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BICYCLIC AND BASS CYCLIC UNITS IN GROUP RINGS 

E. JESPERS, G. LEAL AND M. M. PARMENTER 

ABSTRACT. The subgroup generated by the Bass cyclic and bicyclic units is of in­
finite index in the group of units of the integral group ring ZG when G is either D or 

Let G be a finite group, U(ZG) the group of units of the integral group ring ZG and 
U\(ZG) the units of augmentation 1. If G is a finite nilpotent group, then Ritter and 
Sehgal [3] have shown that, under some restrictions, the Bass cyclic and bicyclic units 
generate a subgroup of finite index in U(ZG). The restrictions are on the Sylow-2 sub­
groups, and for 2-groups the situation is still not clear. Specifically, Ritter and Sehgal [3, 
p. 618] state that the question is open for the groups D — {a, b, c \ a2 = b2 = c4 — 
\,ac = ca,bc = cb,ba — c2ab) andD|6 = {a,b | a8 = b2 = l,ba = a5b). 

The purpose of this note is to show that for both D and D|6, the subgroup generated 
by the bicyclic and Bass cyclic units is of infinite index in U(ZG). 

Our notation follows that in [4]. 
Fora G G, we denote by a the sum l+a+a 2 + - • -+aOTd{a)~l. Recall that a bicyciic unit 

in ZG is a unit of the form 1 + (1 — a)bâ where a, b G G; and a Bass cyclic unit is a unit 
of the form (1 + a + • • • + a1'1)"1 + ^ j ^ a , where a G G, 1 < / < ord(a), (/, ord(a)) = 1, 
m = <^(ord(fl)), (ç the Euler (^-function. 

Let T(2) denote the principal congruence subgroup modulo 2 of the Picard group. 

That is, T(2) is obtained by factoring out ( j , ( ) from the group of 

determinant 1 matrices of the form ( _ . , ] where a, b, c, d are Gaussian 
V 2c 1 + 2d J 

integers. 
To begin, we recall the description of UiZD) and £/(ZD|6) given by Jespers and Leal 

in Corollaries 4.5 and 4.7 of [2]. Note that Proposition 1 appears somewhat different 
from Corollary 4.5 as we have found it convenient to conjugate by ( ). Also, 

Proposition 2 corrects some errors which appeared in the statement of Corollary 4,7 in 

[2]. 

PROPOSITION 1 ([2]). In U\(ZD)y D has a torsion-free normal complement V = 
{u = 1 + (1 — c2)a | a G Az(Z)), u a unit}. V is isomorphic to the subgroup ofT(2) 

consisting of those matrices ( ^ 1 for which b+c is divisible by 2. One such 
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isomorphism maps 

1 + (1 - c2)[a0 + a\c + (/?o + P\c)a + (7o + l\c)b + (So + <5ic)a&) 

to the matrix 

l + 2 ( a o - £ i ) + 2(a,+«o)*' 2(7o-/?i) + 2(/3o+7i)/ ^ 
2(7o+/3i) + 2(7i-/îo)i l + 2 ( a 0 + <$i) + 2(a1-<So)/; 

PROPOSITION 2 ([2]). In U\(ZD\6), D|6 /zas a torsion-free normal complement V = 
{u = 1 + (1 — a4)a | a G Àz(£){6), w « unit}. V is isomorphic to the subgroup ofT(2) 

consisting of those matrices I _ - , ) for which hi + c is divisible by 2. One 

such isomorphism maps 

1 + (1 - tf4)(a0 + cc\a2 + (J30 + [3\a2)a + (7o + l\a2)b + (So + S\a2)ab) 

to the matrix 

l + 2(a0 + 7o) + 2(ai+7i)i 
2C8o+«o) + 2C8i+«i)/ 1 

2(Sx-(3x) + 2((5o-So)i \ 
+ 2 ( a 0 - 7 o ) + 2 ( a i - 7 i ) / J " 

It is shown in [1] that T(2) is a subgroup of index 48 in PSL(2,Z[/]). Earlier, 
Waldinger [5] showed that the following 8 matrices also generate a subgroup of index 48 
inPSL(2,Z[/]). 

at = 
f - 1 + 2/ - 2 ^ [3 2i\ 

[ - 2 - 1 - 2 / J bi = [li - l j 
(3-2i 2 \ 0 fl+2i 2/ 

Ai - 1 + 2 / ; M€ V ~ 4 - 3 - 2 / 

a ' = ( - 2 - l ) ^ = ( _ 1 2 7 2 ' -7+2/) 
Since all of the above matrices are in T(2), we conclude that Waldinger's subgroup 

is, in fact, T(2). 
Waldinger also showed that the relations in T(2) are afoi = btai,arbr = brar,ctifti — 

fiidi, ctrfir = (3rar, aidi = aran b$i = br/3r, aibtcufli = arbrarf3r. 
We will be interested in T(2)/K where K is the normal closure in T(2) of 

(at,bt,ar, ar). Since a^ — ajlarar and (3? — bjxbrf3r, T(2)/K is generated by br and /3r. 
The relations do not put any further restrictions on T(2)/K, so we conclude that T(2)/K 
is a free group of rank two generated by br and f3r. 
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THEOREM 3. The bicyclic and Bass cyclic units generate a subgroup of infinite index 
in U(ZD). 

PROOF. U(ZD) has no non-trivial Bass cyclic units, while, up to inverses, there aie 
12 bicyclic units as follows: 

Xi = 1 + (1 - a)ba = 1 + (1 - c2)(b - ab) 

X2 = 1 + (1 - a)cba = 1 + (1 - c2)(cb - cab) 

X3 = 1 + (1 - b)ab = 1 + (1 - c2)(a + ab) 

X4 = 1 + (1 - b)cab = 1 + (1 - c2)(ca + cab) 

X5 = 1 + (1 - cab)acab = 1 + (1 - c2)(a + cb) 

X6 = 1 + (1 - cab)bœb = 1 + (1 - c2)(b - ca) 

X1 = 1 + (1 - c2a)bc*a = 1 + (1 - c2){b + ab) 

X8 = 1 + (1 - c2a)cbc*a = 1 + (1 - c2)(cb + cab) 

X9 = 1 + (1 - c2b)acTb = 1 + (1 - c2)(a - ab) 

X10 = 1 + (1 - c2b)cac*b = 1 + (1 - c2)(ca - cab) 

Xn = 1 + (1 - c3ab)ac\ib = 1 + (1 - c2)(a - cb) 

X12 = 1 + (1 - c3ab)bc*ab = 1 + (1 - c2){b + ca) 

Using Proposition 1, we obtain matrix representations for these bicyclic units. 

o i j ° v o i 

X9=(1_2f jJ^.J X'0=(2 -1) 

*1I = (-4i l) Xn={\ l ) 
In terms of the generators of T(2), these bicyclic units can be expressed as follows. 

Xx = ae, X2 = bh X3 = pr, X4 = a~\ 

X5 = b;2, X6 = a2
n X7 = b;latbn X8 = b;lbEbn 

X9 = arf3ra~\ X10 = ara~la~l, Xu = (b~xbt)
2, X{2 = (flr<*r)2. 

Let / / be the subgroup of T(2) generated by the bicyclic units and consider HK/K 
in F(2)/K. All generators of H except for X3, X5, X9 and Xn are in K, so we see easily 
that HK/K is generated by /3r and b2. Thus HK/K is a proper free rank 2 subgroup of 
T(2)/K and therefore is of infinite index in T(2)/K, and H is of infinite index in T(2). 
We conclude from Proposition 1 that H is of infinite index in U(ZD). u 
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THEOREM 4. The bicyclic and Bass cyclic units generate a subgroup of infinite index 
in U(ZD+

l6). 

PROOF. £/(ZZ){6) has, up to inverses, 4 bicyclic units as follows: 

Xi = 1 + (1 - b)a(l + b) = 1 + (1 - a4)(a + ab) 

X2 = 1 + (1 - b)a\l + b) = 1 + (1 - a4)(a3 + a3b) 

X3 = 1 + (1 - a4b)a{\ + a4b) = 1 + (1 - a4)(a - ab) 

X4 = 1 + (1 - a4b)a\\ + a4b) = 1 + (1 - a4)(a3 - a3b) 

Using Proposition 2, the matrix representations of these bicyclic units are 

1 (T 
* - i 4 i * - u ?) 
Xi-[o Î ) X 4 - ( o l 

In terms of the generators of T(2), these bicyclic units can be expressed as follows: 

X! = (arar)\ X2 = (bjlbr)\ X3 = b;\ X4 = a;2. 

Let H be the subgroup of T(2) generated by the bicyclic and Bass cyclic units and 
consider HK/K in T(2)/K. Note that Xi and X4 are in K, while X2 and X3 both generate 
the subgroup {b2

r) modulo K. Since every Bass cyclic unit ZD{6 is a power of the Bass 
cyclic unit (1 +a+a2)4 — 10<3, HK/K is a proper subgroup of T(2)/K requiring less than 
3 generators. We conclude that HK/K is of infinite index in T(2)/K and therefore, by 
Proposition 2, that H is of infinite index in C/(ZD{6). • 
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