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OPTIMALITY OF RANDOMIZED TRUNK RESERVATION
FOR A PROBLEM WITH A SINGLE CONSTRAINT
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Abstract

We study an optimal admission of arriving customers to a Markovian finite-capacity
queue, e.g. an M/M/c/N queue, with several customer types. The system managers are
paid for serving customers and penalized for rejecting them. The rewards and penalties
depend on customer type. The goal is to maximize the average rewards per unit time
subject to the constraint on the average penalties per unit time. We provide a solution
to this problem based on Lagrangian optimization. For a feasible problem, we show the
existence of a randomized trunk reservation optimal policy with the acceptance thresholds
for different customer types ordered according to a linear combination of the service
rewards and rejection costs. In addition, we prove that any 1-randomized stationary
optimal policy has this structure. In particular, we establish the structure of an optimal
policy that maximizes the average rewards per unit time subject to the constraint on the
blocking probability of either one of the customer types or a group of customer types
pooled together.
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Lagrangian optimization
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1. Introduction

In this paper we describe the structure of optimal admission policies for finite-capacity
queues, including M/M/c/N queues, with a fixed number of customer types. At the arrival
epoch a customer can be either rejected or accepted. The latter is possible only if the system
is not full. Each customer type i = 1, 2, . . . , m, where m is the number of customer types, is
characterized by three parameters: a Poisson arrival rate λi , a reward ri that a customer pays
for the service, and a penalty ci paid to a rejected customer. The service times do not depend
on the customer types. The goal is to maximize the average rewards per unit time subject to
the constraint that the average penalty per unit time does not exceed a certain number. Such
problems arise, for example, when the goal is to maximize the average rewards per unit time
subject to the quality of service constraint.

A randomized trunk reservation policy φ is defined by m numbers Mφ
i , 0 ≤ M

φ
i ≤ N − 1,

i = 1, . . . , m, called the ‘thresholds’. Of these thresholds, at most one is not an integer and at
least one equalsN−1. For a numberM we denote by �M� the integer part ofM . If the system
is controlled by the policyφ, a type-i arrival will be admitted with probability 1 if it sees no more
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than �Mφ
i � customers in the system, will be rejected if the number of customers in the system

exceeds �Mφ
i � + 1, and will be accepted with probability Mφ

i − �Mφ
i � if there are exactly

�Mφ
i � + 1 customers in the system at the time of its arrival. In particular, if the number Mφ

i is
an integer, a type-i arrival will be admitted if and only if it sees no more than Mφ

i customers
in the system. Thus, having Mφ

i = N − 1 means that a type-i arrival is admitted whenever
the system is not full. A randomized trunk reservation policy φ is said to be consistent with a
function r ′, defined on the set {1, . . . , m}, if r ′i > r ′j implies that Mφ

i ≥ M
φ
j , i, j = 1, . . . , m.

If all the thresholds are integers, the randomized trunk reservation policy is simply called a
trunk reservation policy. We sometimes write Mi instead of Mφ

i for the thresholds when there
is only one policy in context and no confusion will occur.

In this paper we prove that, if the problem is feasible, then there exists a randomized trunk
reservation policy that is consistent with the reward function r ′i = ri + ū1ci, where ū1 ≥ 0 is
a Lagrange multiplier with respect to the first constraint of the linear programming problem to
be formulated here. In addition, Theorem 2.3 below shows that any 1-randomized stationary
optimal policy is a randomized trunk reservation policy that is consistent with r ′.

In [21] Miller studied a one-criterion problem for an M/M/c/loss queue when r1 > r2 >

· · · > rm. In this case, there exists an optimal nonrandomized trunk reservation policy
that is consistent with r . In other words, each threshold Mi is an integer and N − 1 =
M1 ≥ M2 ≥ · · · ≥ Mm. Feinberg and Reiman [9] studied a constrained problem with
r1 > r2 > · · · > rm in which the goal is to maximize average rewards per unit time subject
to the constraint that the blocking probability for type-1 customers does not exceed a given
level. They proved the existence of an optimal randomized trunk reservation policy with
N − 1 = M1 ≥ M2 ≥ · · · ≥ Mm.

Instead of considering M/M/c/loss or M/M/c/N queues, Feinberg and Reiman [9] made
the more general assumption that the service rateµn, when there are n customers in the system,
does not decrease in n. This assumption holds for M/M/c/N queues. In this paper, we also
consider systems that satisfy this assumption.

This research was initially motivated by the following natural question: what is the solution
to the problem with r1 > r2 > · · · > rm when the goal is to maximize the average rewards per
unit time subject to the constraint that the blocking probability for type-j customers does not
exceed a given number? This is a particular case of the problem considered in this paper when
cj = λj

−1 and ci = 0, i �= j . Therefore,

r ′i =
{
rj + ū1/λj if i = j,

ri otherwise.
(1.1)

Since ū1 ≥ 0, in view of (1.1) we have r ′j ≥ rj . Thus, Corollary 2.2 below implies that, when
r1 ≥ r2 ≥ · · · ≥ rm, for a feasible problem there exists an optimal randomized trunk reservation
policy with M1 ≥ · · · ≥ Mj−1 ≥ Mj+1 ≥ · · · ≥ Mm and Mj ≥ Mj+1. In other words, the
threshold for type-j customers can increase. In the particular case with j = 1, studied by
Feinberg and Reiman [9], the orders r ′1 > r ′2 > · · · > r ′m and r1 > r2 > · · · > rm coincide and,
therefore, we have M1 = N − 1 as the highest threshold. If the constraint limits the blocking
probability for several customer types pooled together, then the optimal policy also has a simple
structure, described in Corollary 2.5. This corollary implies that if r1 > r2 > · · · > rm and
there is a constraint on the blocking probability for the customers of types 1, 2, . . . , k pooled
together, with k ≤ m, then the optimal policy is again a randomized trunk reservation policy
consistent with r .
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We remark that our main result, Theorem 2.3, is a statement stronger than that of the mere
existence of an optimal randomized trunk reservation policy, which is made in Corollary 2.2.
We prove that any randomized optimal stationary policy that uses a randomization procedure
in at most one state has a randomized trunk reservation form. We recall that, for 1-constrained
semi-Markov or continuous-time Markov decision processes describing the problem considered
in this paper, when the problem is feasible there exists a randomized stationary optimal policy
that uses a randomization procedure in at most one state; see [5] or [6].

In Feinberg and Reiman [9, Sections 6 and 7], several more predictable optimal policies and
optimal nonrandomized strategies were constructed. Similar results can be obtained for the
more general problem considered in this paper. In fact, these constructions are valid as long as
the optimality of randomized trunk reservation policies is established.

In addition to Miller’s [21] classical problem formulation and its constrained version studied
by Feinberg and Reiman [9], various versions and generalizations of the admission problem
have been studied in the literature. Lippman [19] studied a problem with an infinite number
of customer classes. Other early references can be found in the surveys by Crabill et al. [4]
and Stidham [28]. Nguyen [22] considered a queueing system with two types of arrival: one
type is generated by a Poisson process and the other is an overflow process of an M/M/m/m
queue. Carrizosa et al. [3] studied an M/G/c/loss queue with different service distributions
for different customer types. The control parameter is the probability to accept an arrival,
given that the system has available space. This probability depends on the type of the arrived
customer and does not depend on the state of the system. Lewis et al. [15], [16] investigated
the bias optimality. Lewis [14] studied a dual admission control scheme for an M/M/1 queue,
with the service times dependent on customer type. Lin and Ross [17], [18] considered optimal
admission control policies with a gatekeeper for M/M/1/loss queues in which the gatekeeper
cannot know the busy/idle status of the server. Piunovskiy [24] studied bicriterion control of the
arrival intensity for an M/M/1 queue. Admission control problems with customers requiring
multiple servers were considered by Kelly [12], Key [13], Ross and Yao [27], Papastavrou et
al. [23], and Altman et al. [2]. If service times depend on customer type or different types
of customer require different numbers of servers, the problem becomes NP-hard and trunk
reservation may not be optimal; see [26, p. 137] and [2]. However, a trunk reservation policy is
asymptotically optimal under certain conditions; see [11] and [25]. If each customer requests
one server and service times do not depend on customer type then trunk reservation policies
are optimal [21], [9] and, in addition, the problem is polynomial, because an optimal policy
can be found via linear programming; see, e.g. Theorem 2.1 below. The survey of applications
of Markov decision problems to communication networks by Altman [1] provides additional
references on admission control.

This paper is organized as follows. We formulate the problem and the main results in
Section 2. Following Feinberg and Reiman [9], we formulate the problem as a unichain semi-
Markov decision problem with one constraint and with finite state and action sets. In Section 2
we also formulate the linear program (LP) that identifies an optimal policy, and explain the
meaning of the constant ū1 as an element of the dual solution to this LP.

Previously, Feinberg and Reiman [9, Corollary 3.7] proved that if r1 > r2 > · · · > rm,
then any optimal stationary policy has a trunk reservation form for an unconstrained problem.
In Section 3 we study the unconstrained problem when r1 ≥ r2 ≥ · · · ≥ rm. This case is
important because even if we assume that r1 > r2 > · · · > rm, it is possible that r ′i = r ′j
for some i, j = 1, . . . , m. In Section 4 we establish the link between optimal policies and
appropriate LPs. We describe the geometrical structure of the optimal solutions to related LPs
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in Section 5. That is, we show that the optimal LP solution, which corresponds to a randomized
optimal policy, is a convex combination of two vectors corresponding to (nonrandomized)
stationary policies, and that these three policies differ at most at one point. In addition, the
two nonrandomized stationary policies are optimal for the Lagrangian relaxation of the original
problem. In Section 6 we prove the main theorem that describes the structure of the optimal
policy.

Lagrangian optimization plays an important role in our analysis. We formulate all the
required results on Lagrangian optimization in Appendix B. This appendix is important for the
following two reasons: (i) for reference purposes in the main body of the paper, and (ii) to
present the version of the results needed here, which the authors did not find in the literature
on linear or nonlinear programming.

2. Problem formulation and main results

We consider a controlled queue that is a generalization of an M/M/c/N queue. The queue
has space for at most N customers, where N is a given integer. When there are n customers in
the queue the departure rate is µn, n = 1, . . . , N . The numbers µn, n = 1, . . . , N , satisfy the
condition µn−1 ≤ µn, with µ0 = 0 and µ1 > 0. In particular, for an M/M/c/N queue, for
some µ > 0, we have

µi =
{
iµ if i = 1, . . . , c,

cµ if i = c + 1, . . . , N.

There are m = 1, 2, . . . types of customer, arriving according to m independent Poisson
processes with respective intensities λi , i = 1, . . . , m. When a customer arrives, its type
becomes known. When there areN customers in the system, the system is full and new arrivals
are lost. If the system is not full, upon an arrival of a new customer the decision to accept or
reject this customer is made. A positive reward ri is collected upon completion of serving an
accepted type-i customer. A nonnegative cost ci is incurred upon the rejection or loss of an
arriving type-i customer. The service time of a customer does not depend on the customer type.
Unless otherwise specified, we do not assume that r1 ≥ r2 ≥ · · · ≥ rm.

Our goal is to maximize the average rewards the system collects per unit time, subject to the
constraint on the average costs per unit time. In particular, we are interested in the problem of
maximizing the average rewards per unit time subject to the blocking probability constraint for
a certain type of customer. In a more particular case, when r1 > · · · > rm and the constraint
is the blocking probability for type-1 customers, this problem was studied by Feinberg and
Reiman [9].

Following Feinberg and Reiman [9], we model the problem via a semi-Markov decision
process. Since the sojourn times between actions are exponentially distributed, this problem
is actually an exponential semi-Markov decision process. We refer the reader to [7] for more
details. Notice that this problem can also be formulated as a continuous-time Markov decision
process. In order to establish the existence of a randomized stationary optimal policy that
uses a randomization procedure in at least one state by using continuous-time Markov decision
processes, the only extra technical difficulty is to prove that the controlled process has no
absorbing states; see [5]. However, for the sake of consistency, since the results of [9] are based
on [5] rather than [6], we continue with the approach of [9], using a semi-Markov decision
process model.

Let us define the state space I = {0, 1, . . . , N − 1} ∪ ({0, 1, . . . , N} × {1, . . . , m}). If the
state of the system is n = 0, . . . , N−1, a departing customer leaves n customers in the system.
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Being in the state (n, i) means that an arrival of type i sees n customers in the system. Thus,
the state space I represents the departure and arrival epochs.

The action set is A = {0, 1}. For n = 0, . . . , N − 1 and i = 1, . . . , m, we set A(n, i) :=
A = {0, 1}, where the action 0 means that the type-i arrival should be rejected and the action 1
means that it should be accepted. We also setA(N, i) := {0}. In any state n = 0, . . . , N−1, we
set A(n) := {0}. These are departure epochs and the decision-maker does not decide to accept
or reject customers in these states. Therefore, we model these action sets A(n) as singletons.

Let τ(s, a) denote the average time that the system spends in a state s ∈ I if an action
a ∈ A(s) is chosen in this state. Let p(s, s′, a) be the transition probability from the state s
to s′ if action a ∈ A(s) is chosen. For notational convenience, we respectively write τ(n) and
p(n, s) instead of τ(n, 0) and p(n, s, 0) for n = 0, . . . , N − 1 and s ∈ I . In addition, let
� = ∑m

i=1 λi .
We have τ(n) = (µn +�)−1, where n = 0, . . . , N − 1. Also, for i = 1, . . . , m,

τ((n, i), a) =
{
τ(n) if a = 0 and n = 0, . . . , N,

τ(n+ 1) if a = 1 and n = 0, . . . , N − 1.

For n = 0, . . . , N − 1 and i = 1, . . . , m,

p(n, s) =

⎧⎪⎨
⎪⎩
µnτ(n) if s = n− 1,

λiτ (n) if s = (n, i),

0 otherwise,

and

p((n, i), s, a) =
{
p(n, s) if a = 0,

p(n+ 1, s) if a = 1.

For simplicity, let the reward be collected when an arrival is accepted. Therefore,

r(s, a) :=
{
ri if s = (n, i), n = 0, . . . , N − 1, and a = 1,

0 otherwise,

and

c(s, a) :=
{
ci if s = (n, i), n = 0, . . . , N, and a = 0,

0 otherwise.

In summary, we have defined a semi-Markov decision process with the state space I , action
spaceA, setsA(s) of available actions at states s ∈ I , transition probability p(s, s′, a), average
sojourn time τ(s, a) in state s ∈ I after action a is chosen, reward function r(s, a), and cost
function c(s, a).

Let t0 = 0. If tn is defined for some n = 0, 1, . . . , we define tn+1 as the time epoch of either
the next departure or the next arrival, whichever occurs first. Therefore, 0 = t0 < t1 < · · · is
the order of the sequence of jump epochs, when the state of the system changes. A strategy π ,
which may be randomized and past-dependent, assigns actions an at epoch tn, to control the
system. We define the long-run average rewards earned by the system as

W(z, π) = lim inf
t→∞ t−1 Eπz

N(t)−1∑
n=0

r(xn, an)
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and the long-run average cost of the system as

C(z, π) = lim sup
t→∞

t−1 Eπz

N(t)−1∑
n=0

c(xn, an),

where z is an initial state, π is a strategy, xn is the state at epoch tn, Eπz is the expectation
operator for the initial state z and the strategy π , and N(t) = max{n : tn ≤ t} is the number of
jumps made by time epoch t .

A strategy is called a randomized stationary policy if the assigned actions an depend only on
the current state xn. In addition, if an is a deterministic function of xn, then the corresponding
strategy is called a stationary policy.

According to [9, p. 471], the unichain condition holds for this model. The unichain condition
requires that any randomized stationary policy define a Markov chain with one ergodic class
and a (possibly empty) set of transient states on the system’s state space. Under this condition,
the objective functions W(z, φ) and C(z, φ) do not depend on the initial state z ∈ I when
φ is a randomized stationary policy. We shall therefore write W(φ) and C(φ) instead of
W(z, φ) and C(z, φ), respectively, when φ is a randomized stationary policy. According to
[5, Theorem 8.1(iv)], if the unichain condition holds and the semi-Markov decision problem
is feasible for some z, then there exists a randomized stationary policy that is optimal for any
initial state z, and the objective function does not depend on z. Thus, our problem can be
modeled as the following optimization problem with a randomized stationary policy φ as the
variable:

maximize W(φ) subject to C(φ) ≤ G, G ∈ R. (2.1)

Since an action can be chosen only at the arrival epochs, a randomized stationary policy
φ for our problem can be defined by φ(n, i), n = 0, . . . , N − 1, i = 1, . . . , m, that is, the
probability of accepting an arrival of type i when there are n customers in the system.

A randomized stationary policy φ is called k-randomized stationary, with k = 0, 1, 2, . . . ,
if the number of states (n, i) with 0 < φ(n, i) < 1 is less than or equal to k. The notions of
stationary and 0-randomized stationary policies coincide.

Consider the following constraints for (x, P ), where

x = {x(n, i), n = 0, . . . , N − 1, i = 1, . . . , m}
and P = (P0, . . . , PN) are respectively a matrix and a vector of real variables:

m∑
i=1

λici

(
1 −

N−1∑
n=0

x(n, i)

)
≤ G, (2.2)

m∑
i=1

λix(n, i) = µn+1Pn+1, n = 0, 1, . . . , N − 1, (2.3)

N∑
n=0

Pn = 1, (2.4)

0 ≤ x(n, i) ≤ Pn, n = 0, 1, . . . , N − 1, i = 1, 2, . . . , m. (2.5)
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For the same variables x and P , we formulate the LP

maximize
m∑
i=1

λiri

N−1∑
n=0

x(n, i) over x and P, subject to (2.2)–(2.5), (2.6)

and the LP

maximize
m∑
i=1

λiri

N−1∑
n=0

x(n, i) over x and P, subject to (2.3)–(2.5). (2.7)

For a vector (x, P ) satisfying (2.2)–(2.5), consider a randomized stationary policy φ such
that

φ(n, i) =
{
x(n, i)/Pn if Pn > 0, n = 0, 1, . . . , N − 1, and i = 1, 2, . . . , m,

arbitrary otherwise.
(2.8)

Theorem 2.1. (i) A randomized stationary policy φ is feasible for the problem (2.1) if and only
if (2.8) holds for a feasible vector (x, P ) of the LP (2.6).

(ii) If (x, P ) is an optimal solution to the LP (2.6), then Pn > 0 for all n = 0, 1, . . . , N .

(iii) A randomized stationary policy φ is optimal for the problem (2.1) if and only if

φ(n, i) = x(n, i)/Pn, n = 0, 1, . . . , N − 1, i = 1, 2, . . . , m, (2.9)

holds for an optimal solution (x, P ) to the LP (2.6). In addition, if (x, P ) is a basic optimal
solution to the LP (2.6), then the policy φ defined in (2.9) is 1-randomized stationary optimal.

If G ≥ ∑m
i=1 λici , we face an unconstrained problem, namely

maximize W(φ), (2.10)

and Theorem 2.1 implies the following result.

Corollary 2.1. (i) If (x, P ) is an optimal solution to the LP (2.7), then Pn > 0 for all n =
0, 1, . . . , N .

(ii) A randomized stationary policy φ is optimal for the problem (2.10) if and only if (2.9) holds
for an optimal solution (x, P ) to the LP (2.7). In addition, if (x, P ) is a basic optimal solution
to the LP (2.7), then the policy φ defined in (2.9) is nonrandomized stationary optimal.

In view of (2.4) and (2.5), the feasible region of the LP (2.6) is bounded. Therefore, this
LP has an optimal solution, if it is feasible. If the LP (2.6) is feasible, we consider an arbitrary
optimal dual solution (ū, v̄), with ū = (ū1, . . . , ū2mN+1) and v̄ = (v̄1, . . . , v̄N+1), where ū
corresponds to all inequality constraints and v̄ corresponds to equality constraints, and introduce
the following LP:

maximize
m∑
i=1

λi(ri + ū1ci)

N−1∑
n=0

x(n, i)− ū1

( m∑
i=1

λici −G

)
over x and P,

subject to (2.3)–(2.5).
(2.11)
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Notice that most of the contemporary LP solvers use interior-point methods and calculate the
primary and dual solutions simultaneously. Therefore, we do not formulate the dual LP in this
paper. Here ū1 is also called the Lagrange multiplier with respect to the first constraint. More
details about the Lagrangian function and Lagrange multipliers can be found in Appendix B.
Lemma B.1 in Appendix B, and the explanations preceding it, imply the following result.

Lemma 2.1. If the LP (2.6) is feasible then (i) any optimal solution to the LP (2.6) is an optimal
solution to the LP (2.11), and (ii) the optimal values of the objective functions for these two
LPs are equal.

We notice that, for any randomized stationary policy φ, there is a unique solution Pφ to the
following birth-and-death equations:

m∑
i=1

λiφ(n, i)Pn = µn+1Pn+1, n = 0, 1, . . . , N − 1, (2.12)

N∑
n=0

Pn = 1. (2.13)

Here φ is defined by φ(n, i), n = 0, . . . , N − 1, i = 1, . . . , m, the probability of accepting an
arrival of type i when there are n customers in the system, and Pφn is the limiting probability
that there are n customers in the system when the randomized stationary policy φ is used.

In addition, we define

xφ(n, i) = φ(n, i)P φn , n = 0, 1, . . . , N − 1, i = 1, 2, . . . , m. (2.14)

Then (xφ, P φ) satisfies (2.3)–(2.5) and is therefore a feasible solution to the LP (2.7). In view
of Theorem 2.1(i), a randomized stationary policy φ is feasible for the problem (2.1) if and only
if (xφ, P φ) is a feasible solution to the LP (2.6). In addition, according to Theorem 2.1(iii), a
randomized stationary policy is optimal for the problem (2.1) if and only if (xφ, P φ) is optimal
for the LP (2.6). In particular, according to Corollary 2.1, a randomized stationary policy φ is
optimal for the unconstrained problem (2.10) if and only if the vector (xφ, P φ) is optimal for
the LP (2.7).

The following theorem geometrically links the optimal solutions to the LP (2.6) to feasible
vectors for the LP (2.7).

Theorem 2.2. Let φ be a 1-randomized stationary optimal policy for the problem (2.1). If
there exists a state (n0, i0) with 0 < φ(n0, i0) < 1, consider two stationary policies, φ′ and
φ′′, that coincide with φ at all states except for the state (n0, i0) and satisfy φ′(n0, i0) = 0 and
φ′′(n0, i0) = 1. Then, for some α, 0 < α < 1,

(xφ, P φ) = α(xφ
′
, P φ

′
)+ (1 − α)(xφ

′′
, P φ

′′
).

The following theorem is the main result of this paper.

Theorem 2.3. Any 1-randomized stationary optimal policy for the problem (2.1) is a ran-
domized trunk reservation policy that is consistent with the reward function r ′i = ri + ū1ci ,
i = 1, . . . , m, where ū1 ≥ 0 is the Lagrange multiplier with respect to the constraint (2.2).

Consider an average-reward semi-Markov decision process with one constraint. If the
unichain condition holds and a feasible policy exists, then there exists a 1-randomized stationary
optimal policy [5]. Therefore, the previous theorem implies the following corollary.

https://doi.org/10.1239/aap/1143936147 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936147


Optimality of randomized trunk reservation 207

Corollary 2.2. If the problem (2.1) is feasible, then there exists an optimal randomized trunk
reservation policy that is consistent with r ′.

Let

ci =
{

1/λj , i = j,

0, otherwise.
(2.15)

According to [9, p. 471], for the costs ci defined by (2.15), the average cost C(z, π) is the
blocking probability for type-j customers. Therefore, the problem of maximizing the average
rewards per unit time subject to the constraint that the blocking probability for type-j customers
does not exceed q is equivalent to the problem (2.1) with the cost function c defined in (2.15).

The following corollary describes the structure of optimal policies when the objective is to
maximize the average rewards per unit time subject to the constraint on the blocking probability
for type-j customers.

Corollary 2.3. Consider a special case of problem (2.1) with the constraint on the blocking
probability of type-j customers, j = 1, . . . , m. If this problem is feasible then any 1-randomized
stationary optimal policy is a randomized trunk reservation policy consistent with the reward
function r ′ that was defined in (1.1) and has the properties that r ′i = ri if i �= j and r ′j ≥ rj .

In particular, when j = 1, Corollary 2.3 implies the following statement.

Corollary 2.4. Consider a special case of problem (2.1) with the constraint on the blocking
probability of the most profitable customers (those of type 1). If this problem is feasible then
any 1-randomized stationary optimal policy is a randomized trunk reservation policy consistent
with the rewards ri .

In particular, for the case in which r1 > r2 > · · · > rm, Corollary 2.4 coincides with the
main result of [9]. If the cost constraint limits the blocking probability for several customer
types pooled together, say for customer types belonging to a set J , J ⊂ {1, . . . , m}, then we
define �J = ∑

j∈J λj and

ci =
{

1/�J if j ∈ J,
0 otherwise.

(2.16)

Then the combined blocking probability for customers in the set J under policy π and with
initial state z is C(z, π), with the function ci defined by (2.16).

The following corollary describes the structure of optimal policies when the objective is to
maximize the average rewards per unit time subject to the constraint on the combined blocking
probability for several customer types.

Corollary 2.5. Consider a special case of problem (2.1) with the constraint on the combined
blocking probability for customer types belonging to a set J , J ⊂ {1, . . . , m}. If this problem
is feasible then any 1-randomized stationary optimal policy is a randomized trunk reservation
policy consistent with a function r ′, where

r ′i =
{
ri + ū1/�J if i ∈ J,
ri otherwise,

and (i) r ′i = ri if i /∈ J , (ii) r ′i ≥ ri if i ∈ J , and (iii) r ′i ≥ r ′j if i, j ∈ J and ri ≥ rj .
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3. Unconstrained problem

For an M/M/c/loss system, Miller [21] proved that if r1 > r2 > · · · > rm > 0, then there
exists a trunk reservation optimal policy, consistent with the rewards ri , for the unconstrained
problem (2.10). Feinberg and Reiman [9] proved the following stronger result.

Lemma 3.1. ([9, Corollary 3.7].) If r1 > · · · > rm > 0 then any (nonrandomized) stationary
optimal policy for the unconstrained problem (2.10) is a trunk reservation policy consistent
with the rewards ri , i = 1, . . . , m.

The next lemma is a particular case of Lemma 2.5 of [9], which dealt with constrained
problems in which the constraint was that the blocking probability of type-1 customers be no
greater than q. By setting q = 1 in the mentioned results of [9], we obtain the following result
for the unconstrained problem.

Lemma 3.2. A randomized stationary policy φ is optimal for the problem (2.10) if and only
if φ(n, i) and a vector P = (P0, . . . , Pn) form an optimal solution to the following nonlinear
program:

maximize
m∑
i=1

λiri

(N−1∑
n=0

φ(n, i)Pn

)
over x and P, subject to

0 ≤ φ(n, i) ≤ 1, n = 0, 1, . . . , N − 1, i = 1, 2, . . . , m, and (2.12) and (2.13). (3.1)

We remark that, according to Lemma 3.1, if r1 > · · · > rm > 0 then any stationary optimal
policy has a trunk reservation form and N − 1 = M1 ≥ · · · ≥ Mm. The following example
shows that the optimal thresholds M1, . . . ,Mm may not be unique.

Example 3.1. Consider an M/M/1/loss system with two types of customer, with λ1 = λ2 =
µ = 1, r1 = 2, and r2 = 1. In this example, an arrival can be accepted only when the system
is empty, and there are only two trunk reservation policies consistent with the rewards r1 and
r2: (i) accept all the arrivals, and (ii) accept only type-1 arrivals. According to Lemma 3.1,
at least one of these two policies is optimal. Straightforward analysis of the birth-and-death
process defined by (2.12) and (2.13), with two states, yields P0 = 1

3 and P1 = 2
3 , with an

expected average reward per unit time, computed as in the expression to be maximized in (3.1),
equal to 1, for the first policy. For the second policy, P0 = P1 = 1

2 and the expected average
reward per unit time also equals 1. Thus, trunk reservation policies (i) and (ii) are both optimal.
Moreover, consider a randomized trunk reservation policy that, when the system is empty,
always accepts type-1 arrivals and accepts type-2 arrivals independently with some probability,
say p. Under this policy, straightforward calculations for the birth-and-death process yield
P0 = 1/(2 + p) and P1 = (1 + p)/(2 + p). Therefore, the expected average rewards per unit
time equal 2 × 1/(2 + p)+ p × 1/(2 + p) = 1, for any randomized trunk reservation policy.

The following lemma covers the case in which r1 ≥ · · · ≥ rm > 0. However, being
motivated by constrained problems, for which it is possible that r ′i < r ′i+1, we do not specify
these inequalities in the lemma. Since its proof is rather technical, we present it in Appendix A.

Lemma 3.3. Consider any randomized stationary optimal policy φ for the unconstrained
problem (2.10).

(i) For any i and j such that ri > rj , we have

φ(n, i) ≥ φ(n, j), n = 0, . . . , N − 1, i, j = 1, . . . , m.
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(ii) For each n = 0, . . . , N − 1, if there exist two customer types, j1 and j2, such that
0 < φ(n, j) < 1, j = j1, j2, then rj1 = rj2 . In particular, if the rewards r1, . . . , rm are all
different, then, for each n = 0, . . . , N − 1, the probabilities φ(n, j), j = 1, . . . , m, except for
at most one of them, are all equal to either 0 or 1.

(iii) There exists at least one customer type, say type �, such that

φ(n, �) = 1, n = 0, . . . , N − 1. (3.2)

In particular, if rj = max{ri, i = 1, . . . , m} then (3.2) holds with � = j .

(iv) We have

φ(n, j) ≥ φ(n+ 1, j), n = 0, . . . , N − 2, j = 1, . . . , m,

and, for each j = 1, . . . , m, the probabilities φ(n, j), n = 0, . . . , N − 1, except for at most
one of them, are all equal to either 0 or 1.

The following corollary of Lemma 3.3 is used in the proof of Theorem 2.3.

Corollary 3.1. Any stationary optimal policy ϕ for the unconstrained problem (2.10) is a trunk
reservation policy consistent with the rewards ri .

The following example demonstrates that if different types of customer have the same
rewards, then, for an optimal trunk reservation policy φ, the existence of which follows from
Corollary 3.1, it is possible that Mφ

i < M
φ
i+1 when ri = ri+1, i = 1, . . . , m− 1.

Example 3.2. We consider Example 3.1 and split type-2 customers into types 2 and 3, with
λ2 = 0.4 and λ3 = 0.6. We then have λ1 = µ = 1, λ2 = 0.4, λ3 = 0.6, r1 = 2, and
r2 = r3 = 1, and the trunk reservation policy φ with (Mφ

1 ,M
φ
2 ,M

φ
3 ) = (1, 0, 1) is optimal and

W(φ) = 1. Although r1 > r2 = r3, it is not necessary that Mφ
1 ≥ M

φ
2 ≥ M

φ
3 .

The following property of an optimal solution to the LP (2.7) is essential to the proof of
Theorem 2.1.

Lemma 3.4. If (x, P ) is an optimal solution to (2.7), then Pn > 0 for all n = 0, 1, . . . , N .

Proof. The proof is based on contradiction. Without loss of generality, let us assume that
r1 ≥ r2 ≥ · · · ≥ rm > 0. Let (x, P ) be an optimal solution to the LP (2.7) such that there
exists an n∗, 0 < n∗ ≤ N , for which Pn∗ = 0. Then, by (2.4) and (2.5) there exists an
n0, 0 ≤ n0 < N , for which Pn0 > 0 and Pn0+1 = 0. In view of (2.3) and (2.5) we have
(i) x(n, i) = 0 for n ≥ n0 and i = 1, . . . , m, (ii) Pn = 0 for n > n0, and (iii) Pn > 0 for
n ≤ n0. In the following we construct a feasible point (x′, P ′) that achieves a larger value of
the objective function than does (x, P ). We define

P ′
n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µn0+1

µn0+1 + λ1Pn0

Pn, n ≤ n0,

λ1

µn0+1 + λ1Pn0

Pn0 , n = n0 + 1,

0, otherwise,

(3.3)

x′(n, i) =

⎧⎪⎨
⎪⎩
(1 − P ′

n0+1)x(n, i), n < n0, i = 0, . . . , m,

P ′
n0
, n = n0, i = 1,

0, otherwise.

(3.4)
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We observe that (x′, P ′) satisfies (2.3)–(2.5). Indeed, (2.4) and (3.3) imply that

P ′
n = (1 − P ′

n0+1)Pn, n ≤ n0, P ′
n0+1 = P ′

n0

λ1

µn0+1
.

These equalities and (3.4) imply, after some simple algebra, that the vector (x′, P ′) satisfies
(2.3) and (2.5). To verify (2.4), note that

N∑
n=1

P ′
n =

n0+1∑
n=1

P ′
n =

n0∑
n=1

µn0+1Pn

µn0+1 + λ1Pn0

+ λ1Pn0

µn0+1 + λ1Pn0

= µn0+1

µn0+1 + λ1Pn0

+ λ1Pn0

µn0+1 + λ1Pn0

= 1,

where the first two equalities follow from (3.3) and the third follows from
∑n0
n=1 Pn = 1.

Denote the values of the objective function at (x, P ) and (x′, P ′) byW andW ′, respectively.
In the following, we prove that W ′ > W . Notice that

W ′ = (1 − P ′
n0+1)W + r1λ1P

′
n0

= (1 − P ′
n0+1)W + r1µn0+1P

′
n0+1, (3.5)

where the first equality follows from (3.4) and the second follows from (3.3). By rearranging
(3.5), we obtain

W ′ −W = P ′
n0+1(r1µn0+1 −W).

In addition,

W =
m∑
i=1

λiri

n0−1∑
n=0

x(n, i) ≤ r1

n0−1∑
n=0

m∑
i=1

λix(n, i) = r1

n0−1∑
n=0

µn+1Pn+1 ≤ r1µn0

n0−1∑
n=0

Pn+1,

where the first equality follows from x(n, i) = 0, n ≥ n0, i = 1, . . . , m, the first inequality
follows from the assumption that r1 ≥ r2 ≥ · · · ≥ rm, the second equality follows from (2.4),
and the last inequality follows from the assumption that µ1 ≤ µ2 ≤ · · · ≤ µn. Therefore,

W ≤ r1µn0

n0∑
n=1

Pn < r1µn0

n0∑
n=0

Pn = r1µn0 ≤ r1µn0+1,

where the strict inequality follows from P0 > 0. Since P ′
n0+1 > 0, we see that W ′ −W > 0.

Note that the value of the objective function is strictly greater at (xφ
′
, P φ

′
) than it is at (xφ, P φ),

and that (xφ
′
, P φ

′
) satisfies (2.3)–(2.5). Therefore, (x, P ) is not optimal. This contradiction

completes the proof.

4. Justification of the LP formulation

Lemma 3.2 established a link between the unconstrained problem (2.10) and the nonlinear
program (3.1). According to the following lemma, the constraint in (2.1) adds an equation to
the system (3.1). Based on this, we are ready to give the proof of Theorem 2.1. Notice that, for
any randomized stationary policy φ, there exists a unique vector (P1, . . . , Pn) satisfying (2.12)
and (2.13).
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Lemma 4.1. A randomized stationary policy φ is optimal (or feasible) for the problem (2.1) if
and only ifφ(n, i)and the vectorPφ = (P

φ
0 , . . . , P

φ
N), respectively defined by (2.12) and (2.13),

form an optimal (feasible) solution to the nonlinear program

maximize
m∑
i=1

λiri

(N−1∑
n=0

φ(n, i)Pn

)
over φ and P, subject to

m∑
i=1

λici

(
1 −

N−1∑
n=0

φ(n, i)Pn

)
≤ G,

0 ≤ φ(n, i) ≤ 1, n = 0, 1, . . . , N − 1, i = 1, 2, . . . , m,

(2.12) and (2.13). (4.1)

Proof. The proof is similar to the proof of Lemma 2.5 of [9].

Proof of Theorem 2.1. (i) Consider a randomized stationary policy φ feasible for the prob-
lem (2.1). Lemma 4.1 implies that the vector Pφ defined by (2.12) and (2.13) is feasible for
the nonlinear program (4.1). The function xφ , defined by (2.14), and the vector Pφ satisfy
(2.2)–(2.5). In addition, (2.14) implies (2.8). Conversely, consider any feasible vector (x, P )
for the LP (2.6), and let φ(n, i) be a randomized stationary policy satisfying (2.8). Then

x(n, i) =
{
φ(n, i)Pn if Pn > 0, n = 0, 1, . . . , N − 1, and i = 1, 2, . . . , m,

0 otherwise.

Therefore, (φ(n, i), Pn) is feasible for the nonlinear program (4.1). In view of Lemma 4.1, φ
is a randomized stationary policy feasible for the problem (2.1).

(ii) Consider the LP (2.11). Lemma 3.4 implies that Pn > 0, n = 0, . . . , N , for any optimal
solution (x, P ) to this LP. By Lemma 2.1, any optimal solution (x, P ) to the LP (2.6) is optimal
for the LP (2.11).

(iii) Consider a randomized stationary optimal policy φ for the problem (2.1). In view of
Theorem 2.1(i), (xφ, P φ), defined by (2.12)–(2.14), is a feasible solution to the LP (2.6).
According to Lemma 4.1, (φ, P φ) is an optimal solution to the nonlinear program (4.1). We
shall prove by contradiction that (xφ, P φ) is an optimal solution to the LP (2.6).

Since the feasible region of the LP (2.6) is bounded, there exists an optimal solution (x′, P ′)
to this LP. Suppose that (x′, P ′) achieves a larger objective value than does (xφ, P φ). Due to
Theorem 2.1(ii), P ′

n > 0 for all n = 0, . . . , N . Let us define φ′(n, i) = x′(n, i)/P ′
n. Then

(φ′, P ′) is feasible for the LP (4.1) and achieves a larger value of the objective function than
does (φ, P φ). This contradicts the fact that (φ, P φ) is an optimal solution to (4.1).

Conversely, let (x, P ) be an optimal solution to the LP (2.6). We define

φ(n, i) = x(n, i)

Pn
, n = 0, . . . , N, i = 1, . . . , m.

According to Lemma 4.1, it suffices to prove that (φ, P ) is an optimal solution to the nonlinear
program (4.1), and we shall use contradiction to do so. Suppose that there exists a feasible
solution (φ′, P ′) to (4.1) which achieves a larger objective value than does (φ, P ). Letx′(n, i) =
φ′(n, i)P ′

n. Then (x′, P ′) is feasible for the LP (2.6), and achieves a larger value of the objective
function than does (x, P ). This contradicts the fact that (x, P ) is optimal for the LP (2.6).
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To prove the second statement in (iii), first we note that the first statement of Theorem 2.1(iii)
(proved above) implies that φ is optimal. Second, we represent the LP (2.6) in a standard LP
form, in which the nonnegative variable S is introduced to replace (2.2) with

m∑
i=1

λici

(
1 −

N−1∑
n=0

x(n, i)

)
+ S = G,

and nonnegative variables y(n, i), n = 0, . . . , N − 1, i = 1, . . . , m, are introduced to replace
(2.5) with x(n, i)+y(n, i) = Pn. There are 2+N +N×m constraints andN +2+2(N×m)
variables for this new LP. Therefore, any basic optimal solution to this new LP has at most
2 + N + N × m basic variables. Since Pn, n = 0, . . . , N , are positive, there are at most
1 + N × m basic variables among x(n, i) and y(n, i). Because x(n, i) + y(n, i) = Pn > 0,
x(n, i) and y(n, i) cannot be 0 simultaneously. Therefore, for each pair (n, i), either x(n, i) = 0
or y(n, i) = 0, except for at most one pair, for which both of them are nonzero. Since
φ(n, i) = x(n, i)/Pn, we find that for all but at most one of the pairs (n, i), φ(n, i) equals
either 0 or 1. Therefore, the policy φ is 1-randomized stationary optimal.

Proof of Corollary 2.1. Statement (i) is Lemma 3.4. Also, (i) and the first part of (ii) follow
from Theorem 2.1(ii) and (iii), respectively, when G ≥ 1. The proof of the second part of
statement (ii) is nearly identical to the proof of the second part of Theorem 2.1(iii), the only
difference being that there are 1 + N + N × m constraints and, therefore, there are at most
N×m basic variables among x(n, i) and y(n, i). Hence, for each pair (n, i), either x(n, i) = 0
or y(n, i) = 0, but they do not hold simultaneously. This gives us a nonrandomized policy φ.

5. Geometric properties of optimal solutions

In this section, we prove Theorem 2.2. Consider policies φ, φ′, and φ′′ as in Theorem 2.2.
According to Theorem 2.1(iii), (xφ, P φ) is an optimal solution to the LP (2.6). In addition,
both (xφ

′
, P φ

′
) and (xφ

′′
, P φ

′′
) are feasible solutions to the LP (2.7).

Lemma 5.1. Let the policies φ, φ′, and φ′′ be defined as in Theorem 2.2, and consider the
vectors Pφ , Pφ

′
, and Pφ

′′
defined by (2.12) and (2.13). The following expressions hold:

P
φ′
0

P
φ
0

= P
φ′
1

P
φ
1

= · · · = P
φ′
n0

P
φ
n0

, (5.1)

P
φ′
n0+1

P
φ
n0+1

= P
φ′
n0+2

P
φ
n0+2

= · · · = P
φ′
N

P
φ
N

, (5.2)

P
φ′′
0

P
φ
0

= P
φ′′
1

P
φ
1

= · · · = P
φ′′
n0

P
φ
n0

, (5.3)

P
φ′′
n0+1

P
φ
n0+1

= P
φ′′
n0+2

P
φ
n0+2

= · · · = P
φ′′
N

P
φ
N

. (5.4)

In addition, t1, t2, t3, and t4, the respective values of the ratios in (5.1)–(5.4), satisfy t1 > 1,
t2 < 1, t3 < 1, and t4 > 1.
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Proof. From (2.12), it follows that

m∑
i=1

λiφ
′(n, i)P φ′

n = µn+1P
φ′
n+1, n = 0, 1, . . . , N − 1, (5.5)

m∑
i=1

λiφ(n, i)P
φ
n = µn+1P

φ
n+1, n = 0, 1, . . . , N − 1. (5.6)

Notice that φ(n, i) = φ′(n, i)when (n, i) �= (n0, i0), n = 0, . . . , N −1, i = 1, . . . , m, and
that Pφn > 0, n = 0, . . . , N , according to Theorem 2.1(ii). Therefore, we can divide (5.5) by
(5.6), to obtain

P
φ′
n

P
φ
n

= P
φ′
n+1

P
φ
n+1

, n = 0, . . . , N − 1, n �= n0,

which is equivalent to (5.1) and (5.2) simultaneously. The proof of (5.3) and (5.4) is similar.
Since φ′(n0, i0) = 0 and φ′′(n0, i0) = 1, we have

m∑
i=1

φ′(n0, i)λi =
m∑
i=1

φ(n0, i)λi − λi0φ(n0, i0) (5.7)

and
m∑
i=1

φ′′(n0, i)λi =
m∑
i=1

φ(n0, i)λi + λi0(1 − φ(n0, i0)).

Then

P
φ′
n0+1 =

m∑
i=1

φ′(n0, i)λi
P
φ′
n0

µn0+1
=

(
µn0+1P

φ
n0+1

P
φ
n0

− λi0φ(n0, i0)

)
P
φ′
n0

µn0+1
, (5.8)

where the first equality follows from (2.12) and the second equality follows from (5.7) and
from (2.12), applied sequentially. Similarly,

P
φ′′
n0+1 =

(
µn0+1P

φ
n0+1

P
φ
n0

+ λi0(1 − φ(n0, i0))

)
P
φ′′
n0

µn0+1
. (5.9)

By dividing the left-most and right-most expressions in (5.8) by Pφn0+1, we obtain

P
φ′
n0+1

P
φ
n0+1

= P
φ′
n0

P
φ
n0

− λi0φ(n0, i0)P
φ′
n0

µn0+1P
φ
n0+1

. (5.10)

We observe thatPφ
′

n0 > 0. Indeed, ifPφ
′

n0 = 0 then (5.8) implies thatPφ
′

n0+1 = 0. In view of (5.1)
and (5.2), Pφ

′
n = 0 for all n = 0, . . . , N . Therefore, Pφ

′
is not a probability vector.

Now we shall prove that t1 > 1, by contradiction. Suppose that t1 ≤ 1. Then (5.1) implies
that Pφ

′
n ≤ P

φ
n when n ≤ n0. In view of (5.2) and (5.10), we have Pφ

′
n < P

φ
n for n > n0.

Therefore,
∑N
i=0 P

φ′
i <

∑N
i=0 P

φ
i = 1, which contradicts the fact that Pφ

′
is a probability

vector.
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Next we prove that t2 < 1. Since t1 > 1, from (5.1) we have Pφ
′

n > P
φ
n for n ≤ n0.

Suppose that t2 ≥ 1. Then Pφ
′

n ≥ P
φ
n for n > n0. Thus,

∑N
i=0 P

φ′
i >

∑N
i=0 P

φ
i = 1. This

is a contradiction, proving that t2 < 1.
To prove that t3 < 1 and t4 > 1, we divide both sides of (5.9) by Pφn0+1, to obtain

P
φ′′
n0+1

P
φ
n0+1

= P
φ′′
n0

P
φ
n0

+ λi0(1 − φ(n0, i0))P
φ′′
n0

µn0+1P
φ
n0+1

. (5.11)

The rest of the proof is similar to the proofs that t1 > 1 and t2 < 1.

Lemma 5.2. Consider the policy φ described in Theorem 2.2, and let t1, t2, t3, and t4 be the
constants defined in Lemma 5.1. Then

1 − t2

t4 − t2
= t1 − 1

t1 − t3
= φ(n0, i0)

t3
. (5.12)

Proof. In view of (5.1) and (5.2), we have

t1

n0∑
i=0

P
φ
i + t2

N∑
i=n0+1

P
φ
i =

N∑
i=0

P
φ′
i = 1. (5.13)

Similarly, (5.3) and (5.4) imply that

t3

n0∑
i=0

P
φ
i + t4

N∑
i=n0+1

P
φ
i = 1. (5.14)

We introduce u = ∑n0
i=0 P

φ
i and v = ∑N

i=n0+1 P
φ
i . Then (5.13) and (2.13) can be rewritten

as

t1u+ t2v = 1,

u+ v = 1.

This implies that

v = t1 − 1

t1 − t2
.

Similarly, (5.14) and (2.13) imply that

v = 1 − t3

t4 − t3
.

Thus,

v = t1 − 1

t1 − t2
= 1 − t3

t4 − t3
. (5.15)

The second equality of (5.15) is equivalent to the first equality of (5.12).
We now rewrite (5.10) and (5.11) as

λi0φ(n0, i0)P
φ′
n0

µn0+1P
φ
n0+1

= t1 − t2 (5.16)
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and
λi0(1 − φ(n0, i0))P

φ′′
n0

µn0+1P
φ
n0+1

= t4 − t3, (5.17)

respectively. Dividing (5.16) by (5.17) yields

t1

t3
= (t1 − t2)(1 − φ(n0, i0))

(t4 − t3)φ(n0, i0)
= (t1 − 1)(1 − φ(n0, i0))

(1 − t3)φ(n0, i0)
,

where the second equality follows from (5.15). To conclude the proof, we observe that the
equality

t1

t3
= (t1 − 1)(1 − φ(n0, i0))

(1 − t3)φ(n0, i0)

is equivalent to the second equality in (5.12).

Proof of Theorem 2.2. Since both φ′ and φ′′ are nonrandomized stationary policies and
φ(n, i) = φ′(n, i) = φ′′(n, i) for any (n, i) �= (n0, i0), according to (2.14) either xφ(n, i) =
xφ

′
(n, i) = xφ

′′
(n, i) = 0 or xφ(n, i) = P

φ
n , xφ

′
(n, i) = P

φ′
n , and xφ

′′
(n, i) = P

φ′′
n for any

(n, i) �= (n0, i0). Thus, in view of Lemma 5.1, to prove that (xφ, P φ) is a convex combination
of pairs (xφ

′
, P φ

′
) and (xφ

′′
, P φ

′′
), it suffices to show that the following three equalities hold:

αxφ
′
(n0, i0)+ (1 − α)xφ

′′
(n0, i0) = xφ(n0, i0), (5.18)

αPφ
′

n0
+ (1 − α)P φ

′′
n0

= Pφn0
, (5.19)

αP
φ′
N + (1 − α)P

φ′′
N = P

φ
N . (5.20)

Since φ′(n0, i0) = 0 and φ′′(n0, i0) = 1, we have xφ
′
(n0, i0) = 0 and xφ

′′
(n0, i0) = P

φ′′
n0 . We

rewrite (5.18)–(5.20) as
(1 − α)P φ

′′
n0

= φ(n0, i0)P
φ
n0
,

(1 − α)
P
φ′′
n0

P
φ
n0

+ α
P
φ′
n0

P
φ
n0

= 1,

(1 − α)
P
φ′′
N

P
φ
N

+ α
P
φ′
N

P
φ
N

= 1.

These equalities can be further rewritten as

(1 − α)t3 = φ(n0, i0), (5.21)

(1 − α)t3 + αt1 = 1, (5.22)

(1 − α)t4 + αt2 = 1. (5.23)

Equalities (5.21), (5.22), and (5.23) respectively imply that

α = 1 − φ(n0, i0)

t3
, α = 1 − t3

t1 − t3
, and α = t4 − 1

t4 − t2
.

In view of Lemma 5.2, all these values of α are equal. In addition, 0 < α < 1 because
t1 > 1 > t3.
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6. Constrained optimization

The goal of this section is to prove Theorem 2.3.

Proof of Theorem 2.3. Consider any 1-randomized stationary optimal policy φ for the prob-
lem (2.1). Due to Theorem 2.1(iii), the vector (xφ, P φ) defined by (2.12)–(2.14) is an optimal
solution to the LP (2.6). Let us consider the following two cases: (i) there exists a state (n0, i0)

for which 0 < φ(n0, i0) < 1; (ii) φ is nonrandomized. In case (i), Theorem 2.2 implies that
there exist two stationary policies, φ′ and φ′′, that coincide with φ for all states, except for
(n0, i0), such that (xφ, P φ) is a convex combination of the feasible solutions (xφ

′
, P φ

′
) and

(xφ
′′
, P φ

′′
) to the LP (2.7). In addition, φ′(n0, i0) = 0 and φ′′(n0, i0) = 1. Since the LP (2.7)

and the LP (2.11) have the same feasible regions, (xφ
′
, P φ

′
) and (xφ

′′
, P φ

′′
) are feasible for the

LP (2.11). In view of Lemma 2.1, (xφ, P φ) is optimal for the LP (2.11). Therefore, (xφ
′
, P φ

′
)

and (xφ
′′
, P φ

′′
) are both optimal for the LP (2.11).

Consider the reward r ′i = ri + ū1ci , i = 1, . . . , m, defined prior to the introduction of the
LP (2.11). According to Corollary 2.1, φ′ and φ′′ are both optimal stationary policies for the
unconstrained problem (2.10), with rewards r ′i . In view of Corollary 3.1, φ′ and φ′′ are trunk
reservation policies consistent with the rewards r ′i . Consider any type, i, such that r ′i < r ′i0 .
ThenMφ′

i ≤ M
φ′
i0

. Notice that bothφ(n0, i0) > φ′(n0, i0) andφ(n, i) = φ′(n, i)when (n, i) �=
(n0, i0). Therefore, Mφ

i ≤ M
φ
i0

. Similarly, for any type, j , such that r ′j > r ′i0 , we have
M
φ′′
j ≥ M

φ′′
i0

. Notice that both φ′′(n0, i0) > φ(n0, i0) and φ′′(n, i) = φ(n, i) when (n, i) �=
(n0, i0). Therefore, Mφ

j ≥ M
φ
i0

and φ is a randomized trunk reservation policy consistent with
the rewards r ′i . In case (ii), vector (xφ, P φ) is optimal for the LP (2.11) and, by Corollary 3.1,
φ is a trunk reservation policy consistent with r ′.

Example 6.1. Consider the M/M/1/loss queue with three types of customer, as described in
Example 3.2. In addition, set the costs to be c1 = 3, c2 = 8, and c3 = 1 and the cost constraint
to be G = 4.5. By Theorem 2.1, any optimal policy for the constrained problem can be found
by solving the LP (2.6), which here takes the following form:

maximize 2x(0, 1)+ 0.4x(0, 2)+ 0.6x(0, 3) over x and P, subject to

3(1 − x(0, 1))+ 3.2(1 − x(0, 2))+ 0.6(1 − x(0, 3)) ≤ 4.5,

x(0, 1)+ 0.4x(0, 2)+ 0.6x(0, 3) = P1,

P0 + P1 = 1,

0 ≤ x(0, i) ≤ P0, i = 1, 2, 3.

We shall show that any randomized trunk reservation policy φk defined by the thresholds
(1, k, 0), 40

57 ≤ k ≤ 1, is optimal. Indeed, according to Example 3.2, the value of the above LP
is not greater than 1. In addition, the last constraint and (2.8) together imply that x(0, 1) = P0,
x(0, 2) = kP0, and x(0, 3) = 0 for any feasible policy φk , 0 ≤ k ≤ 1. Therefore, the above LP
implies that the best policy among the φk can be found by solving the following mathematical
program:

maximize 2P0 + 0.4kP0 over P0 and k, subject to (6.1)

3P0 + 3.2kP0 ≥ 2.3, (6.2)

2P0 + 0.4kP0 = 1, (6.3)

P0 ≥ 0, (6.4)

0 ≤ k ≤ 1. (6.5)
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The constraint (6.3) and objective function (6.1) imply that the optimal value is indeed 1.
Constraints (6.2)–(6.5) imply that any k ∈ [ 40

57 , 1] corresponds to the optimal solution (x, P )
to the original LP with P0 = (2 + 0.4k)−1, P1 = 1 − P0, x(0, 1) = P0, x(0, 2) = kP0, and
x(0, 3) = 0. Thus, we have proved that any policy φk , 40

57 ≤ k ≤ 1, is optimal.
Referred to as ‘shadow prices’, Lagrange multipliers measure the rate of change of the

optimum objective function value with respect to changes in the constraints [10, p. 37]. In
this example, since any small perturbation of the constraint G in (2.2) does not change the
optimum objective function value, ū1 equals 0 and is unique. Theorem 2.3 implies that
r ′1 = 2 > r ′2 = r ′3 = 1. It is easy to verify that any randomized trunk reservation policy ψ with
(M

ψ
1 ,M

ψ
2 ,M

ψ
3 ) = (1, s, 1), 0 ≤ s ≤ 1, is unfeasible. Therefore, although r ′1 > r ′3 = r ′2, there

exists no optimal randomized trunk reservation policy such thatM1 ≥ M3 ≥ M2. This implies
that there exists no stationary optimal policy φ defined by thresholds satisfying Mφ

i ≥ M
φ
j

when r ′i ≥ r ′j . We recall that, according to Theorem 2.3, for a feasible problem there exists a
stationary optimal policy φ defined by thresholds satisfying the inequalities Mφ

i ≥ M
φ
j when

r ′i > r ′j .
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Appendix A. Proof of Lemma 3.3

We first recall the notation used in the key theorem of [9]. A corollary of it is needed in the
proof of Lemma 3.3.

From [9], the definitions of the sets of policies 
1, 
2, and 
3 are as follows. By 
1 we
denote the set of randomized stationary policies that satisfy the inequalities

φ(n, j) ≥ φ(n, j + 1), n = 0, . . . , N − 1, j = 1, . . . , m− 1,

and the condition that, for each n = 0, . . . , N − 1, all but at most one of the probabilities
φ(n, j), j = 1, . . . , m, equal 0 or 1. By
2 we denote the set of randomized stationary policies
that satisfy

φ(n, 1) = 1, n = 0, . . . , N − 1.

By 
3 we denote the set of randomized stationary policies that satisfy the condition

φ(n, j) ≥ φ(n+ 1, j), n = 0, . . . , N − 2, j = 1, . . . , m,

and the condition that, for each j = 1, . . . , m, all but at most one of the probabilities φ(n, j),
n = 0, . . . , N − 1, equal 0 or 1.

Lemma A.1. (Theorem 3.2 of [9].) Given r1, r2, . . . , rm, r1 > r2 > · · · > rm, let φ be an
optimal randomized stationary policy (for problem (1.7)–(1.8) of [9]). Then φ ∈ 
1 ∩
2 ∩
3.

By letting the right-hand side of the constraint (1.8) of [9] equal 1 in Lemma A.1, we obtain
the following result for an unconstrained problem.

Corollary A.1. Let φ be a randomized stationary optimal policy for an unconstrained problem
with r1 > r2 > · · · > rm. Then φ ∈ 
1 ∩
2 ∩
3.
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Proof of Lemma 3.3. (i) If the rewards are all distinct, this lemma holds due to Corol-
lary A.1. Otherwise, consider the situation in which there are K different rewards satisfying
r∗1 > r∗2 > · · · > r∗K , K ∈ {1, . . . , m− 1}. Let Ik be the set of customer types whose rewards
are equal to r∗k , k = 1, . . . , K , and define �k = ∑

i∈Ik λi . Due to Feinberg [8, Section 4], all
customer types with equal rewards can be merged together without loss of optimality. Define
a randomized stationary policy by

ψ(n, k) :=
∑
i∈Ik

φ(n, i)
λi

�k
, k = 1, . . . , K, n = 1, . . . , N − 1,

for the smaller-sized problem with combined classes. According to (2.12) and (2.13),Pφn = P
ψ
n

for all n. Therefore, W(φ) = W(ψ) and ψ is an optimal randomized stationary policy for the
problem (2.10). Therefore, ψ is also optimal for the problem with K customer classes with
distinct rewards. In view of Corollary A.1, we have ψ ∈ 
1 ∩ 
2 ∩ 
3 in the problem with
K customer types. Since ψ ∈ 
1 in the model with K customer classes, (i) and (ii) hold.
Similarly, having ψ ∈ 
2 implies (iii) and having ψ ∈ 
3 implies (iv).

Appendix B. Lagrangian relaxation

In this appendix we present the results on Lagrangian optimization in convex and linear
programming used in this paper. Let us consider a mathematical programming problem P :

minimize f (x) subject to

gi(x) ≤ 0, i = 1, . . . , s,

hi(x) = 0, i = 1, . . . , p,

x ∈ R
n.

The problemP is a convex programming problem if (i)f andg1, . . . , gs are convex functions
and (ii) h1, . . . , hp are linear functions. If the functions f , gi , i = 1, . . . , s, and hi , i =
1, . . . , p, are all linear, then problem P becomes a linear programming problem.

The set

S = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . , s; hi(x) = 0, i = 1, . . . , p}

is called the feasible set and any x ∈ S is called a feasible point. We consider the vector-
valued functions g = (g1, . . . , gs)

� and h = (h1, . . . , hp)
�. For a vector-valued function

F(x) = (F1(x), . . . , FN(x))
� defined for some x ∈ R

n, where N = 1, 2, . . . , we denote by
∇F(x) the n × N gradient matrix with the elements ∂Fi(x)/∂xi , whenever all these partial
derivatives exist at the point x = (x1, . . . , xn). The following two statements are well known
[20, p. 201]: (i) if ∇F(x) exists at x and ∇F is continuous at x, then F is differentiable at x,
and (ii) if F is differentiable at x then it is continuous at x and ∇F(x) exists.

For two vectors, a and b, of equal dimensions, we denote their scalar product by ab. We
also write a ≥ b, a = b, and a ≤ b if the corresponding relations hold for all the corresponding
coordinates.

Define two row vectors, u = (u1, . . . , us) and v = (v1, . . . , vp). The function

L(x, u, v) = f (x)+ ug(x)+ vh(x)

is called the Lagrangian function.
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Definition B.1. (Karush–Kuhn–Tucker (KKT) point [20, p. 94].) A point (x̄, ū, v̄), where
x̄ ∈ R

n, ū ∈ R
s , and v̄ ∈ R

p, is called a KKT point for the mathematical programming problem
P if the vector functions f , g, and h are differentiable at x̄ = (x̄1, . . . , x̄n) and

∇xL(x̄, ū, v̄) := ∇f (x̄)+ ū∇g(x̄)+ v̄∇h(x̄) = 0, (B.1)

g(x̄) ≤ 0, (B.2)

h(x̄) = 0, (B.3)

ū ≥ 0, (B.4)

ūg(x̄) = 0. (B.5)

The vectors ū = (ū1, . . . , ūs) and v̄ = (v̄1, . . . , v̄p) are called Lagrange multipliers. Sometimes
we say that ūi and v̄i are the Lagrange multipliers with respect to the constraints gi(x) ≤ 0 and
hi(x) = 0, respectively. Note that the values of ūi and v̄i might not be unique.

Constraint qualification [20, p. 171] for the functions g and h plays an important role in
nonlinear programming. However, since we deal only with linear programming in this paper,
constraint qualification holds at any minimal point (local minima are global minima in linear
programming). Therefore, we will not introduce the definition of constraint qualification here.

Condition B.1. (First-order necessary optimality condition [20, p. 173].) Suppose that (i) x̄ is
a local minimal solution to problem P , (ii) the vector functions f , g, and h are differentiable
at x̄, and (iii) constraint qualification holds at x̄ for g and h. Then there exist points ū and v̄,
where ū ∈ R

s and v̄ ∈ R
p, such that (x̄, ū, v̄) is a KKT point.

Condition B.2. (First-order sufficient optimality condition [20, p. 162].) Suppose that P is a
convex programming problem. If a KKT point (x̄, ū, v̄) exists then x̄ is a global minimum.

If the objective is to maximize f (x), we observe that

max f (x) = − min{−f (x)}.
The corresponding Lagrangian function is

L(x, u, v) = −(−f (x)+ u�g(x)+ v�h(x)) = f (x)− u�g(x)− v�h(x).
Since, in this paper, the functions f , g, and h are linear, the corresponding negative functions
are also linear and, therefore, convex.

Lemma B.1. Let (x̄, ū, v̄) be a KKT point of a convex programming problem P . Consider
problem B:

minimize f (x)+ ūkg(x)k subject to

gi(x) ≤ 0, i = k + 1, . . . , s,

hi(x) = 0, i = 1, . . . , p,

x ∈ R
n,

where gk = (g1, . . . , gk)
�, ūk = (ū1, . . . , ūk), and k < s. Problems P and B then have

the same optimal values, and any optimal solution to problem P is an optimal solution to
problem B.

Proof. Consider a KKT point (x̄, ū, v̄) of problem P . Equations (B.1)–(B.5) imply that
(x̄, uk+1, . . . , us, v̄) is a KKT point for problem B. According to the first-order sufficient
optimality condition, x̄ is a global minimizer for both problems P and B. Equation (B.5)
shows that problems P and B have the same optimal value.
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When problem P is an LP, (x̄, ū, v̄) is a KKT point if and only if x̄ is an optimal solution to
P and (ū, v̄) is an optimal solution to the problem dual to P [20, pp. 115, 127]. Thus, to find ūk

we need to solve the LP dual to P . However, most contemporary LP solvers use interior-point
methods and calculate the primary and dual solutions simultaneously. Therefore, we do not
formulate the dual LP here.
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