
International Journal of
Astrobiology

cambridge.org/ija

Research Article

Cite this article: Kipping D, Frank A, Scharf C
(2020). Contact inequality: first contact will
likely be with an older civilization.
International Journal of Astrobiology 19,
430–437. https://doi.org/10.1017/
S1473550420000208

Received: 15 April 2020
Revised: 1 July 2020
Accepted: 21 July 2020
First published online: 24 August 2020

Key words:
Interstellar communication; SETI;
technosignatures

Author for correspondence:
David Kipping,
E-mail: dkipping@astro.columbia.edu

© The Author(s), 2020. Published by
Cambridge University Press

Contact inequality: first contact will likely be
with an older civilization

David Kipping1,2 , Adam Frank3 and Caleb Scharf1

1Department of Astronomy, Columbia University, 550 W 120th Street, New York, NY 10027, USA; 2Center for
Computational Astrophysics, Flatiron Institute, 162 5th Av., New York, NY 10010, USA and 3Department of Physics
and Astronomy, University of Rochester, Rochester, NY 14627, USA

Abstract

First contact with another civilization, or simply another intelligence of some kind, will likely
be quite different depending on whether that intelligence is more or less advanced than our-
selves. If we assume that the lifetime distribution of intelligences follows an approximately
exponential distribution, one might naively assume that the pile-up of short-lived entities
dominates any detection or contact scenario. However, it is argued here that the probability
of contact is proportional to the age of said intelligence (or possibly stronger), which intro-
duces a selection effect. We demonstrate that detected intelligences will have a mean age
twice that of the underlying (detected + undetected) population, using the exponential
model. We find that our first contact will most likely be with an older intelligence, provided
that the maximum allowed mean lifetime of the intelligence population, τmax, is ≥ e times
larger than our own. Older intelligences may be rare but they disproportionately contribute
to first contacts, introducing what we call a ‘contact inequality’, analogous to wealth inequal-
ity. This reasoning formalizes intuitional arguments and highlights that first contact would
likely be one-sided, with ramifications for how we approach SETI.

Introduction

The lifetime of a communicative civilization, L, plays a critical role in the Drake Equation
(Drake 1965; Ćirković 2004; Maccone 2010; Glade et al. 2012). Little is known about the pos-
sible range that this value can take (Burchell 2006). Our limited temporal existence provides a
basis to estimate that L likely typically takes a value greater than or equal to modern civiliza-
tion’s age thus far. Pessimists might suggest that the history of past human civilizations indi-
cates that L will be brief, no greater than a few hundred years (Shermer 2002). Optimists could
equally argue that we will soon pass a critical juncture where comparable civilizations could
ultimately enjoy long lifetimes, perhaps even billions of years (Grinspoon 2004).

Although Drake cast L as the communicative lifetime, modern SETI has evolved to include
both deliberate and unintentional signatures of technology – ‘technosignatures’ (Wright 2017).
We go further by relaxing the assumption that the technosignature need originate from what
we would recognize as a ‘civilization’ – the source is an intelligence of some kind (e.g. an arti-
ficial intelligence) which is capable of producing detectable technological signatures. In what
follows, we consider L as representing the lifetime over which techosignatures from this intel-
ligence manifest.

One basic question concerning this hypothetical intelligence is – what would first contact
look like? This has been the playground of science fiction writers for generations, and clearly
this question has existential consequences for our way of life. Although we have no informa-
tion about other intelligences yet, it is not unreasonable to assume that the nature of this con-
tact will depend considerably upon the relative technological capabilities of this newfound
entity. Humanity would surely treat communication with a comparably developed civilization
in quite a different manner from one with far greater technological capabilities. The longer
lived an intelligence, L, the greater the opportunity for technological development.
Accordingly, the probability distribution of the lifetime of detected intelligences will be of
central importance to our decisions regarding contact.

We note that it is of course possible for artefacts from an intelligence (or indeed a civiliza-
tion) to persist far longer than the age of that entity. Sometimes referred to as artefact SETI,
there is particular interest in applying to this Solar System objects (Freitas 1983; Wright 2018;
Lacki 2019), for example. However, the detection of an artefact from a now extinct intelligence
presents no opportunity for direct communication or interaction (even if this is unclear from
the initial detection).

In this work, we therefore ask – what is the likely age of a detected and extant intelligence.
Certainly speculation on this topic exists elsewhere. Carl Sagan famously wrote that civiliza-
tions were unlikely to be in technological lockstep with us (Sagan 1994) and thus would either
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be far less advanced or far more advanced. Since the less
advanced ones would be undetected, this simple argument sug-
gests contact would be with an older intelligence. Similarly,
Stephen Hawking warned that contact would likely be with a
more advanced and thus potentially dangerous entity. In what fol-
lows, we attempt to formalize the logic behind this problem and
establish some statistical results for L using a simple but plausible
analytic model.

A model for technosignature lifetime

Exponential distribution for L

At its core, we are asking a statistical question – what is the likely
age of a detected intelligence. The first requirement to make pro-
gress is to assign a probability distribution for L. The simplest life-
time model we can posit is an exponential distribution (Lawless
2011). We do not claim that this is necessarily the true distribu-
tion, and encourage the reader to treat this as an
approximate-yet-instructive model for making analytic progress.
Further discussion about the suitability of this model is offered
in the Discussion.

With such a model, amongst the ensemble of all intelligences
that will ever arise, there would be a large number of short-lived
intelligences (potentially such as ourselves) and a much smaller
number of long-lived counterparts. On this basis, one might
naively posit that communication with another intelligence
would surely be with one of the more abundant short-lived intel-
ligences. We proceed by first writing down the probability density
function of L given our exponential distribution assumption:

Pr(L|t) = t−1 e−L/t, (1)

where τ is the mean lifetime from the distribution. The exponen-
tial distribution assumes that the so-called hazard function1 is
constant over time – much like a decaying atomic nucleus.
Certainly more sophisticated lifetime formulae have been sug-
gested for species survival. For example, a Weibull distribution
is a commonly used generalization of the exponential, that enables
a time-dependent (specifically a power-law) hazard function
(Lawless 2011), but comes at the expense of an extra unknown
parameter.

We note that a power-law distribution has also been adopted
in ecology studies (Pigolotti et al. 2005), but we found it to exhibit
several disadvantages over the exponential. First, it does not have
semi-infinite support and thus requires truncation parameterized
some additional bounding parameter, either a minimum lifetime
or a maximum. Since no clear minimum exists, bounding at the
maximum leads to a function which is only monotonically
decreasing for indices between 0 and 1. This leads to an overly
restrictive distribution compared to the exponential and for
these reasons it is not used in what follows.

An exponential distribution, with its constant hazard function
of 1/τ, could be criticized as being unrealistic since a longer lived
species presumably has developed successful traits that improve
its odds of future survival (Shimada et al. 2003). On the other
hand, as technology advances, so too does an intelligence’s cap-
acity for self-destruction (Cooper 2013). If we consider the
observed distribution for the life span of families obtained from

Benton (1993) based on fossil evidence (see Fig. 1), the exponen-
tial distribution appears quite capable of describing the overall
pattern out to 400 million years. Of course, intelligences produ-
cing technosignatures cannot be assumed to necessarily follow
the same distribution as these fossils, although this gives confi-
dence that the model is at least plausible. Although not a repre-
sentative nor unbiased sample, we note that approximate
lifetimes of past human civilizations are also well-described by
an exponential distribution with τ = 336 years.2 In the absence
of any other information, we invoke Ockham’s razor in that the
simplest viable model is the presently favoured one.
Accordingly, we will adopt the exponential distribution in what
follows.

Inferring the a-posteriori distribution of τ

Although we have a functional form for the probability distribu-
tion of L, it is governed by a shape parameter, τ (mean lifetime),
which one needs to also assign. This would typically be handled
through statistical inference. For example, if we had N known
examples of intelligences with lifetimes L = {L1, L2, …, LN}

T

(analogous to the data presented in Fig. 1), then we could write
that the likelihood of measuring these values for a mean lifetime
equal to τ would be

Pr(L|t) =
∏N
i=1

t−1 e−Li/t, (2)

where one can see that the above is a straight-forward extension of
equation (1). Conventionally, one would then apply Bayes’ the-
orem to constrain/measure τ using Pr(τ|L)∝ Pr(L|τ)Pr(τ).

Unfortunately, we do not have a sample of Li values, and thus
our likelihood function will certainly not be as constraining as
this. Rather, we only know of N = 1 intelligence – ourselves.
However, the problem is even worse than this because we do
not even know L1 for this one datum. Human civilization has
been producing a technosignature for an age A⊕ years, and the
lifetime of this intelligence must at least exceed this value (i.e.
L⊕ ≥ A⊕). We emphasize that it is somewhat unclear what
numerical value to assign to A⊕ at this point. Although we
have been transmitting radio signals for ∼ 102 years, one might
argue that an advanced civilization could remotely detect our set-
tlements (Kuhn and Berdyugina 2015) and polluted atmosphere
(Schneider et al. 2010; Lin et al. 2014) as unintentional techno-
signatures, which could increase A⊕. Regardless, we will proceed
symbolically for the moment.

The likelihood of observing one civilization with L1 . A⊕,
given that the mean lifetime is τ, is given by

Pr(L1.A⊕|t) =
∫1
A⊕

Pr(L|t) dL

= e−A⊕/t.

(3)

In order to derive an a-posteriori distribution for τ, condi-
tioned upon the constraint that L1 . A⊕, we first need to write
down an a-priori distribution for τ. One is always free to choose
any prior one wishes, but a strongly informative prior, such as a

1The hazard function is defined as the probability that an observed value lies between t
and t + dt, given that it is larger than t for infinitesimal dt.

2Using the lifetimes reported at http://energyskeptic.com/2019/part-2-how-long-do-
civilizations-last-on-average-336-years/EnergySkeptic.com.
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tight Gaussian, would naturally return a result which closely
equals the prior. In other words, one has not really learned any-
thing and no inference really occurred. Ideally, we wish to select a
prior which is as uninformative as possible (Jaynes 1968). This is
not simply a flat prior, since such priors can place insufficient
weight on small values, especially when the parameter has high
dynamic range. Instead, we can define an objective Jeffrey’s
prior, which provides a means of expressing a scale-invariant dis-
tribution via the Fisher information matrix, I (Jeffreys 1946):

Pr(t)/
���������
detI (t)

√
. (4)

Evaluating the above, we obtain Pr(τ)∝ τ−1/2. Combining the
likelihood and prior together, we obtain

Pr(t|L1.A⊕)/ Pr(L1.A⊕|t)Pr(t),
/ t−1/2 e−A⊕/t.

(5)

To normalize the above, one must define an upper limit on τ, for
which we use the symbol τmax. At this point, it is also convenient to
work in temporal units of A⊕ in what follows, such that any time-
scales used will always be in that unit. Accordingly, the posterior is

Pr(t|L1.1) = t−1/2 e−1/t

2
�����
tmax

√
e−1/tmax − 2

��
p

√
erfc[1/

�����
tmax

√
]
. (6)

We plot the posterior, with comparison to the prior and like-
lihood, in Fig. 2.

Properties of the posterior

There are several useful properties of the posterior above that we
highlight. First, equation (6) has a maximum at t̂ = 2 (the mode),
irrespective of τmax, which can be demonstrated through

differentiation of the expression and setting to zero. If we set
t = t̂, then the mean lifetime of an intelligence would be twice
of that of ourselves. But it is important to remember that this is
the entire lifetime of this intelligence, not its age at the time of
their detection, A. Assuming that the technosignature is no
more or less likely to be detected at any point during its mani-
fested lifetime, then A � U[0, L] (where U denotes a uniform dis-
tribution). Accordingly, if t = t̂, then the mean age at the time of
detection would be = 1, i.e. our current age. Of course, fixing
t = t̂ does not correctly account for the broad posterior distribu-
tion of τ, but this exercise provides some intuition as to why the
modal value of τ occurs at 2.

Although the mode can be solved for independent of τmax, it is
somewhat limited as an interpretable summary statistic. The expect-
ation value of a distribution provides better intuition as to the
‘typical’ value of the distribution. This can be seen by simple con-
sideration of the exponential distribution. Its mode is zero but the
average draw will be around the mean of the distribution, not
zero. We may calculate the a-posteriori expectation value for τ using

E[t|L1.1] =
∫tmax

t=0
tPr(t|L.1) dt

= m,

(7)

where we define the symbol

m ;
1
3

tmax

1− ��
p

√
t−1/2
max e1/tmax erfc[1/

�����
tmax

√
]
− 2

( )
, (8)

where erfc[x] is the complementary error function. One may show
that μ≃ τmax/3 for τmax≫ 1. The dependency upon τmax can be
understood by the fact that although the mode of the distribution
does not depend on τmax, pushing the upper limit ever higher nat-
urally drags the tail out and thus pulls the expectation value over.

Fig. 1. Probability distribution for the life span of families obtained from Benton (1993) using fossil evidence. On the left we fit an exponential distribution to the
data shown, whereas on the right we show the more complicated Weibull distribution. Although we do not place any emphasis on the specific parameters recov-
ered, the data show that an exponential distribution is a quite reasonable description of the overall distribution, which compounded with it’s simplicity makes it
attractive as a choice for modelling technosignature lifetimes.

432 David Kipping et al.

https://doi.org/10.1017/S1473550420000208 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550420000208


Marginalized distribution for L

Given that we have now obtained an a-posteriori distribution for
τ, we need to propagate that into a posterior distribution for L. As
discussed earlier, simply fixing τ to an a-posteriori summary stat-
istic, like t̂ or E[τ|L1 > 1], is inadequate, as it does not propagate
the (considerable) uncertainty on τ into the resulting distribution.
This propagation can be conducted through marginalizing out τ
(i.e. integrating over τ):

Pr(L|L1.1) =
∫tmax

t=0
Pr(L|t)Pr(t|L1.1) dt,

=
��
p

√
erfc[

������
L+ 1

√
/

�����
tmax

√
]

2
������
L+ 1

√ ( �����
tmax

√
e−1/tmax − ��

p
√

erfc[1/
�����
tmax

√
]
) .
(9)

The above represents the probability distribution of the life-
time of technosignature-producing intelligences, given the singu-
lar constraint imposed by humanity’s existence. It has a
maximum at L→ 0, which is a property shared by the original
exponential distribution used for Pr(L). We also note that the
expectation value satisfies E[L|L1 > 1] = μ.

Observationally weighting the model

Lifetime weighting

The distribution Pr(L|L1 > 1) describes the probability distribution
of the lifetime of intelligences producing detectable technosigna-
tures. This is the underlying true population – but it does not
represent the intelligences that we are most likely to detect. It is
worth pausing to clearly distinguish between detection and con-
tact. If and when an intelligence is detected, that detection may
either be in the form of a directed attempt at communication
on their behalf, or it may simply be passive detection of their tech-
nology on our behalf. Regardless, humanity’s decision as to
whether to send a message back – to initiate contact – will be
likely somewhat dependent on the technological development
and, by proxy, age (A) of said intelligence.3 If the technosignature
itself provides little information regarding the age, we would be
left with the a-priori distribution – which is the focus of this
paper. Yet this distribution will not simply equal P(A|L1), since

a critical selection effect sculpts our observations that we will
account for here.

The start time of these other intelligences is presumably arbi-
trary (except when one pushes into timescales of ≫Gyr, over
which time variability is expected for the rates of star formation
and high-energy astrophysical phenomena, e.g. SNe, AGNs,
GRBs). A start time 10 million years ago is just as a-priori likely
as 100 years ago. Thus, a longer lived intelligence is more likely to
be detected than one which is very short lived, since the require-
ment for contemporaneity (modulo the light cone) is clearly sen-
sitive to how long the technosignature persists. An equivalent
statement is that at any single snapshot in time (representing
our current epoch, e.g.), the fraction of worlds that go on to pro-
duce long-lived intelligences may be relatively rare, but their per-
sistence through time means that one must account for their
overrepresentation amongst the extant intelligences. This is sim-
ply a product of their longevity and is independent of their activ-
ities or behaviour. This situation is analogous to the ages of trees
in an old growth forest – if we assigned a unique identity to each
tree that will ever live, 1000+ year old trees are rare amongst the
ensemble, perhaps representing just 1%, yet a visit to the forest
will show them to be seemingly more common due to their lon-
gevity, for example, comprising 10% of the extant trees.

Accordingly, we will assume that the probability of detecting
an intelligence’s technosignature is proportional to its lifetime,
L. The validity of this assumption is discussed later in the
Discussion section, as well as an explanation as to why distance
does not affect the results presented hereafter.

This simple weighting will substantially change the picture,
meaning that the long tail of rare long-lived intelligences will
have a considerable increase on their relative probability of detec-
tion. We write that the probability distribution of L, conditioned
upon both a mean lifetime, τ, and the assumption of detection,
D, is

Pr(L|t, D)/ LPr(L|t), (10)

or after normalization

Pr(L|t, D) = L
t2

e−L/t. (11)

Since we have already learnt τ from before, we can use this
acquired information to express a marginalized posterior for L
conditioned upon both D and the fact L1 > 1, using:

Pr(L|L1.1, D) =
∫tmax

t=0
Pr(L|t, D)Pr(t|L1 . 1) dt,

= W

(
L e−L/tmax

4(L+ 1)3/2

)
.

(12)

where

W =
(
2

��������������
(L+ 1)/tmax

√
+ ��

p
√

e(L+1)/tmax erfc[
������
L+ 1

√
/

�����
tmax

√
]�����

tmax
√ − ��

p
√

e1/tmax erfc[1/
�����
tmax

√
]

)

(13)

Fig. 2. Comparison of the prior, likelihood and posterior distribution for τ (the mean
lifetime of intelligences producing technosignatures) using τmax = 10 Gyr, as an
example. The mode of the posterior occurs at 2 as shown in the text.

3Age is subtlety distinct from lifetime and the difference between the two is expounded
upon more rigorously in the next subsection.
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We find that in the limit of τmax≫ 1, this distribution peaks at
2. The expectation value is given by

E[L|L1.1, D] =
∫1
t=0

LPr(t|L.1, D) dL,

= 2m.

(14)

For comparison, without the conditional D, the a-posteriori
expectation value was μ but including it doubles it. We plot
the posterior Pr(L|L1.1, D), and compare it to Pr(L|L1 > 1), in
Fig. 3.

The age distribution of detected intelligences

The final step is to account for the fact that detection would not
occur with an intelligence at the end of its lifetime, L, but rather
one drawn randomly from across its lifespan. In other words, an
intelligence’s age (at the time of detection) does not equal its life-
time. If we assume that the age at the time of detection is uni-
formly distributed from 0 to L, then

Pr(A|L1.1, D) =
∫tmax

t=0
U[0, L]Pr(L|L1.1, D) dL,

=
��
p

√
erfc[

�������
A+ 1

√
/

�����
tmax

√
]

2
�������
A+ 1

√ ( �����
tmax

√
e−1/tmax − ��

p
√

erfc[1/
�����
tmax

√
]
)
.

(15)

Equipped with our final form for the a-posteriori probability
distribution of the age of detected intelligences, we can deduce
several basic properties. First, it is interesting to ask whether the
civilization is likely to be older or younger than our own. The
probability that the civilization is older is given by

Pr(A.1|L1.1, D) =
∫1
A=1

Pr(A|L1.1, D) dA,

=( �����
tmax

√
e−1/tmax

−
����
2p

√
e1/tmax erfc[

��
2

√
/

�����
tmax

√
]
)

/
( �����

tmax
√ − ��

p
√

e1/tmaxerfc[1/
�����
tmax

√
]
)
.

(16)

A useful summary statistic to interpret the above is the median
– above which half the cases will lie. This may be solved for by
setting the above to 0.5 and numerically solve for τmax, which
gives the result that if τmax > 2.6776 · · ·≃e, then the age of a
detected intelligence will most likely exceed that of our own, i.e.
Pr(A.1|L1.1, D) . 0.5. In other words, if this condition is
true then we are most likely to detect an older intelligence than
ourselves.

It is important to remember that τmax does not represent the
maximum allowed lifetime of a civilization, L – rather it is simply
the maximum a-priori mean lifetime. Fundamentally, there is no
obvious reason why τmax could not be many billions of years
(Grinspoon 2004), and thus detection would almost always
occur with an older civilization, however one defines A⊕.

The expectation value for the intelligence’s age is given by sim-
ply μ, whereas we found the expectation value for their lifetime to
be 2μ. Since E[A|L1 > 1] = E[L|L1 > 1]/2, then we can see that the
effect of including this observational bias is that the mean age of
detected, and thus contacted, intelligences is twice that of the
overall population – as expected.

Contact inequality

Using our results, it is instructive to compare the underlying age
population, Pr(A|L1 > 1), with the population which goes on to be
detected, Pr(A|L1.1, D). Recall that A is age of the intelligence at
the time of detection/contact, whereas L is the total lifetime of
said intelligence. The fact that older intelligences are assumed
in this work to be more likely to be detected, and thus contacted
(by virtue of having simply more opportunities to do so), intro-
duces an inequality. The rare long-lived intelligences make a dis-
proportionate number of contacts.

This ‘contact inequality’ can be thought of as being analogous
to wealth inequality in economics. One way to quantify the degree
of inequality comes from the Gini coefficient (Gini 1909), which
takes the value of 1 for a maximally unequal distribution, and 0
for a fully equal one. It may be calculated for a probability density
function Pr(x) using

G = 1
2m

∫1
0

∫1
0
Pr(x)Pr(y)|x − y| dx dy. (17)

Although we were not able find a closed-form solution to the
above using Pr(x) = Pr(A|L1 . 1, D), one may numerically inte-
grate the expression for a specific choice of τmax.

We argue here that a conservative choice of τmax is one which
causes our current age to be the median age of the entire popula-
tion of technosignature producing intelligences. This is a form of
the mediocrity principle, since we posit humanity lives close to
the centre of the age-ordered list of intelligences in the cosmos
(Gott 1993; Simpson 2016). It requires us to solve τmax such that

∫1
A=0

Pr(A|L1 . 1) = 1
2
. (18)

We solved the above numerically and obtain τmax = 9.43. This
also somewhat passes the astronomer’s logic of going up by an
order-of-magnitude as one’s upper limit on a variable.
However, we suggest here that this limit is somewhat conservative
though, since it makes million-/billion-year intelligences essen-
tially non-existent, which is itself a strong assumption.

Fig. 3. Comparison of the marginalized posterior probability for the age of intelli-
gences, L, for the ensemble population (Pr(L|L1 > 1)) and the detected population
(Pr(L|L1.1, D)). Here we adopt τmax = 10.
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Nevertheless, using τmax = 9.43, we compute a Gini coefficient
of 0.57. The value does not grossly change by varying τmax. For
example, setting τmax = 103 increases G to 0.63, and decreasing
it to τmax = 1 yields G = 0.52. Interestingly, we find that in the
limit of τmax→ 0 (which would make humanity an incredibly
long lived civilization),4 G→ 0.5. Thus, under the assumptions
of our simple model, we find that G≥ 0.5, which is similar to
the wealth inequality of many developed nations.

To visualize the inequality, we show a stacked histogram of the
a-posteriori age distribution of intelligences in Fig. 4 using τmax =
9.43. Specifically, one can see the effect of the bias weighting
longer lived intelligences. We find that the top 1% of the oldest
intelligences are over-represented in the fraction of first contacts
by a factor of 4.

Discussion

In this work, we have suggested a simple model for the lifetime
distribution of civilizations (or more generally intelligences) pro-
ducing technosignatures – specifically an exponential distribution.
This is motivated by its monotonic, single-parameter form and is
a simple but effective description of the lifetime of biological fam-
ilies on Earth. Amongst these hypothetical intelligences, we may
plausibly detect their technosignatures in the coming years,
which may either take the form of direct contact or open the
door for us to contact them. We have argued that the fact that
longer lived intelligences simply have had more time available
to them makes them more likely to be detected – and thus the
contacted population is weighted towards older intelligences.

Another framing of the above is that at any given time, the
number of extant long-lived intelligences is disproportionately
represented simply by the fact they persist longer than their short-
lived counterparts.

We are able to establish that the expectation age of a contacted
intelligence is twice that of the ensemble, without any assumption

about the maximum mean lifespan of this population. Further, we
show that if the maximum mean lifespan of intelligences is any
greater than ∼e times our current age, then we will most likely
detect an older intelligence than ourselves.

Finally, we use this simple model to show that a ‘contact
inequality’ should exist, where the older intelligences represent a
disproportionate fraction of galactic first contacts. Using this ana-
logy, we can define a Gini coefficient to quantify the inequality,
which we show must be greater than 0.5 for any choice of the
maximum mean intelligence lifetime.

In this discussion, we would like to highlight two points. First,
in what ways might this model be invalid? And second, what are
the consequences for us if this model is correct?

Validity of the employed model

First, we fully acknowledge here that the exponential distribution
model is indeed extremely simplistic and may not fully describe
the true distribution. The hazard function is a constant with
respect to age and it is deeply unclear whether a more advanced
intelligence poses a greater risk to itself through emerging tech-
nologies (e.g. Cooper 2013), or, on the other hand, is more likely
to persist due to their track record of survival thus far. The life-
span of biological families from fossil evidence shows that an
exponential distribution may not always be the best fit, but it
does broadly capture the overall behaviour (see Shimada et al.
2003 and Fig. 1). It also satisfies the basic expectation of a mono-
tonically decreasing smooth function. Without any other evidence
in hand, we argue that at present there is no justification for
invoking a more complex model.

The assumption of lifetime-weighted contact also deserves
scrutiny. In this work, we have very simply assumed that the
longer an intelligence lasts, the more opportunities it has to be
spotted. For example, if a civilization builds a beacon which
lasts for an interval L at some random point in the Universe’s his-
tory, the probability that we will detect that beacon must be dir-
ectly proportional to L. But of course one could challenge this

Fig. 4. Using τmax = 9.43, one can set the a-posteriori distribution of intelligence ages such that humanity lives at the median (far left). The exponential distribution
assumed heavily weights the population towards younger civilizations, most of which will not progress into older ones. However, older intelligences have more
opportunities to contact others, simply by their greater age, which skews the distribution of the contacted population (mid-left). Taking the ratio of the two (mid-
right), the ‘contact inequality’ is apparent – which can also be visualized as a Lorenz curve (far-right).

4We also note that limtmax�1 G = 1.
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picture from both the direction of increased or decreased
detectability.5

For example, as an intelligence becomes more advanced, it
could construct more powerful beacons, with greater range, at
lower cost, and in greater number (Benford et al. 2008), even
sending them out between the stars to add coverage. Those are
intentional contact scenarios, but even unintended technosigna-
tures might be argued to become more detectable as intelligences
advance, such as the production of Dysonian artefacts (Dyson
1960). On this basis, one might conclude that our assumption
here that the probability of contact is proportional to L greatly
underestimates the true value. If so, then older intelligences
would dominate the number of first contacts by an even more
extreme degree, raising the Gini index yet higher.6 This funda-
mentally does not change our hypothesis that a contact inequality
likely exists, in fact it exacerbates the inequality.

On the other hand, one might argue that as intelligences
develop, their detectability decreases. Science fiction writer Karl
Schroeder captures this hypothesis in his twist on Arthur
C. Clarke’s famous line ‘Any sufficiently advanced civilization is
indistinguishable from nature’ (Schroeder 2003). They might
also simply lose interest in communicating with far less advanced
intelligences and elect to hide themselves (Smart 2012; Kipping
and Teachey 2016). If their detectable presence is suddenly elimi-
nated altogether, then they are technically no longer a member of
the assumed underlying population – which is specifically one
which produces (potentially detectable) technosignatures. Thus,
they are effectively extinct and thus do not actually affect the argu-
ments laid out here. However, if the detectability of intelligences
diminishes with age, in particular in a way such that the time-
integrated probability of detection culminates in a scaling of Lα

where α < 0, then this would reverse our conclusion – contact
would likely occur with less advanced members of the population.

Although we certainly do not discount this possibility,
extrapolation of our own behaviour does not generally favour
this conclusion. Whilst radio leakage into space has been decreas-
ing, many other aspects of human’s detectability projected into
the future suggest that we could still be easily found through
other technosignatures. Some examples include space mining
(Forgan and Elvis 2011), leakage from relativistic light sails
(Guillochon and Loeb 2015), thermal heat islands (Kuhn and
Berdyugina 2015), our polluted atmosphere (Schneider et al.
2010; Lin et al. 2014), geostationary satellites (Socas-Navarro
2018), geoengineering projects (Gaidos 2017), photovoltaic cells
(Lingam and Loeb 2017), space weathering monitoring systems
(Kipping 2019) and ever growing energy needs (Wright et al.
2014). We thus consider that if our own experience and future
projections are in any way representative, a future decrease in
our technosignature detectability would likely require a deliberate
and expensive effort, which is itself unlikely to be considered a
good use of resources in the absence of any evidence for other
intelligences. Accordingly, we argue that such a scenario is
unlikely to dominate until intelligences become much older
than our own – which is essentially captured by our assumption
that τmax is an order-of-magnitude greater than our current age.

Together, whilst we accept that our model is surely an oversim-
plification, the qualitative result that older intelligences should be

overrepresented in the ensemble of detections may actually be
quite robust.

A note on distance

Our detection bias model assumes that the probability of detec-
tion is proportional to an intelligence’s lifetime, but the distance
to that intelligence does not feature. Why not? Certainly, closer
intelligences will be more likely to be detected than more distant
ones, since signals generally decrease as 1/d2. But this work only
concerns itself with the lifetime distribution of detected intelli-
gences, not their distance (which can be thought of as being mar-
ginalized over). The real question for this work is – do we expect
there to be some off-diagonal covariance between lifetime and
distance of the detected population? More simply, is there any
reason to suspect that the intrinsic lifetimes of detected intelli-
gences is dependent upon their displaced location from the Earth?

As discussed in detail in the last section, one could invoke an
argument that longer lived intelligences are more detectable,
which would exacerbate the contact inequality result of this
work. Only if detectability rapidly diminished with time would
our basic conclusion change.

A separate aspect to the distance issue is not with detectability
per say, but rather with intrinsic lifetimes varying with distance.
Do we expect an intelligence’s lifetime to depend upon how far
away from us they are? At distances of hundreds, even thousands,
of light years – the answer is no. There is nothing inherently spe-
cial about where we live and thus a civilization emerging a few hun-
dred light years should not have any particular reason to live longer
or shorter than ourselves. Extending further afield, where effects
such as galactic chemical gradients (Gonzalez et al. 2001), super-
novae rates (Lineweaver et al. 2004), active galactic nuclei (Balbi
and Tombesi 2018; Lingam et al. 2019), stellar encounter rates
(McTier et al. 2020) may vary, would indeed require formally
building a model which described this covariance. Accordingly,
the results of our work should be understood to be formally only
applicable to cases where L is not expected to be intrinsically linked
to location, such as our local stellar neighbourhood.

Implications

Let us proceed under the assumption that the hypothesis is cor-
rect: probabilistically, we are more likely to make first contact
with an intelligence that is considerably older than ourselves. It
should be noted that this age difference could be quite extreme,
perhaps millions or even billions of years, in principle.
Although age does not necessarily ensure greater technological
advancement, that is the obvious expectation from such a scen-
ario. Of course, we may never detect any technosignatures and
thus never have the opportunity for first contact, but under the
premise that we will one day succeed, it is interesting to ask
what the implications of our suggested contacted inequality are.

Some have voiced concerns that humanity’s historical record
of encounters between societies of different technological capabil-
ities generally ends poorly for the less advanced entity. Of course,
it is unclear that human behaviour can be extrapolated to another
intelligence that is far older than ourselves. Accordingly, we prefer
to avoid speculating about the impact of such a contact directly.

However, the contact inequality hypothesis does have signifi-
cant bearing on our own active searches for technosignatures.
Focusing on searching for technology similar to that of our own
may be unlikely to lead to success. If an intelligence is much

5Moreover, it would be interesting to consider non-monotonic models with functional
dependencies of detectability versus lifetime (but not to be confused with age).

6We did attempt to repeat our study assuming a proportionality of Ln, where n is a
free-index, but were not able to make analytic progress.
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more advanced than us, then planet-integrated transient signa-
tures associated with disequilibrium (such as climate change
and pollution) are less likely to be the means of detection, since
they are simply unsustainable for a long-lived entity.

Further, to ensure their own survival, such intelligences may
have relocated or expanded their presence off-world, thus favour-
ing technosignatures associated with such activities. Ultimately,
this work concerns itself with a formalism for establishing the
hypothesis rather the consequences of it. But from our work,
we encourage the formalism and prediction established here to
be considered in future efforts to seek out technosignatures,
including more detailed exploration of the assumptions and ana-
lytic forms of civilization longevity and technological age.
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