, 'Symbolic Calculus in analytic Carleman classes', Proc. Amer. Math. Soc. 99 (1987), 347-350.

Département de mathématiques et d'informatique Université de Sherbrooke Sherbrooke Québec Canada JIK 2R1

476