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The Operator Biprojectivity
of the Fourier Algebra

Peter J. Wood

Abstract. In this paper, we investigate projectivity in the category of operator spaces. In particular, we

show that the Fourier algebra of a locally compact group G is operator biprojective if and only if G is

discrete.

1 Introduction

In [13], [14] Khelemskii investigated various homological properties in the category
of Banach and topological algebras. (See also Taylor’s work in [22].) He was able to

show that the group algebra L1(G) is biprojective in the category of Banach spaces
if and only if G is compact. When G is abelian, by using the Fourier transform we
can recognize Khelemskii’s theorem in terms of the Fourier algebra. Recall that the
Fourier transform allows us to naturally identify L1(G) with A(Ĝ). Using the Pon-

tryagin duality theorem, we easily conclude that for abelian groups, the Fourier alge-
bra A(G) is biprojective (as a Banach algebra) if and only if G is discrete.

The goal of this paper is to study the biprojectivity of A(G) for all locally compact
groups. The previous remarks suggest the possibility that all discrete groups are good
candidates for A(G) to be biprojective, however in the category of Banach spaces this
is not the case. Indeed, Khelemskii has shown that if A is a Banach algebra with a

bounded approximate identity which is biprojective as a Banach algebra, then A is
amenable as a Banach algebra. Although it is still an open problem, it seems likely
that A(G) is amenable as a Banach algebra if and only if G has an abelian subgroup of
finite index. Thus we are immediately restricted to a relatively small class of groups.

In fact, for the class of groups possessing an abelian subgroup of finite index,
H. Steiniger (see [21]) showed that if G is a discrete group, then A(G) is biprojec-

tive as a Banach algebra. An alternative proof of this fact as well as its converse is
provided in Theorem 4.7.

However, in [19] Ruan was able to show that when we view A(G) as a natural
operator space under the structure it inherits from being a predual of a von Neumann
algebra, A(G) is operator amenable if and only if G is amenable. This is the analogue
of B. Johnson’s famous theorem for the group algebra (see [12]). In this paper, we

shall show that under this operator space structure, A(G) is biprojective if and only if
G is discrete.
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Biprojectivity of the Fourier Algebra 1101

In addition to his result, Ruan’s work suggests that the category of operator spaces
is the correct place to work when studying the Fourier algebra. In the author’s opin-

ion, this paper provides further evidence for this.

2 Notation and Preliminaries

Let G be a locally compact group, and let L1(G) denote the group algebra. We let
A(G) denote the subspace of C0(G) consisting of functions of the form

u(x) =

∞∑

i=1

̂( fi ∗ g̃i)(x)

where fi , gi ∈ L2(G),
∑∞

i=1 ‖ fi‖2 ‖gi‖2 < ∞, f̂ (x) = f (x−1) and f̃ (x) = f (x−1).
A(G) is a commutative Banach algebra with respect to pointwise operations and the
norm

‖u‖A(G) = inf
{ ∞∑

i=1

‖ fi‖2 ‖gi‖2

∣∣∣ u =

∞∑

i=1

( f̂i ∗ g̃i)
}
,

called the Fourier algebra of G [9]. If G is abelian, then A(G) is simply the Fourier
transform of the group algebra of Ĝ. A(G) was introduced for non-commutative

groups by Eymard in [9]. In any case, A(G) is a subspace of C0(G), the space of
continuous functions vanishing at infinity. We highlight the very important fact that
if G is not abelian, then Ĝ is not a group and thus there is no way for us to have an
isomorphism between A(G) and the group algebra of Ĝ. For each closed set E ⊂ G

we define the subspace I(E) as follows:

I(E) = {u ∈ A(G) : u(x) = 0 for all x ∈ E}.

It is easy to see that I(E) is a closed ideal in A(G). Let VN(G) denote the closure of
L1(G), considered as an algebra of convolution operators on L2(G), with respect to
the weak operator topology on B

(
L2(G)

)
. The von Neumann algebra VN(G) can be

identified with the Banach space dual of A(G) [9]. An operator space is a vector space
V together with a family ‖ ‖n of Banach space norms (called operator space norms)
on Mn(V ), the space of n× n matrices with entries in V such that

(i) ∥∥∥∥
[

A 0
0 B

]∥∥∥∥
n+m

= max{‖A‖n, ‖B‖m}

for each A ∈Mn(V ), B ∈Mm(V ), and
(ii)

‖([ai j])A([bi j ])‖n ≤ ‖[ai j]‖ ‖A‖n ‖[bi j]‖

for each [ai j], [bi j ] ∈Mn(C) and A ∈Mn(V ).

Let X and Y be operator spaces and let T : X 7→ Y . For each n ∈ N define

T(n) : Mn(X) 7→Mn(Y )
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1102 Peter J. Wood

by

T(n)[xi j ] = [Txi j].

The map T is said to be completely bounded (or simply c.b. for short) if sup{‖T (n)‖} <
∞. In this case we let ‖T‖cb = sup{‖T(n)‖}. We say that T is a complete isometry if
each T(n) is an isometry and that T is a complete contraction if each T (n) is a contrac-
tion. We say that two operator spaces X and Y are c.b. isomorphic if there exists a c.b.
map T : X 7→ Y such that T−1 is also completely bounded. Furthermore we shall say

that X and Y are c.b. isometrically isomorphic (or completely isometrically isomorphic)
if the map T can be chosen to be a complete isometry. For the Hilbert space H, we let

H(n)
= H ⊕ · · · ⊕H︸ ︷︷ ︸

n

.

Since there is a canonical identification between Mn

(
B(H)

)
and B(H(n)), it is easy to

show that B(H) (and hence any closed subspace) is an operator space. A fundamental
result in the theory is that every operator space is completely isometrically isomor-
phic to a norm closed subspace S of B(H), the algebra of bounded operators on the
Hilbert space H, where the operator space structure on S is the structure inherited

from B(H) [6]. If we let CB(X,Y ) denote the space of all completely bounded maps
from X to Y , then CB(X,Y ) has a natural operator structure which can be obtained
by identifying Mn

(
CB(X,Y )

)
with CB

(
X,Mn(Y )

)
. It is important to note that con-

tinuous linear functionals are automatically completely bounded. In fact, since we

can identify X∗ with CB(X,C), X∗ is also an operator space called the standard dual

of X (see [2]). For operator spaces X, Y and Z, we call a bilinear map T : X ×Y 7→ Z

jointly completely bounded, if for [xi j] ∈Mn(X) and [ykl] ∈Mm(Y ) we have that

‖T‖jcb = sup{‖[T(xi j , ykl)]‖mn : ‖[xi j]‖n ≤ 1, ‖[ykl]‖m ≤ 1}

is finite. There is an operator space analogue of the projective tensor product which
we denote X ⊗̂ Y such that

JCB(X,Y ; Z) = CB(X ⊗̂ Y,Z).

That is to say each jointly completely bounded map extends to a unique map on this
operator space projective tensor product. In particular, there is a complete isometry
between (X ⊗̂ Y )∗ and CB(X,Y ∗). We can define the norm of a typical element in

the operator space projective tensor product with the following. Let [xi j] ∈ Mp(X)
and [ykl] ∈Mq(Y ). We define the tensor product x ⊗ y to be the pq× pq matrix

x ⊗ y = [xi j ⊗ ykl] ∈Mpq(X ⊗ Y ).

Given any element u ∈Mn(X ⊗ Y ), we can write

u = α(x ⊗ y)β
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for some α ∈ Mn,pq(C), x ∈ Mp(X), y ∈ Mq(Y ), and β ∈ Mpq,n(C). Now we have
that the operator space projective tensor norm is given by

‖u‖n = inf{‖α‖ ‖x‖ ‖y‖ ‖β‖}

where the infimum is taken over all such representations of u.
An associative algebra A which is also an operator space and is such that the mul-

tiplication
m : A ⊗̂ A 7→ A

is completely contractive is called a completely contractive Banach algebra. We note
that if X is the predual of a von Neumann algebra A, it inherits a natural operator
space structure as follows: for [xi j ] ∈Mn(X) we set

‖[xi j ]‖n = sup{‖[ fkl(xi j)]‖nm : [ fkl] ∈Mm(A), ‖[ fkl]‖m ≤ 1}.

Thus the Fourier algebra can be given a natural operator structure by virtue of it being

the predual of a von Neumann algebra. In this case, this operator space structure
results in a completely contractive Banach algebra (see [19] and [2]). Given two
operator spaces X and Y , we can consider the direct sum X ⊕ Y to be an operator
space where

‖[xi j ⊕ yi j]‖n = max{‖[xi j]‖n, ‖[yi j]‖n}.

Unless otherwise noted, whenever we are given the direct sum of two operator spaces,
we shall consider it to be an operator space in this way.

A left Banach A-module is a left A-module X that is itself a Banach space and for
which

‖ax‖X ≤ ‖a‖A ‖x‖X

for each a ∈ A and each x ∈ X. A right and two-sided Banach A module is defined
analogously. We call a two sided module a bimodule. If X is a left Banach A-module,
then X∗ becomes a right Banach A-module with respect to the action

(φa)(x) = φ(ax).

We call X∗ a dual right Banach A-module. Naturally we can define dual left and

bimodules analogously. In the category of operator spaces there are two ways to
define an operator module. In this paper we shall call an operator space X which
is a left Banach A-module, a left operator A-module (or simply left A module if no
confusion arises) if the module map is completely contractive with respect to the

operator projective tensor product, that is to say the module map

πX : A ⊗̂ X 7→ X

is completely contractive. Clearly we may define operator right and bimodules anal-
ogously. Furthermore if X is an operator module, then X∗ becomes a dual operator
module with the dual actions defined above. (The alternative way to construct an op-
erator module is to use the Haagerup tensor product. While this tensor product may
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in some ways be more natural when studying concrete operator spaces, the operator
space projective tensor product is a far better analogue of the Banach space projective

tensor product. Indeed, since it is the categorical properties and not the structural
properties of operator spaces which are of most interest to us, we shall only make use
of the projective tensor product). Suppose X is a left operator A-module and Y an
operator space. Then we may consider X ⊗̂ Y as a left operator A module by

a · (x ⊗ y) = ax ⊗ y

for a ∈ A, x ∈ X and y ∈ Y . It is clear that if Y is a right operator module, then
X ⊗̂ Y becomes a right operator module in the analogous way. By a chain complex

we mean a sequence of objects Xn with n ∈ Z and morphisms dn : Xn+1 7→ Xn such

that dn ◦dn+1 = 0 for all n ∈ Z. The objects could be Banach spaces, Banach algebras,
Banach modules etc. and the maps naturally will be respectively Banach space maps,
Banach algebra maps, Banach module maps etc. Typically, a chain complex is written
as

(Ξ) : · · · −→ Xn
dn−→ Xn+1 −→ · · · .

The condition that dn+1 ◦ dn = 0 is clearly equivalent to im dn+1 ⊂ ker dn.

3 Projectivity in Operator Spaces

Our primary goal in this section is to extend the natural results of projectivity in

Banach spaces to the category of completely contractive Banach algebras. In some
cases, the proofs of certain results are almost identical to the Banach algebra case
which in turn are almost identical to the pure algebra case. In this instance we shall
omit the proof. However, in other cases differences emerge between the categories

or technical facts relying on the important properties of the objects are required to
translate the old results to the new category. We will try to highlight these situations.

One of the basic concepts and tools in homological algebra is that of a short exact

sequence. Recall that a short exact sequence of objects in an abelian category is a
complex of the form

0 −→ X
f
−→ A

g
−→ Y −→ 0

where f is injective, g is surjective and ker g = im f . We note the expected fact that
A/ f (X) is isomorphic in the category to Y , and naturally we write A/ f (X) ∼= Y . In

this case we say that A is an extension of X by Y . Indeed, this principle holds in both
the category of Banach spaces and the category of Banach algebras.

Unfortunately, this concept breaks down in the case of operator spaces. Consider
the following short exact sequence:

0 −→ 0 −→ MAX(X)
id
−→ MIN(X) −→ 0

where id represents the identity map. If X is any infinite dimensional Banach space,
then MAX(X)/0 = MAX(X) is not isomorphic in the category of operator spaces
to MIN(X). In this sense, one of the basic objects of homology fails to “do what we
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want” in our new category. The basic way to repair this is to restrict the sequences
under consideration. In [20], the authors considered cases where f was a “complete

isometry” and g was a “complete quotient” map. In [24] the present author consid-
ered sequences where both f and g had inverses which were completely bounded.
The first thing we shall now do is establish in a natural way, a broad class of short
exact sequences which avoids this isomorphism dilemma, and we will show that in

some sense this class is as broad as possible.

Definition 3.1 Given two operator spaces X and Y , we say a c.b. map T : X 7→ Y has
the complete isomorphism property (c.i.p.) if the image T(X) is closed and the induced

map T̃ : X/ ker T 7→ T(X) is a c.b. isomorphism.

We note that any bounded map between Banach spaces satisfies the analogous
property. This leads to the following:

Definition 3.2 A chain complex of operator spaces is called an operator complex if
each of the differential maps has the complete isomorphism property. As discussed
earlier, an important special case of a chain complex is of course the short exact se-
quences. In this paper, we call any short exact operator chain complex an extension

sequence or 1-extension sequence. This leads to the following proposition which sug-
gests that operator complexes are the correct tool for our category:

Proposition 3.3 Suppose X,Y and Z are operator spaces such that

(Ξ) : 0 −→ X
f
−→ Y

g
−→ Z −→ 0

forms an extension sequence. Then Y/ f (X) is c.b. isomorphic to Z.

Proof Since (Ξ) is a short exact sequence, we have im f = ker g thus Y/ f (X) =
Y/ ker g. Since (Ξ) is an operator complex, the map g has the complete isomorphism

property and hence there is a c.b. isomorphism between Y/ ker g and im g = Z (by
exactness). Thus Y/ f (X) is c.b. isomorphic to Z.

Conversely, we have the following:

Proposition 3.4 Suppose X, Y and Z are operator spaces with X ⊂ Y such that Y/X is

c.b. isomorphic to Z. Then there is an extension sequence (Ξ) of the form

(Ξ) : 0 −→ X
i
−→ Y

f
−→ Z −→ 0

where i represents the inclusion map i : X ↪→ Y .

Proof Consider the canonical quotient map q : Y 7→ Y/X. By construction the short
exact sequence

0 −→ X −→ Y −→ Y/X −→ 0
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1106 Peter J. Wood

is an extension sequence. Let T : Y/X 7→ Z be a c.b. isomorphism. Then it is easy to
see that the following diagram commutes:

X
i

// Y
q

// Y/X

T

��
X

i
// Y

f
// Z

T−1

KK

Hence the bottom sequence is an extension sequence.

Unlike in algebra, it is usually necessary to consider further topological conditions
on our extension sequences. An additional condition is that we will require im πk to
be complemented. The importance of this latter condition will become apparent a
little later.

Definition 3.5 An exact operator complex of A-modules

· · · −→ Xk−1
πk−1
−→ Xk

πk−→ Xk+1
πk+1−→ · · ·

is called admissible if there exist completely bounded maps (not necessarily A-module
maps) θk : Xk+1 7→ Xk such that πk ◦ θk = idker πk+1

. An admissible complex is said to

split if the maps θk can be chosen to be module maps. Thus a complex is admissible
exactly when it splits as a complex of C-modules. Finally, we call a map φ : X 7→ Y

admissible if there exists a map θ : Y 7→ X such that φ ◦ θ = id im φ. Furthermore,
we call this map θ a right inverse for φ. We now have an analogue of Proposition 1.1

from [5]. See also the special case of this in [20].

Lemma 3.6 Let

0 −→ X
f
−→ Y

g
−→ Z −→ 0

be an extension sequence of A-bimodules. Then there exists a completely bounded map

F : Y 7→ X such that F f = idX if and only if there exists a map G : Z 7→ Y such that

gG = idZ . Furthermore F is a module map if and only if G is.

Proof Suppose F exists. Then clearly the map f F is a completely bounded projection
onto im f ⊂ Y . Thus the following diagram

X
f

//

f

��

Y

f F⊕(1− f F)

��

g
// Z

f (X)
�

�

i
// f (X)⊕ Q

g
// Z
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commutes, where Q is the complement of f (X) in Y and the map i : f (X) 7→ Y is
given by i(x) = x⊕ 0. Since im f = f (X) = ker g and since g has the c.i.p., it follows

that the induced map
g̃ : Y/ f (X) 7→ Z

is a c.b. isomorphism. Since Y/ f (X) ∼= Q it follows that g|Q is a c.b. isomorphism.

Now let G(z) = (g|Q)−1. The fact that gG = idZ is now trivial. Now assume that
G exists. Similar to above, we see that Gg is a completely bounded projection onto a
subspace P of Y which is c.b. isomorphic to Z. Let Q be the complement of P. Thus
1− Gg is a completely bounded projection onto Q. Note that

g(1− gG) = g − gGg = g − g = 0

thus Q ⊂ ker g = im f . Since g|P is an isomorphism, the reverse inclusion is obvious.

Hence Q = ker g = im f . Since f has the c.i.p., the map f −1 : Q 7→ X is completely
bounded. Thus we define

F : Y 7→ Z

by
F(y) = f−1

(
y − Gg(y)

)
.

Clearly F satisfies the desired properties. The fact that F is a module map if and only

if G is a module map is strictly algebraic. Suppose that G is a module map. Note that

F(ay) = f−1
(

ay − Gg(ay)
)
= a f−1

(
y − Gg(y)

)
= aF(y).

The right module action is similar. Conversely if F is a module map, then the sub-
space Q is a submodule, hence G|Q is a module map. Thus G is a module map also.

We note that the above lemma fails for general short exact sequences. Consider
the MAX /MIN example at the beginning of this section, see also [24]. It will arise
that we will be given a completely contractive Banach algebra A and a left operator

A-module X, and we will wish to know when the module map

π : A ⊗̂ X 7→ X

has an inverse. Obviously this is impossible immediately whenever the map π is not
onto. Recall that a module is called neounital if

A · X = {a · x : a ∈ A, x ∈ X} = X,

in which case π is clearly onto. If our completely contractive Banach algebra has a
bounded approximate identity {eα}, and if x = lim eαx for all x ∈ X, then we can use

Cohen’s Factorization theorem to guarantee X is neounital. Indeed when studying
L1(G) this can be a useful approach. Once again, in our setting this method will fail
us. In our primary example, A(G) does not have a bounded approximate identity
when G is not amenable, and indeed it is known (see [17]) that for non-amenable
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groups G, A(G) is not a neounital A(G) module. Thus we make the following defini-
tion:

Definition 3.7 A left operator A-module is called semi-neounital whenever the mul-
tiplication map

π : A ⊗̂ X −→ X

is onto. We have the analogous definition for right and bimodules.

Given a Banach algebra A we can construct its unitization A+ as follows: Let A+ =

A⊕ C, and now define multiplication by

(a, α) · (b, β) = (ab + αb + βa, αβ).

Now note that if X is a left (right, bi-) A-module, then X becomes a unital left (right,
bi-) A+-module with respect to the action

(a, α) · x = a · x + αx

(a right and bimodule structure is defined analogously). In [8] Effros and Ruan

showed that there is an operator space structure such that A+ is indeed a completely
contractive Banach algebra. Using the same techniques, we can show that any opera-
tor A module X becomes a unital operator A+ module. For completeness, we recall
their construction for A+, then we extend this in the obvious way to show X is an

operator A+ module.

Suppose we are given two operator spaces V and W . We construct the operator
space V ∗⊕W ∗. The induced operator space structure on the predual will be denoted
V ⊕1 W . We have the following important fact concerning this structure:

Proposition 3.8 Suppose X is an operator space and suppose that

φ : V −→ X and ψ : W −→ X

are completely contractive. Then the map

φ⊕1 ψ : V ⊕1 W −→ X

given by

(φ⊕1 ψ)(v ⊕1 w) = φ(v) + ψ(w)

is completely contractive.

Now we give A+ the operator space structure A⊕1 C. Using the previous proposi-
tion, Effros and Ruan have shown that if A is a completely contractive Banach algebra
then so is A+. Using the same technique, we have:

Lemma 3.9 If X is a left (right, bi-) operator A module, then X is a neounital left

(right, bi-) operator A+ module.
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Proof The fact that X is neounital is obvious. Now we simply note that the module
map (a, α) · x 7→ a · x + αx is the sum of two completely contractive maps which, by

Proposition 3.8 is clearly completely contractive. Thus X is a left operator A+ module
(see [8]). The right and bimodule cases follow analogously.

Our basic goal in this section is to study projectivity in the category of operator

spaces. Thus we introduce the following natural notation:

CBA,C(X,Z) = {T ∈ CB(X,Z) | T(ax) = aT(x) ∀x ∈ X, a ∈ A}

CBC,A(X,Z) = {T ∈ CB(X,Z) | T(xa) = T(x)a ∀x ∈ X, a ∈ A}

CBA,A(X,Z) = {T ∈ CB(X,Z) | T(axb) = aT(x)b ∀x ∈ X, a, b ∈ A}.

Naturally, these sets define respectively the morphisms in the category of left, right
and two-sided operator modules. Given X and Y , left operator A modules, we can
define a contravariant functor denoted CBA,C(?,Z) as follows: for any c.b. module

map
φ : X 7→ Y

we define
CBA,C(φ,Z) = φ∗ : CBA,C(Y,Z) 7→ CBA,C(X,Z)

given by
φ∗(T)(x) = T

(
φ(x)
)
.

Clearly we can define the contravariant functors CBC,A(?,Z) and CBA,A(?,Z) anal-

ogously. Furthermore, using the obvious changes, we can define covariant functors
CBA,C(Z, ?), CBC,A(Z, ?) and CBA,A(Z, ?). To see that φ∗ is completely bounded, we
have the following: for [xkl] ∈Mm(X) and [Ti j ] ∈Mn

(
CBA,C(X,Z)

)

‖φ(n)
∗ ‖n = sup{‖φ(n)

∗ ([Ti j ])([xkl])‖ : ‖[Ti j]‖n ≤ 1, ‖[xkl]‖m ≤ 1}

= sup
{∥∥[Ti j

(
φ(xkl)

)]∥∥
nm

: ‖[Ti j ]‖n ≤ 1, ‖[xkl]‖m ≤ 1
}

≤ sup{‖[Ti j ]‖n ‖[φ(xkl)]‖m : ‖[Ti j]‖n ≤ 1, ‖[xkl]‖m ≤ 1}

≤ sup{‖[Ti j ]‖n ‖φ‖cb ‖[xkl]‖m : ‖[Ti j]‖n ≤ 1, ‖[xkl]‖m ≤ 1}

≤ ‖φ‖cb .

The reader may recall that there is a second functor of interest in homology theory,
namely the tensor product functor which we shall now introduce in our category.
Suppose we are given two operator A-bimodules X and Y . We define the tensor
product X ⊗A Y as follows: Consider the operator subspace N of X ⊗̂ Y given by

the closed linear span of elements of the form

xa⊗ y − x ⊗ ay.

Now define X ⊗A Y by
X ⊗A Y = X ⊗̂ Y/N.
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Although we shall not utilize the functorial properties in this paper, it is worthwhile
noting that we can recognize ? ⊗A Z as a covariant functor as follows: for any c.b.

module map
φ : X 7→ Y

we have
φ ⊗A Z = φ∗ : X ⊗A Z 7→ Y ⊗A Z

given by
φ∗(x ⊗A z) = φ(x) ⊗A z.

To see that φ∗ is completely bounded we first note that the map

φ ⊗̂ idZ : X ⊗̂ Z 7→ Y ⊗̂ Z

is completely bounded with ‖φ ⊗̂ idZ ‖cb ≤ ‖φ‖cb (see [3]). Then since the follow-

ing diagram is commutative

X ⊗̂ Z

q1

��

φ⊗̂idZ

// Y ⊗̂ Z

q2

��
X ⊗A Z

φ∗

// Y ⊗A Z

where qi are the canonical quotients, it follows that φ∗ is completely bounded. Using
identical arguments, it is now easy to see how to construct a covariant functor X ⊗A?.

Definition 3.10 A left operator A-module Y is called (left) projective if, for any ad-
missible complex Ξ, the complex CBA,C(Y,Ξ) is exact. That is to say if

(Ξ) : · · · −→ Xn−1 −→ Xn −→ Xn+1 −→ · · ·

is admissible, then the complex

(
CBA,C(Y,Ξ)

)
: · · · −→ CBA,C(Y,Xn−1) −→ CBA,C(Y,Xn)

−→ CBA,C(Xn+1,Y ) −→ · · ·

is exact. If Y is a right module, we call Y (right) projective if CBC,A(Y,Ξ) is exact.
Finally if Y is a bimodule, we shall say Y is biprojective or projective as a bimodule

if CBA,A(Y,Ξ) is exact. Of special note is that an object may be projective in one

category, while not in another. The following theorem is well known in both the cat-
egories of linear spaces and Banach spaces and the proof is similar and thus omitted.
(See for example [18] and [14]).

Theorem 3.11 Let X be a left operator A-module. Then the following are equivalent
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(1) X is projective

(2) for any admissible extension sequence (Ξ), CBA,C(X,Ξ) is exact

(3) for any c.b. admissible surjection φ : Y 7→ Z and any c.b. module map θ : X 7→ Z,

there is a c.b. module map ψ : X 7→ Y such that the following diagram commutes

X

ψ

��

θ

��
Y

φ

// Z

(4) if Q is a submodule of Y , then every θ ∈ CBA,C(X,Y/Q) has an extension to

CBA,C(X,Y ).

It is easy to see that any module is a projective C module. As a consequence we

shall see that for any module E, the module of the form A+ ⊗̂ E, is projective. We
require the following reduction formula. The idea of the proof is similar to the pure
algebra case, except for the matrix calculations.

Proposition 3.12 CBA+,C(A+,X) is c.b. isometrically isomorphic to X and

CBA+,C(A+ ⊗̂ X,Y ) is c.b. isometrically isomorphic to CB(X,Y ) for all X and Y .

Similarly we have complete isometries CBC,A+
(A+,X) ∼= X and furthermore

CBC,A+
(X ⊗̂ A+,Y ) ∼= CB(X,Y ).

Proof Let T ∈ CBA+,C(A+,X). Then T(a) = aT(e) for all a ∈ A+ where e is the
identity element. Let xT = T(e). The map T 7→ xT is clearly a bijection. Also for
[Ti j] ∈Mn

(
CBA+,C(A+,X)

)
we have for [akl] ∈Mm(A+)

‖[Ti j ]‖n = sup{‖[Ti j(akl)]‖ : ‖[akl]m‖ ≤ 1}

= sup{[‖akl · (xT )i j]‖ : ‖akl‖m ≤ 1}

≤ ‖[(xT)i j ]‖n

but if we consider the element e ∈M1(A+) we have

‖[Ti j]‖n ≥ ‖[Ti j (e)]‖ = ‖[(xT )i j]‖n.

Thus the natural map is a c.b. isometric isomorphism. For the second identification

we proceed similarly. As before, it is easy to see that T ∈ CBA+,C(A+ ⊗̂ X,Y ) is
defined on elements of the form e ⊗ x. Thus the map T 7→ T̄ is an isomorphism
between CB(X,Y ) and CBA+,C(A+ ⊗̂ X,Y ), where T̄(x) = T(e ⊗ x). Note that
we can identify the space CBA+,C(A+ ⊗̂ X,Y ) with JCB(A+,X; Y ), the space of maps
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which are jointly completely bounded from A+×X to Y , such that T(a, x) = aT(e, x).
Thus we have

‖[Tpq]‖n = sup{‖[Tpq(ai j , xkl)]‖ : ‖[ai j]‖ ≤ 1, ‖[xkl]‖ ≤ 1}

= sup{‖[ai j · Tpq(e, xkl)]‖ : ‖[ai j]‖ ≤ 1, ‖[xkl]‖ ≤ 1}

≤ sup{‖[ai j]‖ ‖[T̄pq(xkl)]‖ : ‖[ai j]‖ ≤ 1, ‖[xkl]‖ ≤ 1}

= ‖[T̄pq]‖n.

The reverse equality follows by taking ai j = e as before. The assertions concerning
CBC,A+

(A+,X) and CBC,A+
(X ⊗̂ A+,Y ) are proved in a similar manner.

As a consequence of the above proposition, we have the following corollary.

Corollary 3.13 We have complete isometries CBA,C(A+,X) ∼= X and

CBA,C(A+ ⊗̂ X,Y ) ∼= CB(X,Y ).

Proof To prove the first equality, it suffices to show that CBA,C(A+,X) =

CBA+,C(A+,X), where A+ and X are considered as A modules on the left and A+

modules on the right. Let T ∈ CBA,C(A+,X) and let (a, α) and (b, β) ∈ A+. Now

T[(a, α)(b, β)] = T(ab + βa + αb, αβ)

= T[(ab + βa, 0) + (αb, αβ)]

= a · T(b, β) + αT(b, β)

= (a, α) · T(b, β).

A similar calculation shows CBA,C(A+ ⊗̂ X,Y ) = CBA+,C(A+ ⊗̂ X,Y ). Now we

simply apply the previous Proposition.

Corollary 3.14 Any module of the form A+ ⊗̂ E for any A-module E is projective as a

left operator A-module.

Proof In view of the above proposition, the complex CBA,C(A+ ⊗̂ E,Ξ) reduces to
CB(E,Ξ). Since any module is a projective C module,it follows that the complex is

exact. Hence A+ ⊗̂ E is projective.

It is easy to see that the last four theorems have the obvious generalizations to the
category of right and bimodules. In particular we can conclude:

Corollary 3.15 Any module of the form E ⊗̂ A+ (resp. A+ ⊗̂ E ⊗̂ A+) is a projective

right (resp. bi-) module for any module E.

A module of the above form is usually called a free module. The following three

technical propositions will lead to another important reduction formula.

Proposition 3.16 (X ⊗A Y )∗ is c.b. isometrically isomorphic to CBC,A(X,Y ∗).
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Proof We have that the map φ 7→ Tφ given by

〈φ, x ⊗ y〉 = 〈Tφ(x), y〉

is a c.b. isometric isomorphism between (X ⊗̂ Y )∗ and CB(X,Y ∗) [19]. Now

(X ⊗A Y )∗ =

(
X ⊗̂ Y

N

)∗
∼= N⊥

where N = span{xa ⊗ y − x ⊗ ay} for a ∈ A, x ∈ X and y ∈ Y . Now φ ∈ N⊥ if
and only if

φ(xa⊗ y − x ⊗ ay) = 0.

Thus for all y ∈ Y ,

〈Tφ(xa), y〉 = 〈Tφ(x), ay〉 = 〈Tφ(x)a, y〉.

Thus Tφ ∈ CBC,A(X,Y ∗). The reverse inclusion is clear.

Proposition 3.17 We have the complete isometric isomorphism A+ ⊗A+
X ∼= X.

Proof The map φ : X 7→ A+ ⊗A+
X given by

φ(x) = e⊗ x

is easily seen to be completely contractive. Furthermore the map

φ∗ : (A+ ⊗A+
X)∗ −→ X∗

is exactly the composition of the c.b. isomorphisms of Proposition 3.16 and Propo-
sition 3.12 from (A+ ⊗A+

X)∗ to X∗. Thus (φ−1)∗ is completely contractive, hence
φ−1 is completely contractive.

Now we have the reduction formula:

Corollary 3.18 We have the complete isometric isomorphism A+ ⊗A X ∼= X.

Proof For a ∈ A, λ ∈ C and x ∈ X we have

(a, λ) ⊗A x = [(a, 0) + (0, λ)] ⊗A x

= a · e ⊗A x + λe ⊗A x

= e⊗ (ax + λx) = e⊗ (a, λ)x.

Hence in view of the previous proposition, it follows that we have a complete isomet-
ric isomorphism.
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Armed with all these technical facts, we are now able to equate projectivity with
the splitting of certain exact sequences. For the Banach space versions of these results

see [13] and [14].

Lemma 3.19 Suppose P is a left operator A-module, and let πL : A+ ⊗̂ P −→ P be the

module map onto P and N its kernel. Then the admissible sequence

(ML) : 0 −→ N −→ A+ ⊗̂ P
πL−→ P −→ 0

splits if and only if P is projective.

Proof First note that the sequence is clearly short exact, and since the map τ : P 7→
A+ ⊗̂ P given by τ (p) = e ⊗ p is clearly a completely bounded inverse for πL, by
Lemma 3.6 (ML) is admissible. The remainder of the proof is essentially “diagram
chasing” so we omit the details.

Clearly we can establish the following corollary with the same methods:

Corollary 3.20 Suppose P is a right (resp. bi-) module. Then P is right (resp. bi-)

projective if and only if the admissible sequence

0 −→ N −→ P ⊗̂ A+
πR−→ P −→ 0

(resp. 0 −→ N −→ A+ ⊗̂ P ⊗̂ A+
πB−→ P −→ 0)

splits, where πR (resp. πB) is the right (resp. bi-) module map and N its kernel.

A direct application of the previous corollary yields:

Theorem 3.21 Suppose X is a projective left module and Y is a projective right module,

then X ⊗̂ Y is a biprojective A-bimodule.

It should not be hard to see how the techniques of the last two theorems can prove
the following general result:

Lemma 3.22 Suppose that P is a left (resp. right, bi-) projective A-module and θ : P →
Q is a module map with a right inverse which is also a module map. Then Q is also left

(right, bi-) projective.

Now we can show the following:

Lemma 3.23 Suppose X is biprojective and Y is any left module. Then X ⊗A Y is left

projective.

Proof Since X is biprojective, there exists by Corollary 3.20 a bimodule map

ρX : X −→ A+ ⊗̂ X ⊗̂ A+

which is a right inverse for the module map πX . Now consider the map

ρX ⊗A idY : X ⊗A Y −→ A+ ⊗̂ X ⊗̂ A+ ⊗A Y ∼= A+ ⊗̂ X ⊗̂ Y
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where the last congruence follows from Proposition 3.18. It is easy to see that this
map is a left module map and a right inverse for the map

τ : A+ ⊗̂ X ⊗̂ Y −→ X ⊗A Y

given by
τ (a⊗ x ⊗ y) = ax ⊗A y.

Hence X ⊗A Y is left projective by Lemma 3.22.

Let us now consider the sequence

(M) : 0 −→ N −→ A ⊗̂ P −→ P −→ 0.

Clearly the sequence M is exact only when the module map is onto. Recall that the
module P is called semi-neounital when the module map π : A ⊗̂ P −→ P is onto.
Note that in this case we have A · P = P. This leads to the following:

Proposition 3.24 A semi-neounital left (resp. right) module P is projective if and only

if the sequence

0 −→ N −→ A ⊗̂ P
π
−→ P −→ 0

(resp. 0 −→ N −→ P ⊗̂ A
π
−→ P −→ 0)

splits.

Proof If the sequence splits, then there exists a c.b. module map ρ : P −→ A ⊗̂ P

which is a right inverse for π. Clearly ρ is also a right inverse for πL (as in
Lemma 3.19). Thus by Lemma 3.19, P is projective. Conversely, if P is projective,

then by Lemma 3.19, there exists τ : P 7→ A+ ⊗̂ P which is a right inverse module
map for πL. However we note

τ (A · P) = A · τ (P) ⊂ A · (A+ ⊗̂ P) ⊂ A ⊗̂ P.

Extending by continuity, it follows that τ (P) ⊂ A ⊗̂ P. Thus τ is an inverse for π.
The right module case follows similarly.

Recall that a Banach algebra B is biprojective exactly when B is a projective (in the

category of Banach spaces) B-module. Thus we are led to the following analogous
definition:

Definition 3.25 A completely contractive Banach algebra A is called operator bipro-

jective if it is projective as an operator A-bimodule.
This leads us to the main theorem of this section.

Theorem 3.26 Suppose A is semi-neounital. Then A is operator biprojective if and

only if the sequence

0 −→ N −→ (A ⊗̂ A)
π
−→ A −→ 0

splits as bimodules.
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Proof Suppose A is semi-neounital and biprojective. Then from Corollary 3.20 we
have that the sequence

0 −→ M −→ A+ ⊗̂ A ⊗̂ A+
πB−→ A −→ 0

splits, where M is the kernel of the module map πB : A+ ⊗̂ A ⊗̂ A+ −→ A. Now let

πR : A ⊗̂ A+ 7→ A be the “right” module map and let ρ : A −→ A+ ⊗̂ A ⊗̂ A+ be a
bimodule map which is a right inverse for πB. Clearly the map

id ⊗̂ πR : A+ ⊗̂ A ⊗̂ A+ 7→ A+ ⊗̂ A

is also a bimodule map, and a simple calculation shows that

ρ ′ = (id ⊗̂ πR) ◦ ρ : A 7→ A+ ⊗̂ A

is a bimodule map which is an inverse for the left module map πL. Following the idea

in Proposition 3.24 we have that

ρ ′(A ·A) ⊂ A · (A+ ⊗̂ A) = A ⊗̂ A

hence ρ ′(A) ⊂ A ⊗̂ A by continuity. Thus ρ ′ is a bimodule map which is a right

inverse for π. Since ρ, πR and id are all completely bounded, so is ρ ′. Conversely,
if the sequence splits, it follows that A is both left projective and right projective, by
Proposition 3.24. Hence by Theorem 3.21 A ⊗̂ A is operator biprojective. Since the
sequence splits as bimodules, there exists a bimodule map ρ : A 7→ A ⊗̂ A. Thus A

is biprojective by Lemma 3.22.

4 Application to the Fourier Algebra

To apply the results of the previous section to the Fourier Algebra, we first must
observe that A(G) is a semi-neounital A(G)-module for all groups G. To realize this
we begin with the following three technical propositions.

Proposition 4.1 Let H be a closed subgroup of G. Then A(G)/I(H) is completely iso-

metrically isomorphic with A(H).

Proof Let ũ ∈ A(G)/I(H). Define Γ : A(G)/I(H) 7→ A(H) by Γ(ũ) = v|H where
v is chosen so that Q(v) = ũ and Q : A(G) 7→ A(G)/I(H) is the quotient map. It
is known that Γ is an isometric isomorphism of A(G)/I(H) onto A(H) [10]. Let

VNH(G) be the weak closure in VN(G) of span{λG(h) : h ∈ H}. To see that Γ is a
complete isometry observe that I(H)⊥ = VNH(G). Also VNH(G) is a von Neumann
subalgebra of VN(G) which is ∗-isomorphic with VN(H) [9]. It follows from [2]

that
(

A(G)/I(H)
)
∗ is completely isometrically isomorphic to VNH(G) and hence to

VN(H). Thus
(

A(G)/I(H)
)

is completely isometrically isomorphic to A(H).

Proposition 4.2 Let H be an open subgroup. Then 1HA(G) is completely isometrically

isomorphic with A(H).
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Proof Let u ∈ A(H). Let u ∈ A(G) be such that u(x) = u(x) if x ∈ H and
u(x) = 0 otherwise. It is well known that Γ : A(H) 7→ A(G) defined by Γ(u) = u

is an isometric isomorphism of A(H) into 1HA(G) [9]. Let [ui j] ∈ Mn

(
A(H)

)
with

‖[ui j]‖n = 1. It follows from Proposition 5.2.2 that ‖[ũi j]‖n = 1. Let ε > 0. We can

find [vi j] ∈Mn

(
A(G)

)
such that [ṽi j] = [ũi j ] and ‖[vi j]‖ ≤ 1 + ε. Now

‖Γ(n)([ui j])‖ = ‖[ui j]‖n = ‖P([vi j ])‖n

where P(v) = 1Hv. However 1H ∈ B(G) and ‖1H‖ = 1. It follows that ‖P‖cb = 1.
Hence

‖Γ(n)([ui j ])‖n ≤ 1 + ε.

Therefore we can conclude that ‖Γ‖cb ≤ 1. To complete the proof, observe that
Γ
−1 : 1HA(G) 7→ A(H) is simply the restriction of the quotient map Q : A(G) 7→

A(G)/I(H) composed with the complete isometry of Proposition 4.1. It follows that

‖Γ−1‖cb = 1 and hence that Γ is a complete isometry.

Proposition 4.3 Let H be a closed subgroup of G. Then the restriction map R : A(G) 7→
A(H) is a completely contractive homomorphism of A(G) onto A(H).

Proof It is well known that R is a continuous homomorphism of A(G) onto A(H).
Again we let VNH(G) be the weak closure in VN(G) of span{λG(h) : h ∈ H}. Then

VNH(G) is a von Neumann subalgebra of VN(G). Moreover, R∗ : VN(H) 7→ VN(G)
is a ∗-isomorphism of VN(H) onto VNH(G) ([9] or [1]). It follows that R∗ is com-
pletely contractive and hence that R is also completely contractive.

Corollary 4.4 For all groups G, the Fourier algebra A(G) is semi-neounital.

Proof Here we use the c.b. isomorphism A(G) ⊗̂ A(G) ∼= A(G× G) given by

Φ(u⊗ v)(s, t) = u(s)v(t).

(See [7].) Let GD = {(s, s) : s ∈ G} be the diagonal subgroup. By the previous
proposition we have that the restriction map 1GD

maps A(G×G) onto A(GD) ∼= A(G).

Thus the following diagram commutes:

A(G) ⊗̂ A(G)
Φ

//

m

##HHHHHHHHHHHHHHHHHHH

A(G× G)

1GD

||xxxxxxxxxxxxxxxxxx

A(G)

In particular, the multiplication map m is onto.
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See [15, VII.1.16] for the analogous result for L1(G). It is perhaps important to
note that the isomorphism A(G) ⊗̂ A(G) ∼= A(G×G) used in the above proposition

no longer holds in the Banach space category. This failure is one of the driving forces
behind our desire to recognize A(G) as an operator space, and not simply a Banach
space. Since A(G) is semi-neounital for all groups G, we can use Proposition 3.26 to
classify for which groups G, A(G) is operator biprojective. We note that C is a left

operator A(G) module under the module action

u · α = αu(e).

This takes us to the main theorem of this paper.

Theorem 4.5 The following are equivalent:

(1) A(G) is operator biprojective;

(2) G is discrete;

(3) the left operator A(G) module C is projective.

Proof (3)⇒ (2): Let I0 denote the ideal of functions u ∈ A(G) which are equal to
zero at e. Since I0 is cofinite dimensional, there exists a bounded projection P onto
I0. Now 1 − P : A(G) −→ Q where Q is the complement of I0 is A(G). Clearly

Q ∼= A(G)/I0
∼= C. Let γ : A(G) −→ C be given by γ(u) = u(e) . Certainly γ is

completely bounded, and since there exists a c.b. map from C to Q ⊂ A(G), it follows
that γ is admissible. Since C is projective, there is a right inverse module map for γ,

call it τ . Now for all u ∈ A(G) we have that u · τ (1) = τ (u · 1) = τ
(

u(e)
)

. Since for
each s ∈ G such that s 6= e we can find an element u ∈ A(G) such that u(s) = 0 and
u(e) = 1 it follows that [τ (1)](s) = 0 for all s 6= e. Thus G is discrete.

(2)⇒ (1): Once again we can use the isomorphism A(G × G) ∼= A(G) ⊗̂ A(G)

given by (u⊗v)(s, t) = u(s)v(t). The map τ : A(G) 7→ A(G×G) given by τ (u)(s, t) =
u(s)δt

s , where δ is the Kronecker delta function, is a right inverse for the multiplication
map

m : A(G) ⊗̂ A(G) −→ A(G).

It now suffices to show that this map τ is completely bounded. Let GD = {(s, s) : s ∈
G}. Clearly τ

(
A(G)

)
⊂ 1GD

(
A(G× G)

)
. But we have

1GD

(
A(G× G)

)
∼= A(GD) ∼= A(G)

by Proposition 4.2. Thus τ is completely bounded. Now we may apply Theorem 3.26

to conclude that A(G) is biprojective.

(1)⇒ (3): Since A(G) is biprojective, it follows from Lemma 3.23 that A(G)⊗A(G)

C is left projective. Clearly

A(G)⊗A(G) C ⊂ A(G)+ ⊗A(G) C ∼= C.

Thus A(G) ⊗A(G) C ∼= C. Hence C is left projective.
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We complete this paper with some observations regarding the Banach space struc-
ture of the Fourier algebra. Suppose A is a completely contractive Banach algebra

which possesses the MAX operator space structure, i.e., A = MAX(A). In this case
A ⊗̂ A = A ⊗γ A where ⊗γ is the Banach space projective tensor product. Using
Khelimskii’s results (see [13] for example) it is easy to see that A is operator bipro-
jective if and only if it is biprojective as a Banach algebra. First note that we have the

following:

Theorem 4.6 A(G) and MAX
(

A(G)
)

are c.b. isomorphic if and only if G has an

abelian subgroup of finite index.

Proof See [11, Theorem 4.5].

Now we have an alternate proof of [21, Proposition 23] and its converse.

Theorem 4.7 Suppose G has an abelian subgroup of finite index. Then A(G) is bipro-

jective as a Banach algebra if and only if G is discrete.

Proof If G has an abelian subgroup of finite index, then the operator biprojectivity
of A(G) and the biprojectivity of A(G) as a Banach algebra as equivalent by Theo-
rem 4.6 and the discussion proceeding it. Thus by Theorem 4.5, the result follows
immediately.
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