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INTRODUCTION

The use of quantitative methods in all aspects of epidemiology is now common-
place. The study of schistosomiasis has certainly benefited from this trend. The
spectrum of uses of quantitative techniques includes nearly all aspects of the study
of this disease. Indeed, the use of these measures has produced a desire to describe
the transmission of the disease by means of purely mathematical relationships.
Even this area is of considerable size and diversity as any reader of a recent article
by J. E. Cohen (1977) will find. As these tools develop, there need to be developed
statistical methods to evaluate numerical parameters required by a mathematical
description. Statistical methodology to evaluate parameters need not benefit the
modellers only, as results will be of interest to epidemiologists and biologists as
well.

The aim of this article is to describe a statistical technique applicable to the
estimation of the survival of snails transmitting schistosomiasis. The basic model is
a modification of a technique developed for use in studying survival times of
cancer patients. While the methodology is only slightly altered from the cancer
application, the prime purpose herein is to suggest its relevance to helminthologists,
and to describe the way it is used and methods of testing the assumptions that are
needed. The techniques are taken from different sections of the statistical literature,
and one purpose is to draw these together.

The snail is a necessary intermediate vector in the transmission of schisto-
somiasis. Infective agents in the local water (called miracidia) can penetrate snails,
and only a small proportion of the miracidia develop into mother sporocysts.
These contribute to the transmission of infection by releasing cercariae, another
infective aquatic form, which are capable of infecting human hosts. Snails which
are infected but not releasing cercaria are termed 'prepatent', and are said to be in
a 'latent stage' or 'latency'. Once cercarial release begins it continues until the
death of the snail, during which time it is described as 'patent' or 'patently
infected'. A thorough description of this and other aspects of transmission are
found in the book by Jordan & Webbe (1969).

The model described below monitors the time to death of prepatent and patent
snails, as well as the duration of latency following penetration. Estimates of the
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parameter relating to the death rate of snails have been obtained by Sturrock &
Webbe (1971). Their approach followed a catalytic model, as developed in a mono-
graph by Muench (1959). On the assumption that the population dynamics of
a colony of snails were stable and that age could be reliably estimated from the
size of snails, catalytic curves were fitted by the method of moments and estimates
of the death-rate obtained. This approach was modified by J. E. Cohen (1973),
who made allowance for a possibly different rate for infected snails. This altered
model was subsequently fitted by Sturrock, Cohen & Webbe (1975).

Leaving topics related to schistosomiasis aside momentarily, let us turn our
attention to the measurement of survival in general. Study of this type of data
probably grew first from industrial situations in which interest centred on the
reliability of components and the time to failure of equipment was studied.
Survival time data now are frequently encountered in clinical trials, particularly
those measuring the effect of chemotherapy in cancer studies. The method de-
scribed below modifies a model developed for cancer studies and, in order to study
the validity of assumptions, draws on graphical techniques developed for industrial
data.

In the next section the design of an experiment to determine the parameters of
interest, with the keeping of records, is described. Section 3 contains the basic
model and the estimation procedure. A hypothetical example, introduced in
Section 2, is analysed. Assumptions made in formulating the model in Section 3
are tested by methods in Section 4. In the fifth section two embellishments on the
original model are described with the appropriate estimation procedures and
Section 6 is a summary.

2. EXPERIMENTAL PROCEDURE

The technique differs from the method of catalytic models in being an in vitro
approach. A series of test tubes or microhabitats are arranged and snails are singly
introduced to each. In the simplest case one would seek to have snails of one age
and that being nearest the time they are first susceptible to miracidial penetration.
(Below, an allowance can be made in the model for differing ages.)

For this model specifically, all snails should be exposed to sufficient miracidia
to ensure each is infected. While we are primarily interested in the behaviour of
infected snails, it is useful to have a parallel experiment on uninfected snails as
a 'control'. In these circumstances randomization of all snails into the two groups
is recommended. In the remainder of this report no mention will be made of
estimation of parameters for the control population. The reader is referred to
chapter 3 of the book by Gross & Clark (1975) for details.

Snails are uniquely numbered and on each day note is taken whether or not
death has occurred and whether or not the latent period is over. Snails lost for
unnatural reasons, such as dropped test tubes or unrelated infections, should be
noted on the day lost. Note that allowance is made for snails not yet expired at the
termination of the experiment. In Table 1 are presented some hypothetical data
which will serve as an example for the technique of the next section.
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Table 1. Results of a hypothetical experiment

Snail
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Day of
death or

lost

45
41
67
29
3
19
1
22
5
61
39
49
11
27
54
33
35
36
55
13
17
57
26
74
27
36
35
33
8
15
42
5
10
12
16

Day of
patency

37
36
35
—
—
—
—.
—
—
31
34
36
—
—.
36
31
—
36
43
—
—
39
—
34
—
—
30
—.
—
—.
35
—
—
—
,

Died (= 1)
or not

dead (= 0)

1
1
1
1
0*
Of
1
1
1
1
1
1
1
1
1
1
1
1
1

ot
1
1

ot
1
1
1
1
1
0*
1
1
1
1
1
0*

a

1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
1
1
1
1
1
0
1
1
1
1
1
0

Model

b

1
1
1
0
0
0
0
0
0
1
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
0
1
0
0
0
1
0
0
0
0

variables
A

U
45
41
67
29
3
19
1
22
5
61
39
49
11
27
54
33
35
36
55
13
17
57
26
74
27
36
35
33
8
15
42
5
10
12
16

V
37
36
35
29
3
19
1
22
5
31
34
36
11
27
36
31
35
36
43
13
17
39
26
34
27
36
30
33
8
15
35
5
10
12
16

* Test tubes dropped.
f Snails infected from other organism.

3. PRIMARY MODEL

This model is based largely on one described by Lagakos (1976) in a cancer
setting. Of interest were the time to death and the time to progression of the
tumour. The current model studies the time to death of snails and the time until
patency occurs.

For any snail, one of four possible events will be observed. These are:
Ex Experiment terminated before snail death, or loss of snail for unnatural

reason at time wit before patency.
E2 Experiment terminated before snail death, or loss of snail for unnatural

reason at time W{, after patency at time pt.
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E3 Snail death at t{, after patency at time pt.

2?4 Snail death at tit before patency.

Three random variables, Xlt X2 and X3, are introduced by Lagakos to model
these events. From the start a snail is exposed to the competing risks of death
(in a latent stage) or commencement of patency. The first random variable
(or process), Xlt describes the time to death in latent snails and the second
process, X2, the time to patency. The third variable, X3, models the time to death
following patency. In the Lagakos formulation all three random variables were
exponentially distributed with parameters Ax, A2 and A3 respectively.

For present purposes it is convenient to retain the assumption that the time to
death of snails is exponentially distributed. Thus X1 and X3 are assumed to be
exponentially distributed with parameters Ax and A3 respectively. However, it
does not seem justified to assume the duration of latency (X2) is exponentially
distributed. An alternative worthy of consideration might be the three parameter
gamma density (see, for example, Harter & Moore, 1965). For present purposes
a normal approximation is chosen to avoid considerable calculation. This dis-
tribution is a special case of the three-parameter gamma as one parameter
(frequently referred to as the 'order') tends to infinity. Unfortunately, whereas
the three parameter gamma density applies to X2 > 0, by using the normal
approximation, for some values of fi and <r2, values of X2 < 0 have a large
probability. It is thought that in this application /i > CT2 and the tail of the dis-
tribution for which Pr(.X2 < 0) is negligible. Thus for the second process (of
duration of latency) the random variable X2 is normally distributed with mean /i
and variance cr2. (Wishing to keep present notation as similar as feasible to that
of Lagakos, there will be no references to A2 and A3 will retain its earlier meaning.
In Section 4 the four symbols dx, 63, y1 and y3 are introduced with d% and y3

omitted for the same reason.)
This is just one possible generalization of the Lagakos model. Much more

extensive generalizations are being studied by S. M. Gore in Aberdeen. These
involve the use of Weibull densities for all three processes and, in particular, the
introduction of time-dependence between stages. These models are for use in more
complicated clinical trial settings while the simplified extensions contained herein
are primarily aimed at studying snail life-span and duration of patency.

Observations on the snails are summarized by a 4-tuple (C ,̂ ait V^ 6f) as follows.
The variables at and 6f are indicators. Snails not dead at the time of analysis or
lost for unnatural reasons yield ' censored' observations and for these snails ai = 0.
Snails that die in the experiment have associated a{ = 1. Snails for whom the time
of patency was observed have bi = 1, and for those with patency not observed
(because time of patency is greater than time to death or loss) are censored and
b{ = 0. The time of death or censoring is represented by U{, and that of patency,
or death (or loss) if earlier is represented by 1̂ . For example, Table 1 also displays
the appropriate values of (U^ at, Vt, b{).

Estimation of the parameters Ax and A3 follows Lagakos' method and is reviewed
here for completeness. Estimation of the parameters/* and cr2 involves the solution
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of maximum-likelihood equations for censored normal observations. The equations
have been obtained by A. C. Cohen (1963) and notation here will resemble his as
closely as possible.

Let
ii = (Vt-fi)/<r,

and F(£t) = P cj>{t)dt.
J - G O

Ignoring constants, the logarithm of probability densities of the four events are:

as Ui = Vi \iE1 occurs (3.1)

= -A1Vi-A3(Ui-%) -log or-igf (3.2)

=-A1Vi-A3(Ui-Vi) + logA3-loga-U2i (3-3)

log P (E,) = -A1Ui + log A, + log {1 - F( &)}
= -A1T$ + logA1 + log{l-.F(£i)} as Ui = Vi if .E4 occurs. (3.4)

Writing U. = EQ and V. = 2^, and n as the number of observations (snails),
and using the indicators ai and bt> then the log likelihood ignoring constants is:

L = -A1V.-A3(U.-V.) + log Aj2at(l -bt) + log A^afi,
-S[(6,/2)(logor2+^)-(l-6i)log{l-^(gi)}]. (3.5)

(All summations without indices throughout this article are over the sample, that
n

is 2 stands for 2 •)

Maximum-likelihood equations are obtained as usual using

8L Zat(l-bt)
dAx~ ~~A1

 K ' ( 3 - 6 )

CA3 A3

^ ^ (3.8)

g [ { i ( g f ) ( i ) ^ i } ] > (3.9)

where Zt is the inverse of Mill's ratio or the ' hazard' function for the standard
normal distribution:

7 #&)
1 1

Estimates of Ax and A3 are directly obtained, as described by Lagakos:

*. _ 2^(1-6^) ^ _ SaA
1 K ' ( * Z K ) '
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Estimates of /i and cr are obtained iteratively by means of the Newton-Raphson
technique as described in Cohen (1963). Again, for completeness, the derivatives
are:

A2L 82L 82L 82L 82L

t8A3 8A±8[i 8Ai8(T 8A38/i 8A38cr

82L
-(l-bJAi), (3.12)

82L 1
(1-6,)J5J, (3.13)

•bi)Ct}, (3.14)

8fi8cr c

82L _
8a~2~~ „

with
^ . = £,(£<-&), (3.15)

B, = Z 1 + ^ < ) (3.16)

O^ = C,^\£J^-\- £>{)• (o.li)

Thus, the approximate variance of A\ is Aj/[Saf(l — 6,-)] and the approximate
variance of ^3 is A\/'Lajbi. The variance covariance matrix of (ft,&) is obtained
iteratively, the inverse of

i82L

x8/180-

at ($,&).
For the example in Section 2, we have U. = 1058, V. — 863 with 1,at (1 — &f) = 15

and 'Laibi = 14. Thus

A\ = 15/863 = 0-01738 and F(A\) ~ Sa^l-fc^/F2 = 2-01405 x 10~5

and
X3 = 14/(1058-863) = 0-07179 and V(X3) ~ Saf^/(?7.-F.)2

= 3-68179x10-*.
Iterative solution for ju, and a gives

ju, = 35-66 with V(ju) ~ 0-65993,

a = 3-2066 with V(&) ~ 0-35078,

and cov (ju,o-) ~ —0-06123. The mean life-span of a snail in the absence of the
competing risk of patency is 1/0-01738 = 57-5 days. For a snail just infected, the
mean duration of life is the expectation of the minimum of Xx and X2 4- X3 which
is less than 57-5 or 35-66+ (1/0-07179) = 49-6 days. Once a snail becomes patent
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the mean duration of life, E(X3), is 13-9 days. The average duration of latency is
35-7 days with variance (3-2066)2 = 10-28 days2. (Again, these data are hypo-
thetical and no biological conclusions should be drawn from these results. They
were generated with underlying values Ax = 0-01, A3 = 0-05, /i = 35 and cr2 = 5
or <r = 2-236. Censoring was independent and exponential with A = 0-025.)
A FORTRAN subroutine has been written and is available to anyone wishing to
use this method on experimental data.

4. TESTING OF DISTRIBUTIONAL ASSUMPTIONS

The model of Section 3 has required the assumptions that (1) the time to death
of prepatent snails is exponential, (2) the duration of latency is normally dis-
tributed and (3) the time to death after patency is exponential. The exponential
assumptions simplify both the algebraic treatment and interpretation. It does
seem appropriate to investigate the validity of the assumptions made. The methods
described herein are drawn entirely from a paper by Nelson (1972) who detailed
graphical tools in an industrial setting.

Tests of the three assumptions mentioned above are performed visually from
plots of the time of event (such as death or patency) and the cumulative hazard
function. The hazard function (or age-specific failure rate) at time t gives the
instantaneous death-rate of a snail known to be of age t. The cumulative hazard
does not have as comprehensible a meaning, but provides a better visual test. The
calculation of the hazard (h) and cumulative hazard (H) is described as follows.
The times of observed failure or censoring are put into ascending order, such that
'(i) ^ '(2) ^ ••• '(»)• Each observation then receives its reverse rank if there are no
ties. That is, the reverse rank of £(B), symbolized by rn, is 1, that of (̂n_1) is 2, and
so on. The reverse ranks of £(2) and £(1) given by rn-x and rn respectively. The
occurrence of tied observations in survival data is both a frequent and com-
plicating feature. As the 'test' mentioned here is not a strict statistical tool but
rather a visual technique which provides no exact significance level, little is lost
by choosing midranks for tied data. The hazard for time % is only calculated if
the death occurred (i.e. hi = Q if the observation is censored). The hazard is given
by the inverse of the reverse rank of the death:

ht = \/rt = l / (» -»+l ) .

The cumulative hazard is the sum of these:

(This description has referred to death as the event studied. For the duration of
latency the event is the occurrence of cercarial release.) These relationships are
summarized in Table 2, where an example with a specific censoring pattern is
shown.

The relationship between the cumulative hazard and the time of event depends
on the distribution that events are assumed to follow. For a given value of Ht, an

6-2
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Table 2. Calculation of the cumulative hazard function

Censored = 0, Ascending Reverse
death = 1 times ranks

1
2
3
4
5

n - 3
n - 2
n - 1
n

1
1
1
0
1

i
0
0
1

"(2)

'(3)

'(n-3)
'(n-2)

r3= n-2
rt= n — S
rb= n —4

»-n-3= 4
»•»-*= 3
*"n-i = 2

r . = 1

Hazard
^ = 1/n

hi= 0

^n- l= 0

Cumulative hazard

Hn-2 =

. ..+ht

... +hn_2

associated time x^Hj) can be obtained. The relationships between x and H are
derived in Nelson's paper. For the exponential distribution one has

x{Ht) = A - 1 ^ (4.1)
and for the normal distribution

x[Ht) = ft + af-^l-e-ni),

where 4>~x 1S ^he inverse of the standard normal cumulative distribution function.
Thus, to check the validity of the exponential assumption Ht and £(i) are plotted.
By (4.1) these should form a straight line through the origin. A check that X,
calculated by previous methods is reasonable is made by noting that the slope of
this line is A"1. Checking the normal assumption is a little more laborious. For
each ^ one calculates 1 — e~H' and obtains the normal deviate associated with
this value from tables. The plot of t(i) by <j>"x (1 — e~H*) should be straight, and checks
of p, and (7 obtained above can be likewise made from the empirical intercept and
slope of the line respectively.

In practice, it is handy to check the exponential assumption of time to pre-
patent death with the normal assumption of duration of latency together. This is
because prepatent deaths are 'failures' for the exponential test and 'censoreds'
for the normal test. Snails becoming patent at t^ are ' censoreds' for exponential
tests and 'failures' for normal tests. Snails lost for other reasons are censoreds for
both cases. In studying both assumptions the values of F$ are ordered to deter-
mine the t(t). The hazard and cumulative hazard are calculated for the exponential
chart if at (1 — bt) = 1 and for the normal chart if bt = 1. Table 3 continues this
study for the example of Section 2, and Figs. 1 and 2 display the graphs. In Fig. 1
a straight line through the origin seems adequate for all points except the last,
where (H^U^) = (0-8154, 36). Under experimental conditions one might query
the validity of this observation: it may be an outlier. When a line is forced through
the origin excluding this point the empirical equation is

U(i) = 61-4/7,,

and when this point is included the equation is

Uit) = 56-3^-.Uit)
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Table 3. Calculation of cumulative hazards for the example in Table 1

85

(1) Checking the exponential assumption of time to prepatent death, and the normal assumption
of duration of latency.

Exponential Normal

i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1
3
5
5
8
10
11
12
13
15
16
17
19
22
26
27
27
29
30
31
31
33
34
34
35
35
35
36
36
36
36
36
37
39
43

0,(1-6,)

1
0
1
1
0
1
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0

Ti

35
34
32*
32*
31
30
29
28
27
26
25
24
23
22
21
19*
19*
18
17
15J
16*
14
12*
12*
10
10
10
6
6
6
6
6
3
2
1

h,

0-0286
—.

00308
0-0308
—.

00333
00345
0-0357
—

00385
—.

00417
—

00455
—.

00513
00513
0-0556
—.
—.
—

0-0714
—.
—.

0-1000
—
—.

01667
—
—.
—
—.
—.
—

Hi

0-0286
.

0-0593
00901
—.

0-1234
0-1579
0-1936
—.

0-2321
—.

0-2738
—.

0-3192
—.

0-3705
0-4218
0-4773
—.
—.
—.

0-5488
—.
—

0-6488
—
—.

0-8154
—.
—
—.
—
—
—

bt

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
1
1
0
1
1
1
1
1
1
1

rt

35
34
32*
32*
31
30
29
28
27
26
25
24
23
22
21
19
19
18
17
15*
15*
14

m12*
10
10
10
6
6
6
6
6
3
2
1

—

—.
—
—
—
—
—.
—
—.
—.
—
—
—.
—
—
—.
—.

0-0588
0-0645
0-0645
—

0-0800
0-0800
—

0-1000
0-1000
—

0-1667
0-1667
0-1667
01667
0-3333
0-5000
1-0000

Hi

,

—
—.
—
—,
—
—
—
—.
—
—
—
—.
—.
—.
—
—.

0-0588
01233
0-1879

—.
0-2679
0-3479

—
0-4479
0-5479

—
0-7145
0-8812
1-0479
1-2145
1-5479
2-0479
3-0479

—.
.

—.
—.
—.
—
—.
—
—
—
—.
—.
—
—
—.
—
—.
—

0-0571
0-1160
0-1713
—

0-2350
0-2938
—.

0-3610
0-4218
—

0-5106
0-5857
0-6493
0-7031
0-7873
0-8710
0-9525

—
—.
—
—.
—
—
—.
—
—
—.
—
—
—.

—
—
—.

-1-580
-1-195
-0-949
—

-0-722
-0-542
—

-0-356
-0-197

0-026
0-217
0-384
0-533
0-797
1-131
1-670

(The slopes should be compared with l//tx = 57-5 from the previous section.) In
Fig. 2 there are no extreme observations and a linear equation is empirically
obtained:

(The intercept and slope should be compared with ju, = 35*7 and a = 3-21 from
the previous section This graphical approach is one way to obtain initial estimates
for the Newton-Raphson technique, an alternative being to use the mean and
variance estimates from the observed durations of patency.) It is hardly surprising
to find a close agreement between the estimates obtained this way and the
maximum likelihood values of Section 2. Nor is it surprising to find that straight
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5 0 -

40 -

30-

20-

10-

o*v'

• •

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0

Hi

Fig. 1. Plot of cumulative hazard and event time to check exponential assumption of
distribution of time to death of prepatent snails.

• J*'

- 45

- 40

-*35

-30

-2-0 -1-5 -1-0 -0-5 0-5 1-0 1-5

Fig. 2. Plot of <j)~x{ 1 — e~Hi) and event time to check normal assumption of distribution
of latency period.

lines seem reasonable as the data were generated from true exponential and normal
distributions. (The peculiarity of the (0-8154, 36) point is surprising, however, but
is not entirely unexpected from a random process!)

Testing the assumption that duration of life after patency is exponential is
similarly performed. In this case the tt= Ut — Yi are ranked for those cases with
bt= 1. Cases with ai= 1 are considered as 'failures' and those with ^ = 0 are
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50-,

4 0 -

3 0 -

2 0 -

10-

0-5 1-0 1-5 2-0 2-5 3-0 3-5

Fig. 3. Plot of cumulative hazard and event time to check exponential assumption
of distribution of time to death of patent snails.

Table 4. Calculation of cumulative hazards for the example in Table 1

(2) Checking the exponential assumption of time to death following patency.

i tm a(bi rt h, Ht

1
2
3
4
5
0
7
8
9
10
11
12
13
14

0
2
5
5
5
7
8
12
13
18
18
30
32
40

1
1
1
1
1
1
1
1
1
1
1
1
1
1

14
13
11
11
11
9
8
7
6

H
4*
3
2
1

0-0714
0-0769
0-0909
0-0909
0-0909
01111
0-1250
0-1492
0-1667
0-2222
0-2222
0-3333
0-5000
1-0000

0-0714
0-1484
0-2393
0-3302
0-4211
0-5322
0-6572
0-8000
0-9667
1-1889
1-4112
1-7445
2-2445
3-2445

'censoreds'. Table 4 and Fig. 3 display the relevant calculations and appropriate
chart. No extreme observation is noted as in Fig. 1, the straight line is clear and
the slope of a line forced through the origin is 13-6, which compares favourably
with the value of (1/A3= )13-9 from the second section.

Lastly, it is worth noting that probability paper to facilitate the graphing of the
t{ii and Ht has been prepared. One supplier of this is TEAM, Box 25, Tamworth,
N.H., USA 03886, as noted by Nelson.
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5. EMBELLISHMENTS

Two further alterations in the model of Section 3 are discussed here. When there
is evidence that the hazard plot in Section 4 is obviously not linear, the assumption
of exponential survival must be relaxed. This is most readily done by assuming the
time to death follows a Weibull distribution. The fitting of a Weibull distribution
in place of an exponential distribution for the death of both prepatent and patent
snail is first described in this section. Secondly, it is possible to alter the model to
make allowance for factors possibly affecting the latent period or life-span, such
as age at infection or water temperature. Statistically, this is a generalization of
the model to allow for covariates. At first, allowance for covariates will be made
in the primary model, following which it is easy to adapt the Weibull model as well.

When the assumption that the duration of life for an organism is exponentially
distributed is invalid, two alternatives are usually considered, both of which
require a second parameter to produce age-dependent hazard rates. In so far as
the choice of distribution may be explained by an underlying process giving rise
to a mathematical statement, then the Gamma distribution is an appealing
generalization of the exponential. While heuristically this distribution seems
advantageous, there is a considerable cost to pay both in analytic and com-
putational terms. S. M. Gore in her work on extensions of the Lagakos model has
investigated the use of the Gamma density in this setting and found it unaccept-
able for this application. A much more tractable generalization, suggested by Gore,
is the Weibull distribution. For a discussion of the relative merits of these two
distributions the reader is referred to chapter 4 of the book by Gross & Clark (1975).

The density function for the Weibull distribution is given by

ffih) = ̂ 7/^-aexp(-^VJ).

For^' = 1 or 3 and tt ^ 0, i = 1, ...,n. (The subscript j = 2 has been dropped
for the reason given in Section 2.) It can be seen that the exponential distributions
are recovered by fixing y3- = 1 and dj = A;- for j = 1 and 3. The log probability
densities (excluding constants) of the four events corresponding to equations
(3.1)-(3.4) follow:

log P (E2) = - djpi - 08(Oi - Vt)n - log a - \ Q,

iogP(E3) = -d1V^

= log 0 ^ + ( r i - 1 ) log # < - W

Hence the full log-likelihood excluding constants (corresponding to 3.5) is:

L* = - djLV^ - e^m - Vtf* + Sa<&,{log ̂ 7s + (7s - 1) log (Ut - Vt)}
l - 1) log t f t -

(Note that log (C^ — Vt) is not undefined when aibi = 1 . )
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The derivatives of L* with respect to fi and cr are the same as those of L. The
derivatives with respect to the Weibull parameters follow. The estimation of
parameters of Weibull distribution with censored observations is described by
A. C. Cohen (1965). First derivatives:

+ £«<( 1 - b,) ( i + log £7.),

Second derivatives.

$-J5)-y8(ya-i)},

dyxdd% d7ldy3 ° '

Unlike the exponential case, the maximum-likelihood extimates for all parameters
now require iterative calculations. The matrix of second derivatives for all six
parameters has canonical form and inversion is conveniently performed by
inverting a series of three two-dimensional matrices.

A few words of warning are warranted here. The primary model involved four
parameters and relaxing the exponential assumption for one or both survival
times (or prepatent and patent snails) will require estimation of five or six
parameters. It is not surprising to observe a much better fit when additional
parameters are included in a formulation. There are approximate statistical
measures to assess whether inclusion of a parameter produces a 'significantly'
better fit: for example, Wilk's large sample likelihood ratio test (see Silvey, 1975,
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chapter 7). The experimenter wishing to distinguish between models is recom-
mended to decide on an empirical basis as well. To this end, both models might
be fitted and estimated curves plotted. The estimated survival curves may have
more immediate interpretation, but the distinction between models will be more
pronounced if the age specific death rates or hazard functions are plotted. The
decision is not exclusively statistical and should involve the experimenter's idea
of what is a relevant difference.

It is possible, of course, to see if the Weibull provides an adequate fit to the data.
Following the methods of Nelson (1972) described in Section 4, if H is the cumu-
lative function and x(H) the time of event dependent on H, one has

log {*(#,)} = £ log i / , - ! log*?,.

By plotting the log of the ranked time of event (either Ut or Vi — Vi) against the
value of log Ht a straight line should result. Furthermore, from this one can
obtain rough estimates of jj and 0j.

Perhaps the duration of latency or the survival of snails depends on external
factors such as the temperature of the water. There are two methods to investigate
this possibility. The most straightforward approach would be to perform strictly
controlled experiments (at a constant temperature) and obtain estimates (with
variance estimates) of the parameters Al5 A3, /t and er. These four parameters can
be estimated under a series of temperatures (or conditions) and their behaviour
easily studied. An alternative is to make allowance for covariates or auxiliary
variables in the formulation. Extensions along these lines are described in the
original paper by Lagakos (1976, Section 3.2). In what follows, extensions of this
form are made to all three stages whereas the experimenter may only wish to use
one portion. (For example, only duration of latency and survival of patent snails
may be affected by moderate temperature changes, while prepatent survival is not.)

Let us assume that s^ covariates are measured in process j on individual i and
these are

(Here j = 1 for parameter Ax, j — 2 for /i and a and j = 3 for A3.) For the
exponential processes, multiplicative hazard functions are assumed: i.e.

AH = exp (pjlXjli + pj2Xj2i+ ... +/3}ljXi¥) (j = 1 or 3, i = 1, ..., n).

The former model is recovered by assuming Sj = 1 and Xiu = 1 for all i and both
j's. The covariates are related to /i in the duration of latency by:

Thus we seek estimates of the fijk forj = 1, 2, 3 and k = 1, ... s^ which maximize
(3.5). The derivatives (3.6) to (3.14) are easily adapted to this end by noting that

- ^ = XikiXH for i = 1, ... n; j = 1 or 3; k = 1,..., s;-

and ^p-=X2ki for k=l,...,
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and using the chain rule. Hence one has

•fig- = So^l - bt) Xlki - 'LViXlkiAli,

The second derivatives are:

——2,ViAliXlkiXm for k = 1, . . . , s1a,ndl = l , . . . , s 1 }

p2 7" -|

2{6+(l6i)^ i}X2 A. iXa t . for k = 1, ...,s2and Z =

for k = 1, . . . , So and I =
31

(The functions At and -B̂  were given in 3.15 and 3.16.)
It is becoming clear that inclusion of several covariates may be intuitively

appealing but entails considerably greater computational complexity. None of the
paramaters /?jfc can be obtained explicitly as A1 and A3 could, and iterative pro-
cedures are necessary.

It remains to merge the two embellishments described in this section and make
allowance for covariates in the Weibull model. This is very similar to those
considerations for the exponential. Let

6a = e x P (PnXM+Pnxi*i + •••+ Pisfcsji) f o r j = 1 or 3, i = 1 ... %

and note that

" XikPii

The derivatives of L* for determining the /?3-fe for j = 1 or 3 and k = 1, ...,«,-
follow.

lk

(ife =
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with

and

82L* 82L*
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ikiXin (k,l = l,...,Si i=l,...,n),

- 1 7 (I. _ 1 o 0 — 1 ri\

iXyt (k,l = 1, ...,s3 i=l,...,n),

X3ki ( * = l - - - . * 3 * = ! » • • • . » ) ,

= 0 fork = 1, ...,s1 and ? = l , . . . , s 3

6. SUMMARY

By means of techniques of analyses of survival data developed for cancer trials
it is possible to study aspects of the natural history of the infection of schisto-
somiasis on the intermediate host of transmission, the snail.

The simultaneous study of three response variables is largely based on a model
of Lagakos (1976). When using this approach in the schistosomiasis setting it
seems inappropriate to assume that one process, the duration of latency, follows
an exponential distribution. Thus this stage is modified to follow a normal dis-
tribution and the derivatives required to obtain maximum-likelihood estimates
and approximate variances of all parameters are provided.

Simple graphical tools for assessing the validity of distributional assumptions
in survival data are available from industrial research. The reader's attention is
drawn to a paper by Nelson (1972). The relevance and application of these methods
to the current problem are described in Section 4.

In the event that the times to death of prepatent and patent snails do not
follow exponential distributions as assumed in the primary model, a further
modification is introduced to enable either or both to follow Weibull densities.

Lastly it is possible to adapt both the primary model of Section Three and the
modified model of Section Five to allow for the inclusion of auxiliary variables or
covariates. Again the required derivatives to obtain maximum likelihood estimates
and approximate variances are provided.

I wish to thank Sheila Gore, Stuart Pocock and Professor Michael Healy for
many useful discussions. Sheila Gore and Professor Peter Armitage provided many
recommendations for the improvement of the manuscript for which I am most
grateful.
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