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DIFFERENTIAL EQUATIONS AND THE REAL WORLD*

A.B. TAYLER

As an illustration of the Oxford Study Groups with Industry

project a number of applications of moving boundary problems for

parabolic equations are described, and a possible model for the

solidification of a binary alloy is discussed in detail. Further

models of physical processes, which lead to non-linear and

improper parabolic equations, are also presented in the hope of

stimulating theoretical interest.

1. Introduction

The Oxford Study Groups with Industry for ik years have been

attempting to interact with British industry in the solution of scientific

research problems which involve in some way or other the theory,

application, or computation of differential equations. I shall not here

describe the operation of the Study Groups, their impact on industry, nor

their spin-off in terms of graduate education in Applied Mathematics in

Oxford, see for example Tayler [27], [28], and Ockendon [76], but will

attempt to demonstrate the benefits which such interaction may provide for

the faculty member involved. Our experience is that good mathematics, and

hence good research topics, often arise from real problems; and that by
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422 A.B. Tayler

investigating current real problems an early start may be obtained on a

topic capable of interesting mathematical development.

The difficulty in this approach lies in the variety of applications

which real problems present, and the inevitable inadequacy of the applied

mathematician's background knowledge of science. He or she must therefore

be prepared to listen with humility to others with much less mathematical

experience, to read in strange journals with irritating conventions, and to

risk criticism in proposing simple mathematical models. A successful

mathematical model usually evolves only after significant criticism of

earlier models, and it is important that any model is given as much

exposure as possible before extensive computation is applied or publication

sought. It is therefore a tiring and time-consuming task to adopt this

approach to a wide variety of real problems but the relevance of the

problem is a powerful stimulus and the diversity a valuable education.

These compensations might not however have been sufficient for the success

of the Study Groups if it were not for the emergence of mathematical themes

from diverse problems; themes which could be developed into novel

mathematical ideas and methods, and provide conjectures for pure

mathematicians to tackle.

To demonstrate a mathematical theme which has emerged from the Study

Group Project I shall necessarily give a personal case-history which is

inextricably mixed with contributions from other members of the Group. I

have chosen to describe the area of moving boundary problems for parabolic

equations; a topic which in the last ten years has acquired a substantial

literature, for example Rubinstein [24], Ockendon and Hodgkins [78],

Wilson, Solomon, and Boggs [30], and Elliott and Ockendon [7]. First in

Section 2 a number of applications relevant to the theme will be briefly

described and some results given, but without details. These applications

are varied but the mathematical background is fairly well established. In

Section 3 a particular problem, that of the solidification of an alloy,

will be discussed for which the model is still controversial, but the

problem is both relevant and important. Finally in Section h some

mathematical extensions of the theme will be sketched, extensions which

have not yet been fully justified by their application and which leave open

a number of questions for rigorous analysis.
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2. Phase change problems

For the classical Stefan problem the temperature u , normalised so

that M = 0 is the phase change temperature, is related to the enthalpy

h(u) by the conservation law

(1) f = 3V2« ,

where 3 is a constant diffusion coefficient (greater than 0 ). The

non-dimensional enthalpy is defined by

(2) h = u , u < 0 ; h = u + X , u > 0 ,

where X is the non-dimensional constant latent heat (greater than 0 ).

Thus if u = 0 on a surface F(x, y, z, t) = 0 , there will be a

discontinuity in Vu across this surface which may be obtained from a

physical heat balance. Alternatively a weak solution u may be defined tiy

an appropriate integral relationship involving a test function 4* > which

reduces to (l) when u is a classical solution, that is differentiable at

least twice in space and once in time, and gives the appropriate jump

conditious on F = 0 in the form

(3) A |f = Wu]Ls . VF ,

where suffices S and L indicate solid and liquid phases. The simplest

problems occur with one space variable x and phase-change boundary

x = s{t) , so that (3) reduces to

X = 8(t) , U = 0 , -XS = [6 f | .

Oleinik [79] has shown that this weak solution exists, is unique, and the

finite difference scheme

(5) h , = h +
n+1 n

u = u[h ) ,

converges to it. This result forms the basis of the enthalpy method which

solves (l) over a fixed domain by finite difference methods based on (5),

necessarily obtaining the required weak solution with a phase change

boundary satisfying (h). The result remains true in two of three space

dimensions with an appropriate generalisation of (5). A number of

https://doi.org/10.1017/S0004972700005888 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005888


424 A.B. Tayler

applications require extensions of the classical problem.

(a) Continuous casting

In this process solidified metal is drawn with constant speed from a

large molten reservoir which may be assumed to tie at the solidification

temperature u = 0 because of mixing. If a thin sheet is formed by this

process as in Figure 1, then in a steady state (l) reduces to

(6)
du

y < s(z) < 1 ,

with

(T) u = 0 , Ae'(s) = Abr - e' -^\ on y = 6(3) ,

where the convection-term 3/3s has replaced the time derivative.

du
0

\

solid

= 0

^liquid

\
y = as

FIGURE la, b. Continuous casting

For a thin sheet we may neglect z derivatives in comparison with y

derivatives to obtain a one dimensional Stefan problem which can be solved

by the enthalpy method on the fixed domain 0 < j/ < 1 , z > 0 . The

approximation will not however be valid near the corners z = 0 ,

y = 0, 2 , where y and z length scales are not necessarily of different

orders of magnitude. A simple minded local expansion about y - z = 0

with boundary condition "dufdy + \iu = f on y = 0 , gives u ~ fAy-az)

with s ~ as , where a is defined by

« - w+1 = ° •
B * o"
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This has no roots for X < 23/Q and is not an acceptable asymptotic form;

a possible form has been suggested by Blackwell and Ockendon [3] in which

the phase change boundary does not pass through y = z = 0 .

(b) The shape of meltpools

In laser welding, the laser beam and shield, assumed to be of circular

cross-section, create a circular hot spot through a metal sheet which may

be simply modelled as a region of constant temperature u > 0 (or

constant heat flux on its boundary 3w/3r = -q < 0 ). By conduction a

meltpool is formed round the laser beam and if the beam is moved the liquid

metal will flow and convection effects must be included. A simple

situation is the steady state formed when the metal is moving with constant

speed relative to the laser as in Figure 2a. The heat conduction equation

now becomes

(8) (V.V)w =

where V = (0, 0, l) in the solid, but has to be determined from flow

equations in the liquid metal, with boundary conditions on the hot boundary

r = 1 and the phase change boundary r - /(6) . The Stefan condition has

the form (7) but in this case u t 0 in the liquid.

r = f(6)

0(1/0)

liquid y
A solid B

FIGURE 2a, b. Meltpools in laser welding (3 ~ 1 and 3 « 1)

If conduction dominates convection (3 » 1) then the meltpool is

roughly circular and has a large radius R given by

(23) exp
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where the temperature far from the laser is -1 and y

constant (see [23]).

is Euler's

When convection dominates conduction (g « l) then the meltpool is

long and thin as in Figure 2b and a variety of boundary layers occur

adjacent to the phase change boundary. A total heat balance provides a

relation between the length of the pool and the total heat flux out of the

laser, and, if finite, implies that the pool length is 0(1/3) . When 6

is finite no results have been obtained, and Stefan problems with

convection in more than one space dimension pose difficult computational

problems.

(c) Resistance spot welding

In this process an a.c. current is passed between two electrodes on

either side of the two plates to be welded as in Figure 3a and the shape of

the meltpool, or nugget, is of interest. This meltpool is in the thickness

of the metal sheets, unlike the previous problem where conditions were

assumed to be uniform throughout the thickness, and for simplicity we

consider only a one dimensional problem. The Joule heating creates a

source density of heat so that

(9) —
3x2

where q is assumed to be constant.

2.
A

liquid u > 0

solid u < 0

u = uQ < 0

FIGURE 3a, b. Resistance spot welding
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The weak solution and enthalpy method has been extended to this problem by

Atthey [2]» and the solution obtained gives a region of constant

temperature w = 0 , indicated in Figure 3b, in which the metal is neither

solid nor liquid but is a 'mush1. Physical arguments may be used to

confirm the existence of this mushy region and alternative models in which

the solid is allowed to be superheated, that is can take on values u > 0

without change of phase, lead to phase change boundaries which are

unstable, as shown by Ockendon [J7]-

The non existence of a Stefan phase change boundary is a result which

is perhaps a little unexpected.

(d) Vapourisation of a liquid in contact with a heated solid block

A layer of liquid is in contact with a heated block so that a region

of vapour forms between the two. The liquid is pressurised to inhibit

bubbles forming and we assume that the vapour layer is a one dimensional

strip 0 < x < e(t) as in Figure ha, with a gas law p(l+w) is constant,

where u = 0 is the phase change temperature and u = -1 is absolute

zero.

u given

FIGURE 4a, b. Creation of vapour phase

d(t)
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Conservation of mass and energy give, on eliminating the density p ,

x X dx2

where u is the gas velocity and e is a non-dimensional parameter

possibly small. Small changes in the pressure are governed by a momentum

equation but are of little interest. The vapour cannot be at rest because

of the large change in densities between the two phases and from (10),

The conditions at the phase change boundary are

x = s(t) , u = 0 , [p(y-8)]» = 0 ,

together with a complicated expression for [3(3w/3a:) ]Q • However assuming

that p_ « pr these conditions reduce to

(11) x =
8xJ _ *•

In the liquid, 8(t) < x < d(t) , and from continuity v = 8 = d , so that

and the various domains are shown in Figure hh. A numerical attack on the

problem using averaged forms of the equations (with respect to x ) has

been made (A. Booth, private communication), but difficulties arose for

small values of t . A small time solution can however be obtained and

3/2 5/2
gives that 8 ~ t , v ~ t , with a change in heat flux across the

p /*̂  p / "3
vapour of 0(t) , provided t « e (or by scaling t with e an

expansion for small e is obtained) .

This provides the appropriate singularity for the creation of the new

phase. However there is considerable doubt about the stability of the

interface and no further computation has been performed.
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(e) Condensation of a binary mixture on a cooled surface

The change of phase of a mixture is determined by its equilibrium or

eutectic diagram as shown in Figure 5a, and the principal feature is that

vapour of concentration c_ condenses at temperature u into liquid of

concentration aT < cn so that for mass conservation of the secondary
L u

material the vapour is enriched, thus lowering its phase change

temperature. For small concentrations a the relationships c^(u ) and

or(u } may be taken as linear with u = 0 for o = a = 0 . For each
L • nr tn u L

phase there will be a mass balance for a which allows for molecular

diffusion, an energy equation for the temperature u , and these equations

are linked by conditions at the phase change boundary.

vapour

liquid

cooled block

FIGURE 5a, b. Condensation of a binary vapour mixture

A simple example concerns a saturated vapour, concentration a^ ,

temperature u^ , such that c
r^

uo^l = am > adjacent to a plane surface

which is cooled for t > 0 by imposing a temperature uAt) < u . The

vapour condenses to form a liquid film of thickness s(t) as in Figure 5b.

For a thin film we neglect diffusion in the liquid so that c = c_. (M ) ,

and assume that the heat flux through it is constant, equal to

- B ( M -M_)/S . The displacement of the vapour by the liquid film is small

so that in the vapour
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3* 3*2 ' 3* • 3 3x2 '

where D is a molecular diffusion coefficient, and these are to be

solved on (0, °°) in this approximation. Given c (in terms of u ) on

x = 0 , and a = am for t = 0 and x -»• °° , (13) may be solved to give

(3c/3x) in terms of u . The heat conduction equation may also be
U U Tfl

solved to give (3w/3x) . in terms of u . These expressions are then

substituted in the jump conditions on the phase change boundary, namely

so that two relations may be obtained between s, 8 and w . A

complicated integro-differential equation for s results, which for small

3/2 2
t implies that s ~ t and u - «„ ~ t

m 0

An extension of the enthalpy method to deal with weak solutions of

pairs of diffusion equations defined by (13) and (lU) has been developed

and used in the problem of the solidification of an alloy, which we discuss

in more detail in the next section.

3. Solidification of binary alloy

Consider a molten binary mixture being cooled in a one dimensional

mould, 0 < x < 2 , by heat flow through the ends of the mould. The

concentration a of secondary material will have an equilibrium diagram of

the same general form as that of the saturated vapour in problem 2 (e)

above, so that the problem is to solve equations (13) with jump conditions

(lU) at the phase change boundary. For the alloy we can reasonably assume

that the liquid and solid densities are the same so that there is no flow

and do not have to restrict the problem to a thin solidified layer. A

typical concentration profile, as shown in Figure 6a, describes the

solution, see for example Flynn [S], and demonstrates the discontinuous

enrichment at the phase change boundary and the diffusion into the liquid.

The corresponding temperature profile will be monotonic increasing in

0 < x < 1 with a slope discontinuity at a: = s , so that the concentration

profile has the same general form as a function of u as of x . This
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profile can be superimposed on the equilibrium diagram and is shown as a

dashed line in Figure 6b, giving a description of the material state at

time t . There is a clearly defined phase change boundary at x = s(£) ,

M = u (t) , provided this dashed line does not intersect the region between

the liquidus and solidus boundaries defined by c + kTu = 0 and
u

c + k u = 0 , k < k . A situation in which the state lies between the
o 8 Lt

liquidus and solidus boundaries is said to be constitutionally supercooled.

liquidus

FIGURE 6a, b. Solidification of a binary alloy

One common practical situation is that the non-dimensional diffusion

coefficient D is much less than 3 , and scaling so that & = 1 ,

D « 1 . An asymptotic solution of (13) and (lU) is then c = a
'0 '

x < 8{t) , and for x > s(t) ,

(15) a = o
-s(x-s)/D

0(D) ,

where we have assumed that the diffusion coefficient in the solid is zero.

This implies that 3e/9x ~ s/D , and, from (lU), As ~ du/dx , so that

\de/du\ (at constant t ) will be large, and constitutional supercooling

cannot be avoided for finite X .

The occurrence of constitutional supercooling corresponds to the
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existence of the Mullins-Sekerka instability in the phase change boundary,

see Ockendon [17], and it seems likely that, as in example 2 (c) but for a

slightly different reason, the phase change boundary is replaced by a

region whose thickness may not be small. This region is analogous to the

mushy region of problem 2 (c) but the temperature in it is not constant.

Outside this region the material state must either be liquid or solid, and

if D « 1 only small changes in concentration can occur across it so that

there have to be 0(1) changes in temperature, as shown by the dotted line

in Figure 6b. This implies that the thickness of the region is 0(l) and

a macroscopic model for it is needed.

Before attempting to construct such a model it is interesting to

examine a possible extension of the enthalpy method to equations (13) and

jump conditions (lU) proposed by Crowley and Ockendon [6]. By defining

chemical activity a , such that c = k a in the liquid, and o = k a in
la 8

the solid, then both u and a are continuous across the phase change

boundary u + a = 0 , and the following numerical procedure is proposed:

= *„
32u

2
. 3 * J

,

j

n

<2 =

w
a

n+1

[h

= a
n

, e )

+ StD 32a
2

[3x

(16)

and D has the value kD or k D depending on the phase. However there
a L

is no convergence result available for this procedure, nor indeed can the

weak solution be defined; also difficulties arise because the trans-

formation (h, a) •*• (w, a) is not defined in the region h + a/k > 0 and

h + a/kT < X . Two ways of overcoming this latter difficulty are

suggested, which are essentially equivalent although based on different

arguments. The more physical argument considers a volume fraction of

the material mixture to be solid and assumes that o and h are linear in

/ so that

(IT)

and

(18)

= cgf + cL(l-f) = -M

h = u + X(l-/) ,
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Eliminating / an equation for u in terms of a and h is obtained

which has an appropriate real root in the region where the transformation

(h, a) -»• (u, a) is not defined. In addition u + a = 0 in this region so

that a is also determined. The method has been successfully applied when

D ~ 0(1) , giving good agreement with similarity solutions which exhibit no

mushy region. For smaller values of D the modification (17) and (18) has

to be used in a finite region of x which is then interpreted as a mushy

region. In some averaged sense, therefore, the equations (13), (17) and

(18) are being used as a model in this region.

The experimental evidence suggests that dendrites grow on the

advancing solid phase, so that a more physical description of this region

between the solidus and liquidus would take account of this three

dimensional structure. In practice the dendrites have irregular cross-

section and may grow branches, but a simple model considers the dendrites

as smooth slowly tapering cylinders for most of their length as in Figure

7a, recognising that there will inevitably be end corrections necessary at

the solidus x = s^t) and liquidus x = s g U ) (the base and tip

respectively). (This totally neglects the initial stages of growth of a

dendrite and a challenging problem is to attempt a demonstration of the

growth of an instability into a dendrite.)

solid / / / / / / / / / / %
/C [liquid

= 1

= 1

x = s2(t)

FIGURE 7a, b. Model for region of dendritic growth
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Then a unit cross-section of the material may be considered as a regular

array of growing cells as in Figure 7b. The number of cells per unit area

is not known but is unimportant for our purpose, however we assert that the

cell size is O\pr J , the lateral diffusion scale. An average

temperature M(X, t) and fraction solid f(x, t) may be defined, together

with some appropriate growth variable 5 in the (y, z) plane so that

0 < 5 < 1 , and 5 = / is the boundary of each dendrite cross-section. If

we also assume that diffusion in the x-direction (normal to the cross-

section) is unimportant and that there is no diffusion in the solid, a

simple model for the diffusion of concentration 2(5, t) in the cross-

section is

(19) ||=^-|,/<5<1,

where on 5 = / >

(20) 2 = -kjU , g| = [kL-

Also on 5 = 1 > 35/35 = 0 » and * *s measured from tQ where

x = 8r,{t,^\ and a - aT[tn) at t - tn • Since however D « 1 ,

c = c_ + 0(D) and, if u were given, (19) and (20) define a single phase
1/ 0

Stefan problem with variable 'latent heat1, capable of solution by

numerical methods. Since u is not known this provides a functional

dependence of f on u which we denote by

(21) / = Ft{u) .

Note that it is the time variation of u which is significant, x only

appears as a parameter in the problem. In solving this problem the

dendrite boundary may still be unstable and this will depend on the rate at

which u decreases in time. If this is too fast then subsidiary dendrites

or branches will grow from the main dendrites, and difficulties are likely

to occur in the computation. It is however possible for the dendrites to

be stable now that the diffusion length scale is of the same order as the

length scale of the moving front.

Thus in this model the concentration diffusion equation (13) is

abandoned together with (17) and replaced by (21), retaining (18) and the
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heat conduction equation in enthalpy form. This may be simplif ied to

(22) | | . e ^ | = x ^ F t ( M ) , S l < x < a 2 ,

9x
= 0 , 0 < x < s , s < x < 1 ,

together with conditions that u and 3u/8x are continuous on x = S-

and s . Moreover at x = e , u = -a Ik + 0(D) and at x = s ,

u = -a^/kj. + 0(D) , together with the usual boundary conditions on x = 0

and 1 and t = 0 .

This model may be- formulated as a version of the enthalpy method but

numerical results are not yet available. The average concentration will be

almost constant but the concentration distribution in the solidified cross-

section is to be obtained in each cell from 3 = -k u(x, t) , evaluated on
8

5 = f(x, t) by eliminating t . This is necessarily incomplete data since

some assumption about the spacing of the dendrites and their cross-

sectional shape is needed to complete the picture and make comparison with

experimental data possible. For values of D which are not very small,

but small enough for an 0(1) dendritic region to form, the model (19),

(20), (22) should still be relevant but there will be a complicated

interaction between (19) and (22) since the values of u at x = 8 , and

8- will depend on 8 and 8^ •

A similar model may be proposed for the steady continuous casting of

an alloy, a process described in problem 2 (a). The significant difference

is that the experimental evidence indicates that three dimensional grains

grow rather than dendrites, and solidification occurs. An argument for

this is that the turbulent liquid motion prevents dendrites forming and

nucleation sites occur on which solid particles grow. Equations (19) and

(20) may still be used as a model if now %, is a three dimensional growth

variable for a moving grain on the length scale U . This gives an

identical problem to (21) above if z is appropriately identified with

t .
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4. Other generalisations of the diffusion equation

In Section 2 a number of applications of the more or less established

theory of parabolic equations were described, and in Section 3 a particular

problem, for which the mathematical model is still not agreed, was

discussed. Such a model in final form, will create a need for further pure

theory about pairs of linked parabolic equations and possibly provide the

basis for useful conjectures. It is interesting to examine some other

models for real problems which have stimulated extensions to the theory of

parabolic equations and further conjectures.

(a) Non-linear diffusion coefficients

The equation

U 3x T 3x

is a useful model for describing a number of physical situations, for

example:

(1) the profile of a thin highly viscous oil film spreading

under gravity on a horizontal surface (Buckmaster [5]),

(ii) the infiltration of moisture into a dry soil (Philip [27]),

(iii) the percolation of a gas through a porous medium (Muskat

[15]),

and many others including the Von Mises transformation for flow in a

boundary layer on a semi-infinite flat plate. In case (i), n = 3 , case

(ii), n is empirical and both 5 and 6 have been suggested, case (iii) for

an isothermal gas n = 1 and for an isentropic gas n = y , the ratio of

the specific heats.

For equation (23) Oleinik et al [20] have shown that the classical

maximum/minimum theorem for the case n = 0 may be replaced by a

comparison theorem. This states that if u and «„ are both solutions

of (23) and 0 < u < Mp f o r a11 x a t * = 0 , then 0 < u < w for

all t > 0 for which they both exist. Kalashnikov [JO] has extended this

to weak solutions, which are unique if defined appropriately, and there is

particular interest in solutions with compact support, that is bounded by a

free boundary beyond which u = 0 . To obtain the conditions holding on
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such a free boundary x = s{t) needs careful analysis, tut a simple

demonstration is to integrate (23) over some suitable domain D and

convert it to the line integral

f un !* dt + f udx = 0 .
Jan ** Jan'3D J 3D

With this as a starting point for non-classical solutions, possible

discontinuities are given by

Thus, in some appropriate limiting sense, the required free boundary,

adjacent to a region u = 0 , satisfies

{2k) X = 8 , «— (u ) = -M8 , U - 0 .

This clearly demonstrates the 'infinite speed1 of the free boundary for the

linear diffusion equation when n = 0 , but allows a finite 'wave speed'

for all other values of n , with -finite profile slope in the case n = 1 .

Two further interesting properties of (23) may be demonstrated by the

exact solution due to Knerr [73],

= 0 , x > 0 , for 0 < t < tQ .

This has a stationary free boundary x - 0 for a finite time t , which

depends on the initial data at t = 0 , and blows up at t = t . Other

solutions have been constructed by similarity methods by Lacey et at [74]

which have a free boundary which waits for a finite time t and then

moves off satisfying (2U) above. In fact the wealth of similarity

solutions is remarkable and they may be used with the comparison theorem to

make statements and conjectures about the general initial value problem.

One such result due to Aronson et al [7] is that a free boundary at x = 0

at time t = 0 will wait if locally the profile slope is less than or

equal to o{x ) but will have a finite waiting time. Kamin [7 7] proves
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that for large time a class of initial value problems will approach

similarity solutions. A perturbation approach for n small by Kath and

Cohen [72] examines the solution of (23) near t = t and relates it to

o
solutions of 3u/3t = (3y/3x) which exhibit shocks, with the time for

shock formation related to the waiting time.

(b) Diffusion coefficients which change sign

Much of existing theory of parabolic equations is for strictly

positive diffusion coefficients even in the linear case, but applications

arise in which the coefficient has a zero on a prescribed curve in the

x, t plane (called for convenience a transition curve) or on an unknown

curve in the non-linear case. Methods of solution appear to depend on the

type of transition curve, which may therefore play a role in any develop-

ment of existence and uniqueness theorems. The simplest example arises

from the heat transfer problem with small conductivity in which a semi-

infinite flat plate in a prescribed flow is. instantaneously heated at time

t = 0 , where it is assumed that the flow is unchanged by the heat

transfer. The temperature 0(x, t) then satisfies

,ocv 30 36 30 320
aV ox ay r. d.

P o
where (w, v) is the prescribed flow and 3 0/3x has been neglected in

2 2
comparison with a Q/ay

For an inviscid flow u = 1 , v = 0 and the problem is self similar

in variables z - v/Z\/i , x = t/x , reducing to

(26) — 2 + 2z af = Ml- T ) -§7 >

with boundary conditions 3 = 0 , 8 = 1 , z -*<*>, 0 - ^ 0 ; x = 0 ,

9 = 0 and presumably x -*• °° , 0 ~ erfc z . That is we expect a

transition from a steady leading edge layer better described in a variable

n = !//2Vx" = zVr to an unsteady layer for an infinite flat plate. This

problem has an exact solution with different functional forms in 0 < x < 1

and 1 < x < °° , although on x = 1 , 30/3x is not continuous. The

solution is obtained by solving forwards in x from x = 0 and backwards
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in x from 1 -»• °° , thus requiring boundary data to be given at both

x = 0 and x •* » . The two forms obtained fit together because the

transition line is the characteristic T = 1 . It is interesting to note

that Stewartson [25] used the same equation as a simple linearised model

for the transition from the leading edge Blasius solution to the far down

stream Rayleigh solution in the problem of an impulsively moved semi-

infinite flat plate in a viscous fluid. The fully non-linear problem when

the transition line is not a characteristic was discussed 22 years later by

him in [26].

A more complicated example is discussed by Riley [22] when the flow is

that of a viscous boundary layer so that u and V are defined in terms

of the Blasius function /(n) . In this case the transition line is

defined by if(n) = 1 and is sketched in Figure 8a. A simpler case

discussed by Tayler and Nicholas [29] is that for slow flow with a constant

pressure gradient when u = y , v = 0 and the appropriate similarity

variable is T = t3'2/x with leading edge variable t, = y/x = 2ZT

In this case (25) reduces to

(27) • 2. H -

with a transition line 3T = 1 , also shown in Figure 8a.

8 ~ erfc z

Forward diffusion

6 = 0

FIGURE 8a, b. Transition curves for improper diffusion equations
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A well posed problem is presumably 0 given around the quadrant as

before (omitting 0 < z < 1/T as T -»• °° ), and with such data sensible

numerical results, reviewed by Ingham [9], have been obtained for both

problems. However in both these cases the transition line meets each

characteristic at most once, and a third type of problem occurs when the

transition line has a turning point. An example discussed by Brown and

Ri ley [4] is the problem of flow due to convection past a suddenly heated

semi-infinite vertical flat place. The transition curve now has a minimum

at (s_, T J as in Figure 8b, and all numerical methods applied so far

give rise to serious errors in the neighbourhood of this point. One may

speculate that the reason for this is the existence of an essential

singularity at [z , x ) which is not amenable to finite difference

techniques.

5. Closing remarks

Other themes such as homogenisation, non-Cauchy data for hyperbolic

systems, and thin layer procedures, have emerged from the Study Group

problems but the occurrence of parabolic equations in some form has

dominated other types. At the last count in 1980, out of 6l problems with

which we made some useful progress, 3^ were concerned with parabolic, 13

with elliptic, 10 with hyperbolic, and 1* with ordinary differential

equations in some loose classification. Moreover 28 involved free or

moving boundaries, although not all of these were of parabolic type. This

dominance is not reflected in the emphasis given to parabolic equations in

university courses and may account for the fact that so many parabolic

problems were brought to us for help.

A more general implication for university education in applied

mathematics is the desirability of giving students experience of modelling

non-standard problems, since this is what they will be expected to do if

they wish to apply their skills in industry. The importance of using a

simple model as an aid to thinking about a problem, even if the model is

inadequate in several respects, must be emphasised and the discussion of

such models in small groups can be very rewarding.

Finally a very personal view is that applied mathematicians should not

be afraid to distinguish themselves from pure mathematicians, and from
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engineers and physicists. Theorem and proof are not the only means to

progress in mathematics; and breadth and diversity of mathematical

application may give invaluable analogy. This view if accepted has serious

implications for education in Applied Mathematics which fortunately it

would be inappropriate to develop here.
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