
PARABOLIC DIFFERENTIATION 

N. D. LANE 

1. Introduction. 
1.1. The purpose of this paper is the study of parabolically differentiable 

points of arcs in the real affine plane. In Section 2, two different definitions of 
convergence of a family of parabolas are given and it is observed (Theorem 1) 
that these are equivalent. In Section 3, tangent parabolas at a point p of an 
arc A are discussed and it is proved (Theorem 2) that all the non-degenerate 
non-tangent parabolas of A through p intersect A at p or that all of them 
support. In Section 4, osculating parabolas are introduced and the condition 
that an arc be twice parabolically differentiable at a point p is stated. Theorems 
3, 4, 5, and 7 are concerned with properties of the osculating parabolas and it 
is proved (Theorem 6) that the non-osculating tangent parabolas of an arc A 
at p all support A at p. In Section 5, the third requirement for parabolic 
differentiability is given and the superosculating parabola is introduced. In 
Theorem 8, it is proved that if the third differentiability condition is satisfied 
at an interior point p, then the non-superosculating, non-degenerate osculating 
parabolas all support A at p or all intersect according as A has or has not a 
cusp at p. 

The discussion is related to that in (1) on conformai differentiation but 
there are several differences. For example, while circular differentiation involves 
only two differentiability conditions, parabolic differentiation involves three. 
Three distinct points in the conformai plane determine a unique circle but if 
there is one parabola through four distinct points in the affine plane, there is, 
in general, a second one. The conformai plane is compact while the affine 
plane is not. The interior and the exterior of a circle are topologically equiva
lent in the conformai plane but there is an essential difference between the 
inside and the outside of a non-degenerate parabola in the affine plane. Finally, 
there is only one degenerate circle in the conformai plane, namely a point, 
but there are four types of degenerate parabolas which must be considered in 
the affine plane. 

1.2. Notation. Some properties of parabolas. The letters p, t, Q, . . . 
usually denote points in the real affine plane, with the small italics indicating 
points of arcs. Gothic letters 8, . . . denote lines. A parabola (which may be 
degenerate) will be denoted by w. In particular, a double ray (i.e., a ray counted 
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twice), a single line, a pair of parallel lines, and a double line (i.e., a line 
counted twice) will also be included in the term parabola. A non-degenerate 
parabola w has a well-defined interior 7r* and an exterior 7r*, while a ray 
counted twice has an exterior but no interior. The interior of an oriented line 
counted once may be defined to lie to its left. The interior of a pair of parallel 
lines is the region between the parallels. 

1.3. In affine co-ordinates the equation y = ex2 represents a pencil of para
bolas which touch the x-axis at the origin. As c becomes large through positive 
values the parabolas tend to the double ray x2 = 0, y > 0. As c tends to 0 
the parabolas tend to the line y = 0. 

The equation x2 = ay + 1 represents a family of parabolas through the 
points ( ± 1 , 0). As a tends to zero the parabolas tend to the pair of parallels 
parallel to x = 0. 

The equation x2 = a2y + a represents a family of parabolas which tend to 
the double line x2 = 0 as a tends to zero through positive values. As a tends 
to zero through negative values, however, these parabolas do not have a 
limit. 

1.4. Parabolas constitute a four-parameter family of conies; but four points 
in the real affine plane do not always determine a parabola. 

Let C be the convex hull of the four points. If C is a strictly convex quad
rangle then there are exactly two parabolas through the points. These are, in 
general, non-degenerate but when C is a trapezoid but not a parallelogram, one 
of them is non-degenerate and the other is a pair of parallel lines, and when C 
is a parallelogram they are both pairs of parallel lines. 

If C is a non-degenerate triangle with all four points on its boundary there 
is exactly one parabola, viz., the line through the three collinear points and 
its parallel through the fourth point. 

If C is a triangle containing one of the four points in its interior there is 
no parabola through them. 

Finally, if C is a line segment then there are infinitely many degenerate 
parabolas through C, namely, any double ray through C, the line through 
C, the double line through C, and the line through C together with any other 
parallel line. 

1.5. Associated with each non-degenerate parabola T is the pencil of parallel 
lines each of which meets IT exactly once. We shall call this the diametral 
pencil of T. The line of this pencil through a point P is called the diameter 
of 7T through P. 

The linear family of parabolas, each of which touches a given non-degenerate 
parabola -K at the same point and has the same diametral pencil of lines will 
be called a diametral pencil of parabolas. 
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2. Convergence. 
2 . 1 . A neighbourhood of a point P is the interior of an ellipse which contains 

P in its interior. 
A sequence of points {Pn} is defined to be convergent to a point P if every 

neighbourhood of P contains Pn for all bu t a finite number of n. 
A point P is defined to be an accumulation point [a limit point] of a sequence 

of parabolas {irn\ if every neighbourhood of P contains points of irn for infinitely 
many n [for all bu t a finite number of n]. 

A sequence of parabolas J7rn} is defined to be (pointwise) convergent if i t 
has a t least one accumulation point and every accumulat ion point is a limit 
point of [irn]. 

We sta te the following lemmas wi thout proof. 

L E M M A 1. The set consisting of the limit points of a convergent sequence of 
non-degenerate parabolas is a non-degenerate parabola or a line or a ray or a 
pair of parallel lines. 

L E M M A 2. Every infinite sequence {irn} of non-degenerate parabolas which meet 
a bounded region has a convergent subsequence. 

2.2. Let 7T be a non-degenerate parabola and let P , Q, R, S, U be any five 
points of 7T. T h u s the quadrangle PQRS is str ictly convex. Let Pnj Qn, Rn, Sn, 
Un converge to P , Q, P , 5 , U respectively. T h u s the quadrangle PnQnRnSn is 
also convex if n is sufficiently large. Hence there are two parabolas irn and irn

f 

through Pni Qn, Rn, Sn. Let 7r0 be any limit parabola of {wn} or {irn'}. T h u s 7r0 

passes through P , (?, R, S. Hence TTO is equal either to w or to the second 
parabola through P , Q, P , 5 . If, in addit ion, Un Ç irn, then U G IT and hence 
7To = 7T. 

T h e above discussion remains valid if TT is a pair of parallel lines with P 
and Q on one of them and R and S on the other. 

LEMMA 3. If P , Q, R, S is a strictly convex quadrangle and Pn, Qn, Rn, Sn 

converge to P , Q, R, S respectively, then the two parabolas through Pn} Qn, Rn, Sn 

converge to the two parabolas through P , Q, P , S. 

2.3 . One can verify t h a t if {irn} converges to a line 7r, then 7rn meets any 
line 2 which is not parallel to ir in a t least one point which converges to 
7T Pi 8. If there exists exactly one point of irn Pi ? which converges to T T H S , 
we say t ha t {7rw} converges to the single line -K bu t if there are two points of 
wn P 8 which converge to -w P S we say t h a t {wn} converges to the double line w. 

I t can be shown tha t the above proper ty is independent of the choice of 
8 J 7T. 

2.4. In order to extend our concept of convergence we introduce neigh
bourhoods of parabolas. 
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A neighbourhood of a non-degenerate parabola ir is the region which lies 
outside an ellipse in 7r* and inside a hyperbola branch which contains T in 
its interior. 

A neighbourhood of a double ray -K is the inside of a hyperbola branch which 
contains T in its interior. 

A neighbourhood of a pair of parallel lines is the common exterior of an 
ellipse which lies between the lines and a hyperbola which does not meet 
them. 

A neighbourhood of a double line w is the exterior of a hyperbola which does 
not meet TT. 

A neighbourhood of a single line ir is the common exterior of two ellipses 
which are separated by w. 

2.5 . A sequence of parabolas {Tn\ is called globally convergent to a parabola 
7T if every neighbourhood of w contains wn for all bu t a finite number of n and 
the following additional condition holds. 

1. If T is non-degenerate or a pair of parallel lines, wn contains the ellipse 
of the neighbourhood of T in its interior. 

2. If ir is a double ray, the vertex of IT is a limit point of {irn}. 
3. If 7T is a double line, irn intersects every line which is not parallel to x 

twice. 
4. If 7T is a single line, irn contains exactly one of the ellipses of the neigh

bourhood of T in its interior. 

2.6. We need the following observations. Suppose t ha t J7rw} is globally 
convergent to IT. Let n be sufficiently large. 

1. If T is non-degenerate, then wn is non-degenerate. 
2. If 7T is a double ray, then ?rw is non-degenerate or a double ray. 
3. If T is a pair of parallel lines, then 7rn is either non-degenerate or a pair of 

parallel lines. 
4. If 7T is a double line, then irn is not a single line. 
5. If T is a single line, then -Kn is neither a double ray nor a double line. 

2.7. Suppose t ha t every neighbourhood of T contains irn for all bu t a finite 
number of n. I t can readily be proved t ha t if T is non-degenerate and irn has 
a limit point on w or if w is a pair of parallel lines and {wn} has a limit point 
on each of them, then {Tn} is globally convergent to ir. 

In this paper we shall be concerned mainly with sequences {wn} of non-
degenerate parabolas each of which passes through a fixed point p. T will 
usually be non-degenerate or a double ray with the vertex p or a pair of 
parallel lines, one of which contains p while the other contains a limit point 
of {TU}. T h u s the initial assumption is sufficient to ensure the global con
vergence Of {iTn} tO 7T. 
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2.8. One can prove the following theorem by considering the various cases 

separately. 

T H E O R E M 1. A sequence of parabolas {wn} is globally convergent to a parabola 
T if and only if {7rn} is pointwise convergent to T. 

We include a proof of the case of Theorem 1 where ir is non-degenerate. 
(I) Let {iTn} be globally convergent to w. Let P £ ir. Let N be any neigh

bourhood of P. Let (e, 77) be a neighbourhood of T such t h a t e and 77 both 
meet N. By Section 2.5, e C ^n* for all large n. Hence irn meets N. 

(II) Let {irn} be pointwise convergent to ir. Let (e, 77) be any neighbour
hood of 7T. We wish to show t h a t wn C e* P\ 77* and e C TTW* for all large n. 

1. If 7rn meets e for all large n, then these points will have an accumulat ion 
point, say, Q (Z TT C\ e. Since this is impossible, wn cannot meet e when n is 
large. T h u s wn C €*. 

2. Let P , P , and P ' be points of T such t ha t PR and P P ' are parallel to 
the asymptotes of 77. If Tn meets 77 a t Qn for all large n> then the {Qn} cannot 
have a limit point on T P \ 77. Hence the line Pn()w mus t converge to the line 
PR or P P ' . However, the line PnQn converges to the diameter of ir through 
P . Since this is impossible, we conclude t h a t irn C\ 77 = 0, for all large n. 

Since irn contains Pn C y*, ^n C *?*• 
3. Let P , R G 7T be such t ha t P P meets e*. Let M and TV be small neigh

bourhoods of P and P . If w is large, irn contains points Pn and Rn in AT and 
TV and the line segment PnRn will meet e. Hence e contains points C TTW*. 
Since irn C\ e = 0, it follows t h a t e C TTW*. 

From now on a sequence lirn} which is either globally or pointwise con
vergent to ir (and thus both globally and pointwise convergent to ir) will be 
called convergent to ir. 

2.9. I t may occur to the reader t ha t the ra ther elaborate neighbourhood 
system which has been introduced in Section 2 could be replaced by the 
topology defined by regarding the parabolas (ax + by)2 + ex + dy + e = 0 
as points of a projective 4-space: (a, b, c, d, e) ^ (0, 0, 0, 0, 1). This corre
spondence does not take care of the double rays, however, and the induced 
topology would not be identical with ours. In particular, as a —> 0 the points 
(1, 0, 0, a, 0) in the projective 4-space converge to the unique point (1, 0, 0, 0 ,0 ) , 
which we have to associate with the double line x2 = 0. On the other hand, if 
a —> 0, a > 0, the parabolas x2 + ay = 0 converge to the double ray x2 = 0, 
y < 0, bu t if a —> 0, a < 0, they converge to the opposite double ray, x2 = 0, 

y >o . 
The last example in Section 1.3 also shows t ha t the two topologies are 

different. 

2.10. Let 7r be a non-degenerate parabola. Let 77 be a hyperbola branch 
containing T in its interior and let e be an ellipse in 7r*. Any continuous arc 
joining a point on e to a point on 77 will meet w. 
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2 .11 . Let P be a point of T. A small neighbourhood N of P is decomposed 
by T into two regions unless P is an end-point of T. Let T be any parabola 
through P. If T P\ N — P meets both regions [exactly one region], P is called 
a point of intersection [support] of T and T . This language can be justified 
by observing t ha t this relation is actually symmetric in T and T . 

The proof of the following lemmas is based on the properties of global 
convergence. 

LEMMA 4. Let {irn\ converge to a non-degenerate parabola T and let {W} con
verge to T where T is non-degenerate, a pair of parallels, or a single line. If T 
and T' intersect in a point Q, then TU and Tn' intersect in a point Qn close to Q 
when n is large. 

LEMMA 5. Let {Tn} converge to a non-degenerate parabola T and let {wn
f} 

converge to a double ray T . Suppose that P £ T C\ T and P is the vertex of T1 . 
If T' C 7T* U P, then irn and Tn' cither do not meet outside a small neighbour

hood N of P or else they meet twice outside N. 
If T meets TT at a point Q ^ P, then irn and TU' meet in two distinct points near 

Q (unless Tn' is a double ray). 

LEMMA 6. Let {irn} converge to a pair of parallels T and let \Tn'} converge to 
a double ray irf. Suppose that P G TT P\ T' and P is the vertex of TT'. If ir' meets 
7T at Q, where P and Q do not lie on the same parallel of ir, then irn and -KÙ meet 
at two distinct points near Q (unless irn

f is a double ray). 

LEMMA 7. Let {-Kn) converge to TT and let {irn
r\ converge to ir' where ir and irf 

are both non-degenerate. Suppose that P G TT C\ IT'. If w' C ?r* U P, then irn and 
Tn

f either do not meet outside a small neighbourhood N of P or else they meet 
twice outside N. 

We illustrate the type of proof used in Lemmas 4-7 by considering the 
case of Lemma 4 where x and 7/ are non-degenerate. 

Let N be a small neighbourhood of Q which contains no other point of 
7T r\ TT'. Let (e, 7}) and (e', 7/) be neighbourhoods of TT and w' respectively such 
t ha t e and t\ meet e and rj inside N to form a curvilinear quadrilateral in N. 
For all large n, irn G (e, rj) and irn

r 6 (e, -q'). Since irn meets one pair of opposite 
arcs of this quadrilateral , irn meets Tn' in N; cf. Section 2.10. 

2.12. LEMMA 8. Suppose that a sequence of parabolas {irn} converges to a 
parabola T which is not a double line or a double ray and Pn and Qn converge to 
P; Pn G Tn, Qn G Tn, Pn 5* Qn (thus P £ T) . Then PnQn converges to the tangent 
of T at P. (We define the tangent to a single line or one of the lines of a pair 
of parallels to be the line itself.) 

2.13. Let r be the (two-parameter) family of non-degenerate parabolas 
which touch a line X a t p. Thus r = r(p,X). We compactify r by the addit ion 
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of all its limit parabolas, and denote the compactified family by r. Suppose 
t h a t a degenerate parabola ir is the limit of a sequence {Tn} of parabolas of r. 
T h u s irn lies in one of the closed half-planes determined by X. We may assume 
t h a t irn lies in the same closed half-plane for all large n. T h u s the degenerate 
limit parabola ir lies in this closed region and contains p. Hence ir is the 
single line Xf a double ray on X through p, a double ray with the vertex p, 
the double line on X, or a pair of parallels one of which is X. We note t h a t 
no double line which does not lie on X belongs to f. 

Suppose t ha t the degenerate parabola T is the limit of degenerate parabolas 
Tn of f listed above. Each irn has been constructed as the limit of parabolas 
of r. T h u s T will also be the limit of parabolas of r. This verifies t h a t every 
degenerate limit parabola w of r can be obtained by the above s tep and the 
family f described above is already compact . 

2.14. If the point Q $ X} then any diametral pencil in r will contain exactly 
one parabola through Q. 

2.15. LEMMA 9. Any two parabolas of r which have three distinct points in 
common outside p coincide. 

2.16. T h e o n e - p a r a m e t e r s u b f a m i l y <f>. Let T0 be any non-degenerate 
parabola through p and let X denote its t angent a t p. Then 7r0 determines 
a one-parameter family <£ = 0(7ro) which consists of TO itself and those non-
degenerate parabolas which touch X a t p and meet wo exactly once outside p. 
If Tri £ 0(TTO), then <t>(iri) = <£(7ro). Any two members of 0 intersect a t p. T o 
every straight line 2 ^ X through p there corresponds exactly one parabola 
of <f> with the diameter 8 through p. 

All the parabolas of <j> lie in the same half-plane. Through each point R 
of t h a t half-plane there pass exactly two parabolas wi and 7r2 of <t>. Let w be 
any third parabola of cj>. If R £ 7r* [R £ 7r*] the diameters through p of T\ 
and 7T2 are separated [are not separated] by X and the diameter 3) of w through 
p. In the la t ter case these diameters pass through the region bounded by © 
and X which contains R. 

If X is oriented such t ha t TT C Ï * ^ f, then w decomposes X* into three 
disjoint regions, one in 7r* and the other two in 7r*. Any other parabola of $ 
passes through 7r* and exactly one of the regions in 7r* P\ £*. 

3. Tangent parabolas of arcs. 
3 .1 . A r c s . An arc A is defined as the continuous image in the affine plane 

of a real parameter interval. Thus , if a sequence of points of the parameter 
interval converges to a point p, the corresponding sequence of image points 
is defined to be convergent to the image of p. T h e same letters, p, t, . . . denote 
the points of the parameter interval and their images on A. T h e parameters 
s and p are supposed to be distinct and 5 will always be "sufficiently close" to 
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p. The end-points {interior points) of A are the respective images of the 
end-points (interior points) of the parameter interval. 

A neighbourhood of p on A is the image of a neighbourhood of the parameter 
p on the parameter interval. If p is an interior point of A, this neighbourhood 
is decomposed by p into two (open) one-sided neighbourhoods. T h e images 
of distinct points of the parameter interval are to be considered to be different 
points of A even though they may coincide in the plane; nevertheless, the 
notat ion Q ^ R will indicate tha t the points Q and R do not coincide. 

3.2. Let p be a given point on an arc A. The arc A is called differentiable 
a t p if the following condition is satisfied. 

CONDITION I. If the parameter s is sufficiently close to the parameter p, s 9^ p, 
the line ps is uniquely determined. It converges if s tends to p. 

The limit straight line X is the ordinary tangent of A a t p. From now on, 
we assume tha t A satisfies Condition I a t p. 

We denote the family of non-degenerate parabolas which touch X a t p by r 
and its compactification by r, as in Section 2.13. 

3 .3 . Suppose tha t the points p, Q, R are mutual ly distinct. Let s be a 
point of A. I t can happen tha t there are parabolas through s, p, Q, R for all 5 
sufficiently close to p. Then these parabolas have limits as 5 tends to p. Any 
such limit parabola ir will pass through Q and R and, with an exception to 
be noted later on, will touch X a t p. Thus , neglecting this exception, T will 
belong to the compactified family f of all the parabolas which touch X a t p. 
We then call w a tangent parabola of A at p. 

The next four sections show tha t any parabola of r and some of the degenerate 
ones of r are tangent parabolas of A at p. I t will be convenient to designate 
also the remaining parabolas of f as tangent parabolas. 

3.4. If p, Q, R are not collinear and Q and R lie on the same side of X the 
quadrangle spQR will be convex when 5 is close to p. Hence there will be two 
parabolas xi and T2 through these four points. When 5 tends to p, any limit 
parabola IT will pass through p, Q, R and, by Lemma 8, will touch the limit 
X of the line ps. Hence T G f and T is one of the two parabolas of f which 
pass through Q and R. Both of these will be non-degenerate unless QR is 
parallel to X, in which case one of them will be a pair of parallel lines. 

We denote the parabolas of f through Q and R by wt (f ; Qy R) ; i = 1,2. 
We may assume tha t the diameter through p of wi [7r2] passes through the 

pair of open regions defined by the lines pQ and pR which contains 5 [does not 
contain s]. This readily implies tha t the diameter through p of Km 71-1 [lim 7^] 
passes through the same pair of open regions as s tends to p. Thus 

l im 7Ti 7^ l im 7T2. 
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3.5. If p, Q, R are not collinear and Q and R are separated by X, there 
is no parabola psQR when 5 is close to p and there are no tangent parabolas 
of A a t p through Q and R. 

3.6. If Q lies on X and R does not, there are two parabolas through psQR 
when s is close to p provided t h a t the line ps does not meet the open segment 
QR. If s lies on X, there is only one parabola, namely, X, and its parallel 
through R. 

When 5 tends to p, any limit parabola w will pass through Q and R and 
will touch the limit of the line ps a t p. Hence w is the unique parabola of f 
consisting of X and its parallel through R. 

3.7. Finally, let p, Q, R be distinct points on a line 2. If s $ Ï in the case 
where 8 = Ï , there is only one parabola through psQR, viz., the line pQ and 
its parallel through 5. I t converges to the double line pQ when 5 tends to p. 
By the definition of r these double lines are not included in r, except when 
8 = X. If 8 = X and there is a sequence of points s £ A HiX converging to 
p, then the parabola through spQR is not uniquely defined. 

If Q and R are collinear with p and lie on opposite sides of X the t angen t 
parabolas of A a t p through Q and R will not be defined. 

If Q and i£ lie on the same side of p, suppose t h a t {Rn} converges to R, 
Rn $ pQ. Thus , both of the tangent parabolas of A a t p through Q and Rn 

converge to the double ray through Q with the vertex p. I t is convenient, in 
this case, to define this double ray to be the tangent parabola of A a t p 
through Q and R bu t the reader should bear in mind tha t it cannot be obtained 
as the limit of parabolas through p, s, Q, R as s tends to p. 

Thus , if p, <2, R are any mutual ly dist inct points which lie in the same 
closed half-plane bounded by X, then the pair of tangent parabolas of A a t p 
through Qn and Rn always tend to the tangent parabolas of A a t p through 
Q and R as Qn tends to Q and Rn tends to R. 

3.8. N o n - t a n g e n t parabolas . Suppose t h a t p is an interior point of an 
arc A. Then p is called a point of support [intersection] with respect to a parabola 
TV if a sufficiently small neighbourhood of p on A is decomposed by p into 
two one-sided neighbourhoods which lie in the same region [in different 
regions] bounded by T. T h e parabola T is then called a support ing [inter
secting] parabola of A a t p. In particular, -K supports A a t p if p $ w. I t can 
happen t h a t every neighbourhood of p on A has points ^p in common with 
7T. Then TT neither supports nor intersects A a t p. 

3.9. Let p be an interior point of an arc A. Suppose again t h a t A satisfies 
Condition I a t p. 

L E M M A 10. The lines 5*X through p either all support A at p or they all inter
sect. 
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I t is well known tha t if A is differentiable a t p, then A satisfies Lemma 10. 
For the reader 's convenience, we include a proof. 

Proof. If 8 neither supports nor intersects A a t p, then Condition I implies 
t h a t 8 = X. Let 8 and 2ft be two distinct lines through p. Suppose, for example, 
t h a t 8 intersects A a t p and 2ft supports . We may assume tha t A C 2ft* ^ p-
If ^ C i n S * . the line sp lies in (8* Pi 2ft*) \J (8* Pi 2ft*) \J p. Let t ing 
5 —> p through i n ? * , we conclude tha t X lies in the closure of this set. 
Symmetrically, letting s -* p through A P 8*, we see t ha t X lies in the closure 
of (8* P 2ft*) U (8* P 2ft*) U £. Hence X = 8 or 2ft. 

LEMMA 11. 7/ a non-tangent line 8 through p intersects [supports] A at p, 
then every non-degenerate parabola ir which touches 8 at p also interects [sup
ports] A at p. 

Proof. Let TT C 8* VJ p, say. Let Q and R be any two points on IT on opposite 
sides of X. T h u s the lines pQ and pR separate 8 and X. If N is a sufficiently 
small neighbourhood of p on A and 5 G N — p, then the line ps meets the 
open segment QR and s lies inside the triangle pQR or in 8*. Hence 5 does not 
lie in the closure of either of the two regions 8* P 7r*. 

If N — p lies in 7r* P 8* or in x* P 8*, then 7r and 8 both suppor t A a t 
p; otherwise w and 8 both intersect A a t £. 

Lemmas 10 and 11 imply the following result. 

T H E O R E M 2. The non-degenerate non-tangent parabolas of A through p all 
intersect A at p or all of them support. 

3.10. Let {ir(s)} and {ir'(s)\ be two sequences of parabolas of r through 5 
which converge to ir and ir' respectively as s tends to p. Here, we let s range 
through a certain sequence of points. 

LEMMA 12. If w has a point in Ï * , then s (Z X*. 

Proof, T CX*VJX, IT <ZX implies w(s) C £ * W £ and 5 C £*. 

COROLLARY. If T (ZX*^J X and T and w' do not lie on X, then irf C £ * W Ï . 

LEMMA 13. 7r awd 7r' do not intersect at two points outside p. 

Proof. Suppose t ha t w and wf intersect a t Q and R; Q 9e R, Q ^ p, R ?* p. 
By Lemma 4, T(S) and 7r'(s) will intersect a t two points close to Q a n d R. 
Since w(s) and ir'(s) belong to r and also meet a t 5 close to p, they coincide, 
by Lemma 9. 

LEMMA 14. If T G r and x ' G r, //zen wf G </>(7r). JW particular, T and x ' do 

not support at p. 

Proof, (i) If IT and wf intersect a t a point Q ^ p, they cannot suppor t or 
intersect a t another point ?£p, Q. Hence T and %' intersect a t p. By Section 
2.16, TT' G 0(TT). 
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(ii) Suppose t h a t IT and ir' suppor t a t p. On account of Lemma 13 and 
Case (i), we assume tha t TT and ir' do not intersect outside p. By the Corollary 
of Lemma 12, we may assume t h a t irr C ?r* U p. Thus , either T(S) and T'(s) 
meet twice outside a small neighbourhood N of p, or else they do not meet 
outs ide N. In the former case, they coincide, by Lemma 9. In the la t ter case, 
t h e y have the same diameter through p, and since they have the point 5 in 
common, they coincide. In either case, T and n coincide. 

L E M M A 15. The following cases are impossible: 
(i) 7T Ç r and irf is a pair of parallel lines, one of which is X. 

(ii) 7T G T or TT is a pair of parallel lines, one of which is X, and T' is a double 
ray in X* U p with the vertex p. 

Proof. By the corollary of Lemma 12 we may assume t h a t x U j ' C ï * ^ Ï . 
Case (i) is then excluded by Lemma 13. 

Case (ii). Suppose t h a t -K and T intersect a t a point Q. By Lemma 5, T(S) 
and ir'(s) intersect a t two points near Q. By L e m m a 9, w(s) and irf (s) coincide. 

Finally, suppose t ha t w Ç r and -K' C TT* ^ p- By L e m m a 5, T(S) and T'(s) 
either belong to the same diametral pencil, or they meet a t two points outs ide 
a small neighbourhood N of p which includes s. By Lemma 9, w(s) and TC' (s) 
coincide in either case and hence TT and wf also coincide. 

LEMMA 16. If -K is a double ray in X* ^J p or IT Ç r, then irf is not the single 
line X. 

Proof. Suppose t ha t -wf is the single line X. Since w 9^ w\ we conclude t h a t 
w(s) T^ 7rf(s). Since w(s) and ir'(s) have the point s ^ p in common, ir(s) and 
Tr (s) cannot belong to the same diametral pencil of r. Hence TT(S) and T'(s) 
intersect twice outside a small neighbourhood A7 of p which includes 5. By 
L e m m a 9, ir(s) and irf (s) coincide. 

3 .11. Let 0 be a subfamily of r of the type described in Section 2.16. Let 
p be an end-point of A, A — p C Ï * . Let -KI (</>; s) denote the two parabolas 
of <j) through s; i — 1,2. 

LEMMA 17. The wi (<£; s) can be numbered in such a way that 

lim 7r2(0; s) 

exists and is equal to a double ray on X with the vertex p. 

Proof. Let ? be any line through p; 2 ^ X. We may assume t h a t A lies in 
one of the quadran t s bounded by 2 and X, say A C (8* P\ £*) U />. 

Let s £ A; s ?± p. By Section 2.16, the line 3) = ps is the diameter through 
p of one of the parabolas of </>. Since 5 lies in the interior of t ha t parabola, 2.16 
implies t ha t the diameters of n (0; s) and 7r2 (0; s) are separated by © and 
X. In particular, the diameter of, say, 7r2 (</>; s) must have points in the sector 
bounded by 35 and X in X* r\ ?*. 
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Let s —» p. Then 35 —> X and the diameter of T 2 (#; 5) must also converge 
to X, i.e., 7T2 (0; 5) converges to the double ray on p \J (X C\ ?*) with the 
vertex p. 

4. O s c u l a t i n g parabolas . 
4 .1 . Since the tangent parabolas of A a t £ through Q and 5 are not defined 

when Q and 5 are separated by X we shall restrict our at tent ion from now on 
to arcs which are differentiable a t p bu t which do not cross X. The point p 
may be either an interior point of A or an end-point. 

CONDITION I I . Let A be differentiable at p and let all the points of A — p 

close to p lie in one of the half-planes bounded by X, say in X* U X. If Q £ £*, 
then the two tangent parabolas of A at p through Q and s converge when s tends 
to p. 

The limit osculating parabolas of A a t p through Q will be denoted by 
Ki (<*•;(?); i = 1» 2. The family of osculating parabolas of A a t p will be 
denoted by a. Thus a is a subset of f and lies in X* \J X. If A satisfies Con
dition II a t p, then A is called twice parabolically differentiable at p. 

We observe tha t if A satisfies Condition II and there is a sequence of 
points s Ç A C\ X converging to p, then ir(a; Q) consists of X and the line 
through Q parallel to X] cf. Section 3.6. 

4.2. Let Q e X, Q ^ p. 
If 5 $ X there is a unique degenerate parabola of f through Q and s, con

sisting of X and the line through s parallel to X; cf. Section 3.6. As s tends 
to p this parabola converges to the double line on X. 

If there is a sequence of points s Ç i H Ï converging to p, then the para
bola of f through 5 and Q is not uniquely defined; cf. Section 3.7. 

4 .3 . While it is assumed tha t Condition II holds for each point Q Ç £*, it 
is sufficient to assume tha t it holds for a single point in X*. 

T H E O R E M 3. If Condition II holds for one point Q Ç £*, then it holds for 
every point R G ï*^ 

Proof. Let Q G £*, # G £*. Pu t TTO) = 7r(r; 5, Q), TT'O) = TT(T; 5, # ) . Sup
pose t h a t 7T = lim w(s) exists and let 7r' be any accumulation parabola of 
IT' (S) as 5 tends to p. We restrict s to a sequence of parameters converging to 
p, such t ha t 7r' = lim ir'(s). 

Neither T nor x ' is the single line X, the double line on X, or a double ray 
on X through p, since none of these is the limit of a sequence of tangent 
parabolas through a fixed point in X*. Thus w [wf] is non-degenerate, or a 
double ray in X*^J p with the vertex p, or a pair of parallel lines, one of 
which is X. 

By Lemma 15, if w is non-degenerate [a double ray with t h e vertex p\ a 

https://doi.org/10.4153/CJM-1963-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-057-4


558 N. D. LANE 

pair of parallel lines one of which is X], then irf is also non-degenerate [a 
double ray with the vertex p\ a pair of parallel lines one of which is X]. 

Thus, if 7T is a double ray with the vertex p, then TT' is the unique double 
ray through R with the vertex p. 

If 7T is a pair of parallel lines one of which is X, then irf is the unique parabola 
consisting of X and the line through R parallel to X. 

If 7T G r, then irf Ç r, and by Lemma 14, w' £ </>(T). Thus ic' is one of the 
two parabolas of <j>(w) through R; cf. Section 2.16. 

4.4. THEOREM A. If A is twice differentiable at p, the set a of the osculating 
parabolas of A at p is one of the following three subsets of f : 

1. a is one of the one-parameter families <j> of parabolas of r which were 
described in Section 2.16. 

2. a consists of all the double rays of f with the common vertex p which lie in 
£* KJp. 

3. a consists of all the pairs of parallel lines of f which lie in X* U X. 

Proof. Let ir £ o-, -K' £ a. As in the proof of Theorem 3, we can first show 
that 7T |V] belongs to one of the three classes 1, 2, and 3, of Theorem 4. 

By Lemma 15, if T belongs to class 1 [class 2; class 3], then -K' also belongs 
to class 1 [class 2; class 3]. Thus, all the parabolas of a belong to the same 
one of the classes 1, 2, and 3. 

We finally verify that every member of the respective class actually lies 
in a. Let IT belong to the class which contains a and let Q G 7r, Q G Ï*. If o" 
belongs to class 1 [class 2; class 3], then ir coincides with one of the two non-
degenerate osculating parabolas [the unique double ray; the unique pair of 
parallel lines] of a through Q. 

4.5. The compactified family a. We compactify the family a of Type 1 
or Type 2 by adding to a the two double rays on X with the vertex p. 

In the case of Type 3, a is compactified by the addition of the double line 
coincident with X. 

4.6. Let 8 denote the diametral pencil of r whose diameters are parallel 
to a line 8. Let 7r(<5; S) be the unique member of 8 through s. Suppose that A 
satisfies Condition II at p. 

THEOREM 5. If the osculating parabolas of A at p are non-degenerate or double 
rays [pairs of parallel lines], then as s —+ p, the parabola TT(8; s) of 8 through s 
converges to the unique osculating parabola in 8 [the single line X]. 

Proof. Choose T Ç a. Let -K' be any accumulation parabola of the T(8;S). 
We restrict 5 to a sequence of parameters converging to p such that 

7T' = l im 7r(<5, S ) . 
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Let a be of Type . 1. By Lemma 15, irf is not a double ray and by Lemma 16, 
7T is not the single line X. Hence irf G r. By Lemma 14, w' £ <t>(ir). Hence 
7T Ç 0". 

If a is of Type 2, Lemma 15 implies t ha t irf (jf r and Lemma 16 implies 
t ha t 7r' is not the single line X. Hence x ' is the double ray of 8 in X* U £. 

If a- is of Type 3, Lemma 15 implies t ha t irr (£ r and irf is not a double ray 
in ï * U >̂. Hence 7r' is the single line X. 

4.7. T H E O R E M 6. The non-osculating tangent parabolas of A at an interior 
point p all support A at p. 

Proof. Let w £ f. We may assume tha t 7r is non-degenerate. If 7r neither 
intersects nor supports A a t p, then there exists a sequence of points 5 Ç i H i , 
s 9e p, s —+ p. Thus 7T may be regarded as a limit parabola of a sequence of 
tangent parabolas through 5 and a point Q Ç 7r. Thus 7r is an osculating 
parabola. 

Suppose t ha t ir intersects A a t £. Let ? be a diameter of T and let T(S) be 
the parabola of r through 5 with ? as a diameter. Let 5 tend to p. We may 
assume tha t 5 $ T. If 5 Ç 7r* P\ ^4, then 7r(s) <Z_ TT*\J p and 

Hm 7r(s) C 7T* U 7T. 

Symmetrically, if s £ 7r* O ^4, then lim w(s) C ?r* W T. Hence lim 7r(Y) = 7r 
and, by Theorem 5, 7r is an osculating parabola. 

4.8 . Let 7r' be the limit of the double ray through 5 with the vertex p as s 
tends to p and let ir" be the symmetric double ray on X. 

In this section we assume tha t A is twice differentiable at its end-point p. 
If the osculating parabolas of A a t p are double rays [pairs of parallel 

lines], then the osculating parabola through a point s £ A, s =̂  p, tends to 
the double ray ir' on X with the vertex p [the double line coincident with X] 
as ^ tends to p. If p is of Type 1, Lemma 17 implies, in particular, that 
7T2(o-; s) also tends to -K'. 

T H E O R E M 7.1f<t> T^ a, then the parabolas Tt(4>; s) of <f> through s £ A, i = 1, 2, 
converge to a double ray on X with the vertex p as s tends to p. In particular: 

(i) 7T2(0; S) —» 7Tr. 

(ii) 7Ti(<£; s) —•» 7r" if p is of Type 2. 

(iii) 7Ti($; s) —» 7r' ijf /> is 0/ Py£e 3. 

(iv) If p is of Type 1 and 7i> awd TT, are any two parabolas of </> and a re
spectively, with the same diameter through p, then 7ri(<£; S) tends to wf or to ir" 
according as 7r0 C ÎIV* U p or Ta C * > U £. (This result is independent of 
the choice of 7i> and 71V.) 
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Proof. By Lemma 17, 7r2(<£; S) —» irr. Let w be any non-degenerate limit 
parabola of the wi(<p; s) as s tends to p. Since $ is a closed subset of r, 7r G <?. 
Since .4 satisfies Condition II a t py Lemma 15 implies t ha t p is of T y p e 1. By 
Lemma 14, T is an osculating parabola of A a t p. By Section 2.16, every 
parabola of <t> 1S also an osculating parabola of A a t p, i.e., <j> = o\ Thus , if 
(j> 5e a, then lim 7n(</>; 5) is either x ' or TT". 

If 7T0 is any non-degenerate parabola of <£, then, by Section 2.16, T separates 
or does not separate TTI(</>; S) and 7r2(< ;̂ 5) in 0 according as 5 lies in 7i>* or 
in 7T0*. Theorem 5 then implies the results (ii), (iii), and (iv). 

5. Parabolically differentiable points. 
5 .1 . Let A be twice parabolically differentiable a t £. From now on we 

assume tha t the osculating parabolas of A a t p are of T y p e 1. According 
to Lemma 17 we can number the 7Tj(cr, s) such t h a t 

lim 7r2(cr;s) and lim T2((T',S) 
S-ÏP+O s-ïp—0 

exist and are double rays on X with the vertex p. 

CONDITION I I I . 

ir(p) = lim 7Ti(or; 5) 

By its definition, ir{p) will belong to the family â of T y p e 1 described in 
Theorem 4. We call ir{p) the super osculating parabola of 4̂ a t p. 

Since 7r(̂ >) G ë, it is either a non-degenerative osculating parabola or a 
double ray on X with vertex p. 

T h e example y = x2 + x3 s i n ( l / x ) shows t h a t Condition II does not imply 
Condition I I I . 

Throughout Section 5 we shall assume tha t Condition I I I holds. 

5.2. Suppose t ha t p is an end-point of A. Let T)(TT) denote the diameter 
of 7T through p. T h u s T){ir(p)\ is the diameter of the superosculating parabola 
of A a t p. 

L E M M A 18. Let 71-0 G a and let A — p C S(71-0)*. The ray of T){ir(p)} in 
ir(p)* VJ ir(p) lies in the closure of 3) (71-0)* O Ï * or 35 (^o)* ^ 3T* according 
as A — p lies in 7ro* or m 7ro*. 

Proof. By Section 2.16, 35{7TI(<T; s)} and ©{^(o", 5)} are separated or are 
not separated by 35(7r0) and X according as 5 G TT0* or 5 G 7r0*. By Theorem 
7, 35 {7^(0-; 5)} tends to X through the sector 35 (TO)* H Ï * as 5 tends to £. 
Hence T){TTI(O-; 5)} tends to its limit T){TT(P)} through 35(TT0)* H J * or through 
5X7ro)* Pi Ï * according as A — p lies in 7r0* or in 7r0*. 
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COROLLARY. If 

ir(p) = lim T2(<r;s)t 

then A — p lies in 7ro*. 

5.3. T H E O R E M 8. If p is an interior point of A, then the parabolas of a — w(p) 
all support A at p or all intersect according as A has or has not a cusp at p. 

Proof. Let M be a small neighbourhood of p on A. T h u s p decomposes 
M into two disjoint arcs N and N' and M = N U p U N''. Let TT be a non-
degenerate osculating parabola of A a t p. 

(i) If 7T has points 9^p in common with every neighbourhood of p on A, 
then there exists a sequence of points 5 Ç A C\ w, s 9e p, s —> p. T h u s w is 
an osculating parabola of A a t p through 5 for each s. From Condition I I I , 
7T will be the superosculating parabola of A a t p. 

(ii) Suppose t ha t some line F ^ Ï through p intersects A a t p. By Lemma 
10, every line ^ ï through p, in particular 3)(TT), will intersect A a t />. We 
wish to show tha t w also intersects A a t p unless w = TT(^). 

Let iV C 5D*(TT) U TT* [ # ' C $)*(*•) H TT*]. Then, by Lemma 18, the ray of 
T){T(P)} in TTO)* \J w(p) lies in the closure of 35*(TT) H 3T* [3)*(TT) H £*] . 

Thus T){ir(p)} = 3)(7r), i.e., 7r = ir(p). The case 

A7 c s>* (TT) n TT*, TV7/ c ®* W n TT* 

is dealt with similarly. 
(iii) If a line ?^£ through p supports A a t p, a similar a rgument shows 

t ha t 7T also supports .4 a t p if x ^ TT(£). 
(iv) Theorem 8 follows from the Corollary of Lemma 18 in the case where 

ir(p) is a double ray. 

5.4. We give some examples of the various types of differentiable end-
points. In each case s > 0. The point in question will be the origin, given 
by s = 0; m, n, and r are positive integers. 

T y p e 1. x = sm, y = s2m + as2m+n. 

T y p e 1(a) [ir(p) non-degenerate]: m < n. 

Type 1(b) \ir(p) = lim 7r2(cr; s)~\: m > n, a < 0. 

Type 1(c) f~7r(/?) = double ray symmetric to lim 7r2(o'; 5 )1 : 

m > n, a > 0. 

T y p e 2. x = sm, y = sm+r, 0 < r < m. 

Type 3. x = sm, y — sm+r, r > m. 

In all these examples, the tangent parabolas have the same equations 

(y — \x)2 = ny. 
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The osculating parabolas have the equations 

(y — Xx)2 = X2y (Type 1), 

(y - Xx)2 = 0, 3> > 0 (Type 2), 
y(y - k) = 0, * > 0 (Type 3). 

In Type 1(a), the equation of the non-degenerate superosculating parabola 
is y = x2 if m < n and (ay + 2x)2 = £y if m = n. 
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