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Abstract
The minimum flight time of spacecraft rendezvous is one of the fundamental indexes for mission design. This
paper proposes a rapid trajectory planning method based on convex optimisation and deep neural network (DNN).
The time-optimal trajectory planning problem is reconstructed into a double-layer optimisation framework, with
the inner being a convex optimisation problem and the outer being a root-finding problem. The thrust properties
corresponding to time-optimal control are analysed theoretically. A DNN-based rapid planning method (DNN-
RPM) is put forward to improve computational efficiency, in which the trained DNN provides a high-quality initial
guess for Newton’s method. The DNN-RPM is extended to search for the optimal entering angle of natural-motion
circumnavigation orbit injection problem and the minimum reconfiguration time of spacecraft swarm. Numerical
simulations show that the proposed method can improve the computational efficiency while ensuring the calculation
accuracy.

Nomenclature
DNN deep neural network
DNN-RPM DNN-based rapid planning method
ECI Earth-centred inertial frame
LVLH local vertical/local horizontal
MFT minimum flight time
MSE mean square error
NMC natural-motion circumnavigation
SCP sequential convex programming
SDP semidefinite programmes
SQP sequential quadratic programming
b semi-minor axis of in-plane ellipse of NMC orbit (m)
c maximum displacement of NMC orbit in z-axis (m)
g0 gravitational acceleration at sea level (m/s2)
Isp vacuum specific impulse of thruster (s)
J1 performance metric of Problem 1
J2 performance metric of Problem 2
J3 performance metric of root-finding problem
J̄3 preset boundary value of J3

m mass of deputy spacecraft (kg)
m0 initial mass deputy spacecraft (kg)
M maximum iteration of hybrid search method
p, p′ initial parameter and normalised parameter
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pmin, pmax minimum and maximum values of initial parameter
r relative position of deputy spacecraft (m)
rc position vector of chief spacecraft (m)
rd position vector of deputy spacecraft (m)
tf terminal flight time (s)
t∗

f minimum flight time (s)
tLB, tUB upper limit and lower limit of flight time (s)
T thrust of deputy spacecraft (N)
T∗ optimal thrust of time-optimal control problem
Tmax maximum thrust (N)
u adjusting parameter of thrust magnitude
v relative velocity of deputy spacecraft (m/s)
x relative state of deputy spacecraft (m, m/s)
x0, xf initial and terminal relative states of deputy spacecraft (m, m/s)
yc displacement of in-plane ellipse centre in y-axis (m)
yi, ŷi real value and predicted value of DNN
ε tolerance value of hybrid search method
ε angular acceleration of chief spacecraft (rad/s2)
ω angular velocity of chief spacecraft (rad/s)
μ gravitational constant of Earth (m3/s2)
θ unit direction vector of thrust
H Hamiltonian function
λ costate of states variables
λr costate of position variables
λv costate of velocity variables
λm costate of mass
φ phase angle of the in-plane motion (rad)
φ performance index of time-optimal control problem
ψ phase angle of the out-plane motion (rad)
ψ terminal boundary conditions
υ Lagrangian multiplier vector
ρ switching function

1.0 Introduction
The time-optimal trajectory planning aims at finding the time histories of the spacecraft’s position and
velocity, while minimising the flight time and observing the various boundary and path constraints [1].
The limited onboard computing resources make trajectory autonomous planning challenging, especially
in multi-satellites manoeuver scenarios, thus it’s urgent to develop rapid planning methods for time-
optimal rendezvous problem.

Trajectory planning for spacecraft rendezvous is one of the enabling technologies for various space
missions, such as rendezvous and docking [2, 3], on-orbit servicing [4], and swarm reconfiguration [5,
6]. Extensive work has been conducted on fuel/energy optimal trajectory planning by different strategies
that can be mainly classified into two categories, the direct and indirect methods [7]. Due to the com-
plicated nonlinear dynamics, the construction of first-order necessary conditions of optimality usually
becomes costly, limiting the further application of the indirect method [8]. Direct methods parameterise
control space (sometimes the state space) and reduce the optimal control problem to nonlinear program-
ming problem [9], mainly including pseudo-spectral method [10, 11], mixed integer linear programming
[12], and symplectic algorithms [13, 14]. Although effective results were achieved, most of the previous
studies suffered from computational efficiency due to the increasing number of spacecraft. Recently,
the convex optimisation algorithm has been found to be a promising technique for online planning
since its superior advantages on computational efficiency. Researchers have applied the convex opti-
misation and its derived sequential convex programming (SCP) in three-body problem [15], hypersonic
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vehicle reentry [16] and interplanetary transfer [17], Han’s research shows that the SCP has higher
computational efficiency in comparison with the pseudo-spectral method [18]. In addition, the con-
vex algorithm can be written using available CVX toolbox, and the resulting semidefinite programmes
(SDP) would then be solved by mature solvers, such as SDPT3 and SeDuMi [19]. Unfortunately, the
objective function of time-optimal control problem is non-convex, which is intractable for convex opti-
misation algorithm. Yang innovatively used the minimum landing error problem as a gateway to solving
the time-optimal asteroid landing problem, and searched for the minimum flight time (MFT) through
a combination of extrapolation and bisection methods [20]. However, the performance of interpola-
tion depends on the quality of initial guess, and iteration steps will increase with poor start points. In
addition, the calculation time increases dramatically with the swarm size when it comes to satellite
swarm.

With the rapid development of artificial intelligence technology, more and more scholars have com-
bined the emerging neural network technologies with the traditional numerical optimisation methods to
solve the trajectory planning problems [21]. Viavattene [22] applied artificial neural networks to quickly
predict the time and fuel consumption of interplanetary low-thrust transfers, and the predicted result was
used to search the feasible asteroid rendezvous sequence. Considering the reentry trajectory planning
of hypersonic vehicles, Wang [23] utilised the Chebyshev pseudo-spectral method to generate optimal
trajectory dataset and established a neural network to predict the control variables. In Ref. [24], the
sequential second-order cone programming method was applied to generate optimal entry trajectories
offline, and a neural network was trained to output the predicted control command online. However, there
are inevitable errors between predicted results of neural network and optimal control commands. When
it comes to the rendezvous problem, the control errors would invalidate terminal constraints, which may
lead to collisions between spacecraft.

Concentrating on the time-optimal rendezvous problem, a rapid trajectory planning method based
on convex optimisation and deep neural network (DNN) is proposed, which can not only improve the
computational efficiency of time-optimal trajectory, but also perform well in natural-motion circum-
navigation (NMC) orbit injection and swarm reconfiguration. The first contribution of this paper lies in
transforming the time-optimal rendezvous problem into a double-layer optimisation framework, where
the inner layer is a convex optimisation problem, and the outer layer is a root-finding problem. Inspired
by the concept of minimum landing error problem in Mars and asteroid landing [20, 25], the inner
layer constructs a minimum terminal error problem that takes the terminal error between the actual
and desired state as optimisation index. The thrust properties corresponding to time-optimal control are
analysed theoretically. The objective function of the outer root-finding problem is constructed based on
the thrust magnitude and the terminal error, so that the corresponding control law is time-optimal when
the objective equals zero.

The second contribution lies in proposing a hybrid search algorithm (HSM) and a deep neural network
based rapid planning method (DNN-RPM) to search for MFT. For the outer layer root-finding problem,
the bisection and Newton’s methods are two typical and effective iterative-based algorithms. The bisec-
tion method is robust but computationally inefficiently. The convergence rate for classical Newton’s
method is at least quadratic, but it fails to converge when the Hessian matrix is not positive definite [26].
In order to balance computational efficiency and robustness, the HSM that combines the advantages of
above two methods is proposed to generate dataset for DNN training. And then, the DNN-RPM is put
forward to further improve computational efficiency, in which the trained DNN provides a high-quality
initial guess for Newton’s method. In addition, the DNN-RPM can also be used to calculate the best
entering angle of NMC orbit injection problem and the minimum reconfiguration time of spacecraft
swarm.

The remainder of this paper is organised as follows. Firstly, the time-optimal problem is formulated,
and the optimal control is derived based on Pontryagin’s maximum principle. Then, the non-convex
time-optimal problem is reformulated into a double-layer optimisation framework, making it more
tractable to solve with convex programming. Thirdly, the HSM and DNN- RPM are put forward to
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Figure 1. The description of coordinate frames.

search for MFT. Finally, comparative numerical simulations are carried out to validate the performance
of the proposed optimisation framework and methods.

2.0 Problem formulation
The spacecraft rendezvous contains deputy and chief satellites, generally described in the local
vertical/local horizontal (LVLH) coordinate frame attached to the mass centre of chief spacecraft. As
shown in Fig. 1, rd and rc represent the position vector of deputy and chief spacecraft in the Earth centred
inertial frame (ECI). The x-axis coincides with rc, the z-axis is aligned with moment of momentum, and
the y-axis completes the right-hand system [27].

The relative dynamic of deputy satellite in LVLH frame can be described as

v̇ = −2ω× v −ω× (ω× r) − ε× r − μrd

r3
d

+ μrc

r3
c

+ T
m

(1)

where r and v are the relative position and velocity of deputy spacecraft, ω and ε denote the instantaneous
angular velocity and acceleration of chief spacecraft, T and m mean the thrust and mass of deputy
spacecraft, μ is the gravitational constant of Earth, rd = ‖rd‖2, rc = ‖rc‖2. If the target orbit is a near-
circular orbit and its radius is much larger than relative distance simultaneously, the equation (1) can be
simplified as

v̇ = −2ω× v −ω× (ω× r) − μ

r3
c

(r − 3rc · r · rc

r2
c

)+T
m

(2)

Mass consumption obeys

ṁ = −‖T‖2

Ispg0

(3)

where Isp is vacuum specific impulse of thruster, g0=9.80665m/s2 denote gravitational acceleration at
sea level.

In addition, the manoeuver procedure for spacecraft rendezvous needs to satisfy boundary conditions
in equation (4) and (5), and the limitation on thrust in equation (6).

x(t0) = x0, m(t0) = m0 (4)

x(tf ) = xf (5)

‖T‖2 ≤ Tmax (6)
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where x is the relative state of deputy spacecraft, x0 and xf are the initial and terminal relative states, m0

is the initial mass, tf means terminal flight time, Tmax is the maximum thrust. The time-optimal control
problem can be summarised as Problem 1.

Problem 1 (time-optimal control problem)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J1 = tf

s.t.

v̇ = −2ω× v −ω× (ω× r) − μ

r3
c

(
r − 3rc·r·rc

r2
c

)
+ T

m

ṁ = − ‖T‖2
Ispg0

x(t0) = x0, x(tf ) = xf , m(t0) = m0

‖T‖2 ≤ Tmax

(7)

Assumption 1. The maximum acceleration is larger than the resultant acceleration of gravitational,
centripetal and Coriolis accelerations.

Tmax

m
>

∥∥∥∥−2ω× v −ω× (ω× r) − μ

r3
c

(
r − 3rc · r · rc

r2
c

)∥∥∥∥
2

(8)

The resultant acceleration varies with orbit height and relative states x and it’s of the order of 10−5 ∼
10−3m/s2. Assumption 1 is rational and easy to satisfy since the thruster acceleration is generally greater
than the relevant acceleration terms on the right-hand side.

Proposition 1. The optimal control of Problem 1 must be ‖T∗‖2 = Tmaxwhen t< tf , and ‖T∗‖2 ≤ Tmax

can only happen at t=tf and λv(tf ) = 0.

Proof. Denoting the thrust as

T = Tmaxuθ (9)

where u ∈ [0, 1] is the parameter to adjust thrust magnitude, θ denotes the unit direction vector.
Assuming that the t∗f and T∗ are the MFT and optimal control for Problem 1. According to

Pontryagin’s maximum principle, the Hamiltonian function for Problem 1 is

H(x, λ, θ , u) = λr ṙ + λv

[
−2ω× v −ω× (ω× r) − μ

r3
2

(r − 3r2 · r · r2

r2
2

) + Tmaxuθ

m

]
− λm

Tmaxu

Ispg0

(10)

The costates λ= [λx, λy, λz, λvx , λvy , λvz , λm]T satisfy the following differential equations and transver-
sality condition,

λ̇r = −∂H
∂r

= ∂{λv · [ω× (ω× r)]}
∂r

+ μ

r3
2

∂[λv · (r − 3(r2 · r · r2)/r2
2)]

∂r

=ω× (ω× λv) + μ

r3
2

(λv − 3(r2 · rT
2 ) · λv/r

2
2) (11)

λ̇v = −∂H
∂v

= −λr + 2
∂[λv · (ω× v)]

∂H
= −λr + 2λv ×ω (12)

λ̇m = −∂H
∂m

= Tmaxu

m2
λv · θ (13)

λ(tf ) = ∂(φ + υTψ)

∂x(tf )
= [υ1, υ2, υ3, υ4, υ5, υ6, 0]T (14)
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where λr = [λx, λy, λz]T, λr = [λvx , λvy , λvz ]
T, φ and ψ are the performance index and terminal boundary

conditions, respectively. υ is the Lagrangian multiplier vector. Since there is no boundary condition for
m at tf , λm(tf ) = 0.

The optimal terminal condition is

H(tf ) = −∂(φ + υTψ)

∂tf

= −1 (15)

Case 1: ‖λv‖ 	= 0 at t ∈ [t0, tf ].
The optimal control is used to minimise Hamiltonian function,

min H(x∗, λ∗, θ , u) = H(x∗, λ∗, θ ∗, u∗) (16)

Hence the optimal direction and magnitude of optimal control are

θ
∗ = − λv

‖λv‖ (17)

u∗ =
⎧⎨
⎩

1 ifρ < 0
[0, 1] ifρ = 0
0 ifρ > 0

(18)

The switching function ρ is

ρ = −Tmax

(‖λv‖
m

+ λm

Ispg0

)
(19)

Since λm(tf ) = 0 and λ̇m < 0, thus {
λm > 0 if t< tf

λm = 0 if t = tf
(20)

Substituting equation (20) into (19), the switching function ρ < 0. Therefore, if λv 	= 0 at t ∈ [t0, tf ],
u∗ = 1, namely ‖T∗‖2 = Tmax.
Case 2: λv = 0 occurs in one or more time intervals.

Assuming that λv = 0 at t ∈ [ti, tj], so λ̇v is zero, λ̇m = λ̇r = λr = 0 can then be derived according to
equations (11)–(13);. Since λr = λ̇r = 0 at t ∈ [ti, tj], λr will stay at zero when t ∈ [tj, tf ]. In the same way,
λv stay at zero when t ∈ [tj, tf ].

According to equation (10), H(tf ) = 0 since λr(tf ) = λv(tf ) = λm(tf ) = 0, which however contradicts
to equation (15). Therefore, the assumption is invalid, and case 2 will not happen.
Case 3: λv = 0 occurs at some discrete points when t ∈ [t0, tf ].

If λv = 0, the equation (10) can be reduced as

H(x, λ, θ , u) = λr ṙ − λm

Tmaxu

Ispg0

(21)

Accordingly, ρ is

ρ = −Tmaxλm

Ispg0

(22)

The equations (17)–(20) still hold for all other points where ‖λv‖ 	= 0. Only if t = tf and λv(tf ) = 0,
ρ = 0, so u∗ = [0, 1]. Otherwise, ρ < 0 and u∗ = 1 still hold.

According to the analysis of above three cases, the magnitude of optimal thrust always remains at
maximum when t<tf , and ‖T∗‖2 = Tmax can only happen at t=tf and λ(tf ) = 0.
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3.0 The double-layer optimisation framework
In this section, the minimum terminal error problem, which can be described as convex form, is intro-
duced firstly, and then a double-layer optimisation framework is proposed to search for MFT. Taking
the terminal error between actual and desired state as objective, the minimum terminal error problem at
given flight time tf can be described as follows,

Problem 2 (Minimum-terminal-error problem)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min min J2 = ∥∥x(tf ) − xf

∥∥
2

s.t.
v̇ = −2ω× v −ω× (ω× r) − μ

r3
c
(r − 3rc·r·rc

r2
c

)+ T
m

ṁ = − ‖T‖2
Ispg0

x(t0) = x0, m(t0) = m0

‖T‖2 ≤ Tmax

(23)

It’s worth noting that the objective and inequality constraints of Problem 2 are convex functions,
and equality constraints are affine form, so it could be transformed into a convex optimisation problem.
There are some propositions for Problem 2.

Proposition 2. The optimal objective of Problem 2 is larger than zero when tf < t∗f , and the optimal
objective is equal to zero when tf � t∗f .

Proof : Assuming that the optimal objective J2(tf ) = 0 when tf < t∗f , namely x(tf ) − xf = 0. It means
that tf is a feasible solution for Problem 1 and tf < t∗f , which however is contrary to the definition of
time-optimal control problem. Therefore, the optimal objective of Problem 2 is more than zero when
tf < t∗f .

If tf = t∗f , the optimal solution to Problem 1 is such that x(tf ) − xf = 0, and hence the optimal
objective of Problem 2 is zero.

When tf > t∗f , the following control is feasible for Problem 2, and the objective remains zero.

T =
{

T∗ if t ≤ t∗f
m(2ω× v +ω× (ω× r) + μ

r3
c
(r − 3rc·r·rc

r2
c

)) if t∗f ≤ t ≤ tf
(24)

Proposition 3. The optimal thrust of Problem 2 must be ‖T∗‖2 = Tmaxwhen tf < t∗f .

Proof : Since the Hamiltonian function and costates function of Problem 2 are the same as
Problem 1, the analysis of cases 1 and 3 still hold for Problem 2. When it comes to case 2, the
transversality condition for minimum terminal error problem is

λ(tf ) = ∂φ

∂x(tf )
= [x(tf ) − xf ;0]∥∥x(tf ) − xf

∥∥ (25)

According to Proposition 2, x(tf ) 	= xf when tf < t∗f , thus
∥∥λ(tf )

∥∥ 	= 0, which contradicts with the
condition that

∥∥λ(tf )
∥∥ = 0.

Proposition 4. If tf ≤ t∗f , the optimal terminal error for Problem 2 decreases with tf .

Proof : If ta < tb ≤ t∗f , T∗
a and T∗

b are the corresponding optimal control, assuming that Tb is

Tb =
{

T∗
a if t ≤ ta

m
(

2ω× v + ω× (ω× r) + μ

r3
c

(
r − 3rc·r·rc

r2
c

))
if ta ≤ t ≤ tb

(26)

It’s evident that J(Tb) = J(T∗
a). In addition, J(Tb)< J(T∗

b) according to Proposition 3. Therefore,
J(Tb)=J(T∗

a)< J(T∗
b) when ta < tb ≤ t∗f .
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Table 1. The relationship J3 and tf
tf J31 = ∥∥x(tf ) − xf

∥∥
2

J32 = − ∫ tf
t0

|‖T(t)‖2 − Tmax|dt J3 = J31 + J32

tf < t∗f J31 > 0 J32 = 0 J3 > 0
tf = t∗f J31 = 0 J32 = 0 J3 = 0
tf > t∗f J31 = 0 J32 < 0 J3 < 0

Figure 2. The iterative process of Newton’s method.

Based on the analysis in Propositions 2 and 4, the minimum terminal error J2 decreases monotonically
as tf when tf < t∗f and remains zero when tf � t∗f . Therefore, the MFT is equal to the turning point where
J2=0.

Unfortunately, this kind of root-finding problem is still intractable for typical search algorithms, such
as the bisection and Newton’s method. As shown in Fig. 2, if the iterative points tn and tn+1 are far away
t∗f or once the iterative points lie on the right of t∗f , Newton’s method will not converge. The bisection
method is also infeasible since it iterates over two values with opposite signs, while J2 remains zero
when tf � t∗f .

Inspired by Proposition 3, a new performance metrics is constructed as follows

J3 = ∥∥x(tf ) − xf

∥∥
2
−

∫ tf

t0

|‖T(t)‖2 − Tmax|dt (27)

Proposition 5. J3 > 0 when tf < t∗f , J3 = 0 when tf = t∗f , and J3 < 0 when tf > t∗f .

Proof : As shown in Table 1, denoting the two terms in equation (27) as J31 and J32 respectively. Based
on Proposition 2, J31, namely the terminal error, is larger than zero when tf < t∗f , and remains zero when
tf � t∗f . According to Proposition 3, ‖T∗‖2 = Tmaxwhen tf ≤ t∗f , so J32 = 0. When tf > t∗f ,

∥∥λ(tf )
∥∥ 	= 0 in

equation (25) will not hold, and thus ‖T∗‖2 = Tmax is impossible. In addition, the equation (24) is a
feasible solution for Problem 2, and the magnitude of thrust is not equal to Tmax during the whole flight
time, so J32 < 0 when tf > t∗f . Combining J31 and J32, J3 > 0 when tf < t∗f , J3 = 0 when tf = t∗f , and J3 < 0
when tf > t∗f .

As shown in Fig. 3, the initial time-optimal problem is transformed into a double-layer optimisa-
tion framework, the inner layer is a convex programming problem, namely the minimum-terminal-error
problem at given flight time, and the optimisation results are used to construct performance metric for
outer layer root-finding problem. Furthermore, it’s worth distinguishing that J2 denotes the optimisation
objective for convex programming, while J3 is only a performance metric constructed based on thrust
and terminal error to guide the search for MFT.
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Figure 3. The double-layer optimisation framework.

4.0 The DNN-based rapid search method
In this section, the HSM combining bisection and Newton’s method is proposed to generate dataset for
DNN training, and then a rapid search algorithm based on DNN is put forward to search for MFT.

4.1 Dataset generation and preprocessing
Based on Proposition 5, the time-optimal control problem has been transformed into a double-layer
optimisation problem, where the outer layer can be solved by the iteration-based numerical method,
such as the bisection method and Newton’s method. The bisection method repeatedly bisects the solution
space and then selects subintervals in which the function changes signs until the convergence condition
is satisfied. It’s robust and easy to implement, but computationally inefficient. On the contrary, the
convergence of Newton’s method is quadratic, but it’s sensitive to initial points.

In view of this, we proposed the HSM that combines the advantage of both methods. The main idea
is to reduce the solution space by the bisection method until the absolute function value of two bound-
ary points is less than the preset value J̄3 and then the boundary points are used as starting points for
Newton’s method. The bisection method provides a rough interval for Newton’s method to reduce iter-
ation steps and thus improve robustness and calculation efficiency. The flowchart of HSM is concluded
in Fig. 4.

A dataset containing 5 × 104 scenarios is randomly generated, and the MFT of each scenario is solved
by the HSM. Assuming the chief spacecraft moves on 500km high circular orbit, the initial and final
positions of deputy spacecraft are uniformly distributed within ±5km, and the initial and final velocities
of deputy spacecraft are uniformly distributed within ±2m/s. Due to the large magnitude difference
among the parameters, each parameter of the initial dataset is transformed into dimensionless values
within [0, 1] by min-max normalisation.

p′ = p − pmin

pmax − pmin

(28)

where p is the initial parameter, pmin and pmax are the minimum and maximum values of each parameter,
p′ denotes the normalised parameter. The normalised dataset is divided into training datasets, validation
datasets and test datasets in a ratio of 8:1:1. The three datasets are used to train the network, prevent
overfitting and evaluate network performance, respectively.

4.2 Neural network design and training
The DNN consists of an input layer, an output layer and multiple hidden layers, each hidden layer con-
tains multiple neurons. The dimensions of input and output layers are consistent with input and output
data. In this paper, the sequence [x0, y0, z0, ẋ0, ẏ0, ż0, xf , yf , zf , ẋf , ẏf , żf ] consisting of the initial and final
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Figure 4. Flowchart of hybrid search method.

Figure 5. The structure of DNN.

relative states is selected as the input of DNN and the MFT t∗f as the output, the structure of DNN is
shown in Fig. 5.

The optimisation objective of neural network is the mean square error (MSE) between the training
sample and the predicted value,

MSE = 1

N

N∑
i=1

(ŷi − yi) (29)

where N is the size of train dataset, yi and ŷi respectively represents real value and predicted value
of DNN. The DNN training is based on deep learning toolbox built in MATLAB, the related training
options are listed in Table 2.

The training process of four DNNs with different size is shown in Fig. 6, where the mark Net7×50

indicates the number of hidden layers and neurons in hidden layer are 7 and 50. As shown in Fig. 6,
the mean square error decreases rapidly with the increase of training steps, and finally fluctuates at the
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Table 2. The training options for DNN

Training options Value
Optimiser Adaptive moment estimation (Adam)
Max epochs 500
Mini-batch size 200
Validation frequency 500
Initial learn rate 1×10-4

Learn rate schedule Piecewise
Learn rate drop period 100
Learn rate drop period factor 0.5

Figure 6. The training process of DNNs.

order of 10-4. In addition, the convergence speeds of Net7×200 and Net7×150 with larger network size are
faster than that of Net7×50 and Net7×100.

The performance of DNNs in test dataset is listed in Table 3. The relative error between real and pre-
dicted MFT follows the Gaussian distribution, and the mean of the relative error is approximately zero.
With the increase of neurons, the standard deviation of relative error first decreases and then increases.
The Net7×150 performs well in both mean and standard deviation, and was selected to predicted MFT in
the subsequent simulations. The 3σ interval of Net7×150 is [-5.11%, 5.21%], namely the probability of
relative error within this range is 99.73%.

The performance of Net7×150 in test dataset are shown in Fig. 7. It can be seen from Fig. 7(a) that the
absolute error of predicted MFT obeys Gaussian distribution, most of the predicted errors are within
20s. As shown in Fig. 7(b), the predicted MFT (y axis) can fit real MFT (x axis) well, where the blue
point and red line represent predicted MFT and reference line (y=x) respectively. Generating dataset and
training DNNs took about 15 hours and 1 hour in a computer with Intel i7 processor and 16GB random
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Table 3. The relative error distribution of different DNNs

DNN size Relative error mean (%) Relative error standard
deviation (%)

3σ interval

7×50 0.08 1.96 [−5.78%, 5.95%]
7×100 0.07 1.76 [−5.21%, 5.36%]
7×150 0.05 1.72 [−5.11%, 5.21%]
7×200 0.09 1.84 [−5.43%, 5.61%]

Figure 7. The performance of Net7×150.

access memory. Notably, the process of generating dataset and training the network can be implemented
offline, and MFT will be predicted using trained DNN parameters online.

4.3 DNN-based rapid search method
The Newton’s method is sensitive to the initial point, high-quality initial points can ensure quadratic
convergence, while poor initial points may lead to failure to converge. The proposed HSM takes the
iterative result of the bisection method as the initial point of Newton’s method, which is robust but
time-consuming.

Section 4.2 shows that the trained DNN can directly output the high-precision predicted value of
MFT according to the initial and terminal boundary conditions. Although the predicted MFT cannot
be directly applied to space tasks with high reliability requirements due to unavoidable errors, it can
be taken as the initial points of Newton’s method, thus eliminating the binary inefficient search process
and guaranteeing quadratic convergence of Newton’s method. The proposed DNN-RPM is robust and
efficient, the diagram of HSM and DNN-RPM is shown in Fig. 8.

5.0 Numerical simulations
In this section, the HSM and DNN-RPM are firstly applied to generate time-optimal manoeuvering
trajectory for single spacecraft, and the relevant properties of the time-optimal problem proved above
are validated by simulation results. And then, the time-optimal NMC orbit injection problem is solved
to validate the performance of proposed methods. Finally, three DNN-based strategies corresponding to
different reliability are proposed to solve the minimum reconfiguration time of swarm.
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Figure 8. The diagram of HSM and DNN-RPM.

Assuming that the chief spacecraft is in a 500km high near-circular orbit, the initial mass of each
satellite in the swarm is 1,000kg. The maximum thrust and I sp of the engine are 50N and 200s, respec-
tively. The simulation process is discretised into 100 steps. Additionally, the tolerance and max iteration
for HSM are 10−3 and 50, the preset J̄3 = 50, the lower and upper boundary of flight time are 100 and
3,000s. The CVX software is utilised to solve convex programming problem, where the SDPT3 is chosen
as solvers, and other parameters remain the default setting. The numerical simulations are implemented
on a computer with a 3.0GHz Intel Core i7 processor and 16GB random access memory.

5.1 Time-optimal trajectory planning for spacecraft rendezvous
For time-optimal trajectory planning of single spacecraft, the initial and terminal relative states are set
to X0=[103 m, 104 m, 0 m, 0 m/s, −2.21 m/s, 2.21 m/s]T, X f =[866.03 m, −103 m, 0 m, −0.55 m/s,
−1.9 m/s, 0 m/s]T.

To begin with, the minimum terminal error problem (i.e., Problem 2) is solved with a given flight
time, sampled every 10s between lower and upper boundary, and the performance index J31, J32 and J3

are listed in Fig. 9. As defined in Section 3, the J31 denotes the terminal error, J32 is used to measure the
difference between thrust curve and maximum thrust, and the J3 is the sum of these two indexes. It can
be seen from Fig. 9 that the optimal terminal error J31 is larger than zero and decreases with time when
tf <tf

∗, and it’s equal to zero when tf ≥tf
∗, which is consistent with Propositions 2 and 4. As proved

in Proposition 3, the thrust magnitude remains Tmax when tf ≤tf
∗, and it’s less than Tmax when tf >tf

∗,
the index J32 is equal to zero in the first part but not in the second part. Therefore, the MFT for satellite
manoeuvering is equal to the root of J3.

And then, the time-optimal problem is solved with the proposed HSM and DNN-RPM, the relevant
state and thrust curves are illustrated in Figs. 10–11. It can be seen from Fig. 10 that the proposed method
can successfully generate transfer trajectory with the limitation of various constraints. As shown in
Fig. 11, although the thrust components vary with time, the thrust magnitude remains at Tmax, which is
consistent with Proposition 3.

Furthermore, in order to evaluate the performance of the proposed methods, the time-optimal prob-
lem with the same configuration is also solved by the traditional bisection method, Newton’s method
and sequential quadratic programming (SQP). The SQP method can be implemented by invoking the
Fmincon function from Matlab optimisation toolbox directly, which is recognised as a powerful non-
linear programming solver. It’s worth noting that the first four methods solve the time-optimal problem
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Figure 9. The performance index for different flight time.

Figure 10. The time histories of state variables.

based on convex programming, and the methods themselves are only used to search the MFT, while
the SQP method optimises the control sequence and MFT simultaneously. Since the computational effi-
ciency and convergence speed of SQP and traditional Newton’s method are greatly affected by initial
value, these two methods are executed 50 times with random initial values. The performance compari-
son of different methods is listed in Table 4. Since the computing time of SQP is much larger than that
of other methods, Fig. 12 only shows the computing time comparison of DNN-RPM, HSM, bisection
method and Newton’s method.

It can be directly observed from Table 4 that the MFT obtained by the above five methods are almost
the same. When it comes to the computation time criterion in Table 4, the first four methods take about
two orders of magnitude less time than the SQP. Though the computation time could be affected by
various factors like computer configuration and programme integration level, it shows the superiority
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Table 4. The performance metrics comparison

Methods Minimum flight
time (s)

Average
computing

time (s)

Maximum
computing

time (s)

Minimum
computing

time (s)
DNN-RPM 866.15 7.31 7.72 7.27
HSM 866.15 14.54 14.82 14.49
Bisection method 866.15 30.14 32.07 30.02
Newton’s method 866.15 12.10 16.90 7.25
SQP 866.15 1494.96 1844.01 1082.54

Figure 11. The time histories of thrust.

of proposed double layer framework over nonlinear optimisation method in computational efficiency.
The DNN-RPM takes 7.31s to calculate MFT, HSM takes about twice as long, and the bisection method
takes about four times as long. As shown in Fig. 12 and Table 4, the traditional Newton’s method is
slightly more computationally efficient than the HSM, but fails to converge in 14 out of 50 calculations.
Therefore, the proposed DNN-RPM demonstrates its superiority in both computational efficiency and
robustness.

5.2 Natural-motion circumnavigation injection
The NMC orbit, also known as passive relative orbit, is a kind of closed relative orbit where the deputy
can fly around chief without extra fuel consumption [28]. In order to form an NMC orbit, the secular
term in y direction should be omitted,

ẏ = −2nx (30)
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Figure 12. The computing time comparison.

The projection of the NMC orbit into x-y plane is a 2×1 ellipse, and the NMC orbit can be represented
by a set of configuration parameters [b, c, yc,ψ , φ]. The conversion equation between relative states and
NMC orbit configuration parameters is as follows,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(t) = b sin (nt + φ)
y(t) = 2b cos (nt + φ) + yc

z(t) = c sin (nt + φ +ψ)
ẋ(t) = nb cos (nt + φ)
ẏ(t) = −2nb sin (nt + φ)
ż(t) = nc cos (nt + φ +ψ)

(31)

where b is the semi-minor axis of in-plane ellipse, yc is the displacement of in-plane ellipse centre in
y-axis, c is the maximum displacement of NMC orbit in z-axis, φ and ψ are phase angle of the in-plane
and out-plane motion.

For the time-optimal NMC injection problem, the target is to find control vector T(t) and entering
phase angle φ to minimise flight time and satisfy corresponding constraints. Compared with time-
optimal trajectory planning for a single satellite, the NMC injection problem needs to optimise not
only how to go (control vector), but also where to go (entering phase angle φ), which greatly increases
the difficulty of optimisation. In this case, the SQP algorithm is adopted to search entering phase
angle φ, the control vectors are generated by HSM and DNN-RPM, respectively.

The NMC orbit configuration parameters are set to b=2,000m, c=2,000m, yc=0m, ψ = π
/

3rad, the
initial relative state of deputy satellite is X0 = [5 × 103m, 5 × 103m, 5 × 103m, 0 m/s, 0 m/s, 0 m/s]T .
The simulation results are listed in Figs. 13–14 and Table 5.

As shown in Fig. 13, the red solid line and blue dotted line, respectively, represent the time-optimal
injection trajectory generated by DNN-RPM and HSM, while the black line represents the NMC orbit.
It can be directly observed that the time-optimal injection trajectories of DNN-RPM and HSM are close,
which is consistent with the optimised entering phase angle in Table 5.
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Figure 13. The manoeuvering trajectory of NMC injection.

Figure 14. The minimum flight time generated by DNN and HSM.

In addition, Fig. 13 shows the manoeuvering trajectories at 32 sampling points on the NMC orbit
with black dot lines, and Fig. 14 demonstrates the MFTs predicted by DNN and calculated by HSM at
each sampling point. The predicted MFTs at all sampling points are similar to the real MFTs, which
again indicated the high prediction accuracy of DNN.

As shown in Table 5, the difference between the first strategy and the latter two lies in using the
calculation result of HSM to guide SQP algorithm to search entering phase angle, rather than DNN’s
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Table 5. The performance metrics of different strategies

Strategy φ(rad) Minimum flight time (s) Computing time (s)
HSM 1.14 674.30 608.03
DNN 1.13 677.81 0.37
DNN-RPM 1.13 674.32 6.15

predicted value. The entering phase angle calculated by HSM strategy and DNN strategy is very close,
and the relative error is less than 1%. The DNN-RPM strategy takes the convergence entering phase
angle of DNN strategy as the terminal state, and then calculates the MFT with DNN-RMS method.
In other words, the flight time of 677.81 and 674.32s, respectively, represents the MFT predicted by
DNN and calculated by DNN-RPM when entering phase angle φ=1.13rad. Additionally, the average
computing time of HSM is 608.03 s, and that of DNN and DNN-RMS is 0.37 and 6.15s respectively.
Due to the high computational efficiency of DNN, the computing time of DNN-RPM is about two orders
of magnitude smaller than that of HSM.

5.3 The minimum reconfiguration time for swarm
Swarm reconfiguration is one of the enabling technologies for various space missions, which means
that all spacecraft manoeuver from the initial states to the specified terminal states simultaneously. For
a cluster containing Ns spacecraft, each spacecraft corresponds to an MFT, and the swarm reconfigura-
tion time must be larger than max{MFT1, MFT2, · · · , MFTNs} to ensure that all spacecraft can generate
feasible trajectories. Therefore, max{MFT1, MFT2, · · · , MFTNs} is regarded as the minimum reconfig-
uration time of spacecraft swarm in this section. To determine the minimum reconfiguration time, the
simplest idea is to apply the above HSM or DNN-RPM to calculate the MFT of each spacecraft in turn,
and take the maximum MFT as the minimum reconfiguration time of the whole swarm. However, this
progress is time-consuming.

Three DNN-based strategies corresponding to different reliability are proposed, which are named
high, medium and low reliability, respectively. The main difference among these three strategies is which
spacecraft in the swarm should be chosen to calculate its real MFT. The high reliability strategy uses
DNN-RPM to calculate the MFTs of all spacecraft in the swarm, and then takes the maximum MFT
as the minimum reconfiguration time of the whole swarm. The low reliability strategy first predicts the
MFTs of all spacecraft through DNN, and then calculates the real MFT of the slowest spacecraft by
DNN-RPM as the minimum reconfiguration time.

For the medium reliability strategy, the MFTs of all spacecraft are firstly predicted by DNN, and
then n-σ intervals of maximum MFT are taken as a filter, thus reducing call number of DNN-RPM.
As shown in Fig. 15, the hexagons represent the predicted MFTs, and the I-boxes mean the responding
n-σ intervals. Only one satellite’s n-σ interval intersects with that of the maximum predicted MFT in
Fig. 15, so there is no need to calculate the real MFT of other satellites. According to the Gaussian
distribution characteristics, when n is set to 1, 2 and 3, the reliability of this strategy is 68.27%, 95.45%
and 99.73%. The difference among these three strategies is shown in Fig. 16.

The initial positions of swarm satellites are located on the eight corners of a 10km×10km× 10km
cube centred at the chief in the LVLH frame, and the initial velocities are set to 0m/s. The terminal
positions are uniformly distributed on an NMC orbit with b=2,000m, c=0m, yc=0m, ψ = π rad. The
manoeuvering trajectories generated by DNN-RPM are presented in Fig. 17, and the computing time of
four strategies are listed in Table 6.

As shown in Table 6, the minimum reconfiguration times calculated by HSM and three DNN based
strategies are similar, while the computing times are quite different. The first two strategies are based on
the traversal idea and require calling HSM and DNN-RPM eight times, respectively. The difference in
computing time of these two strategies depends on the calculation efficiency of HSM and DNN-RPM.
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Figure 15. The n-σ intervals of predicted MFT.

Figure 16. The diagram of low, medium and high reliability strategy.

The medium reliability strategy uses the n-σ interval as a filter, thereby reducing call numbers of
the underlying MFT optimisation methods. Taking 3σ interval for example, as shown in Fig. 18, red
and blue marks represent the real and predicted MFTs of each spacecraft, and the black intervals are
the corresponding 3σ intervals. The lower boundary of the 3σ interval of satellite 2 is larger than the
upper boundary of spacecraft 1, 6 and 8. That is to say, the probability that the MFT of satellite 2 is
larger than these spacecraft is 99.7%. Therefore, the process of calculating the accurate value of these
spacecraft’s MFT can be omitted, and only need to call the DNN-RPM 5 times to calculate real MFTs of
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Table 6. The performance metrics of different strategies

Strategy Minimum reconfiguration time (s) Computing time (s)
HSM 1,023.73 129.96
High reliability 1,023.72 50.44
Medium reliability(3σ ) 1,023.72 30.34
Medium reliability(2σ ) 1,023.72 19.53
Medium reliability(1σ ) 1,023.72 5.69
Low reliability 1,023.72 5.69

Figure 17. The manoeuvering trajectories of swarm reconfiguration.

Figure 18. The predicted and real MFT of each spacecraft.
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other spacecraft. Finally, the low reliability strategy only needs to call DNN-RMS once for calculating
the MFT of the slowest spacecraft 2. When n is 1, 2 and 3, the number of calls of DNN-RPM is 1, 3
and 5, and the corresponding calculation time is 5.69, 19.53 and 30.34s.

In summary, the high reliability strategy can be used for tasks with high precision requirements, and
the probability of obtaining optimal solution is 100%. The low reliability strategy is suitable for tasks
with high timeliness requirements, so as to determine the minimum reconfiguration time as quickly as
possible. As a compromise method, the medium reliability strategy can flexibly adjust the computing
efficiency according to the reliability requirements.

It’s worth noting that the trajectories presented in Fig. 17 may not be the final feasible trajectories
because the collision avoidance constraints are neglected during programming, but the minimum recon-
figuration time obtained by those strategies is still reliable. Since the minimum reconfiguration time of
is determined by the slowest satellite, the trajectory of the slowest satellite can be regarded as a refer-
ence trajectory, and then the collision avoidance constraints can be convexified and solved by sequential
convex programming proposed in Ref. [8].

6.0 Conclusion
Concentrating on time-optimal trajectory planning for spacecraft rendezvous, this paper proposes a rapid
trajectory planning method based on convex optimisation and deep neural network. The time-optimal
control problem is transformed into convex form, and the thrust properties are analysed theoretically
and validated numerically. The convexification technique can be extended to other time-optimal con-
trol problems. Compared with nonlinear optimisation method and traditional root-finding algorithm,
the proposed DNN-RPM is capable of improving computational efficiency while ensuring algorithm
robustness in generating time-optimal trajectory. For NMC orbit injection problem and swarm reconfig-
uration, the trained DNN can predict MFT with high precision, thus evidently reducing iteration steps
and improving calculation efficiency. Future work will focus on improving the generalisation ability and
prediction accuracy of DNN.
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