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Abstract. We construct a correspondence between the set of partitions of a finkeaed the set of

pairs of walks to the same vertex on a graph giving the Bratteli diagram of the partition algelfa on

This is the precise analogue of the correspondence between the set of permutations of a finite set and
the set of pairs of Young tableaux of the same shape, called the Robinson—Schensted correspondence.
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1. Introduction

Let us recall Section V.5 of Herman Weyl's wonderful bolike Classical Groups
[25]. There Weyl illustrates two constructions of classical invariant theory. He first
pictures the elements of the symmetric group as being all possible heterosexual
pairings of a row of ‘male’ symbols (Weyl's inverted commas) with an equinu-
merate row of ‘female’ symbols. The group product is realized by juxtaposing two
such permutations and contracting ea®nage(imale, Jfemale) (male, kfemate) INtO
(imale, kfemale), @S illustrated in Figure 1.

Weyl shows how, fom symbols of each sex, this picture lends itself to the
interpretation of a quotient of the symmetric group algetfsg as the centraliz-
er algebra Eng(v>(V®") (V aC-space, of dimensiod say;gl(V') the general
linear group). He then points out that a basis of the larger centralizer algebra
Endo(v)(V@’")(D(V) the orthogonal group), may again be built from pairings
amongst rows of males and females, but in the case where homosexual pairing
is also possible, or as Weyl put it ‘without any discrimination of “sex”’. The
other new feature is that in juxtaposition of basis elementsd¢ say, there can
appear connected clusters (closed under transitive extension of pairing) with no
representative in the exterior. Lets, ) be the number of such clusters, and let
s o t be the basis element obtained by combiningith ¢ and discarding these
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Figure 1.Symmetric group multiplication. Figure 2.Brauer algebra multiplication.
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Figure 3.Partition algebra composition.

clusters. Then, for an indeterminate, an algebra multiplicatiomay be given by
st =" s e t (see Figure 2). This defines the abstauer algebral, (v)
[3] which is, say, & [v]-algebra, not a group. When— d = dim(V) it has an
action onV®"™ which centralizes that ad(V').

If Weyl had pursued his colourful image, the next step, at least while restricted to
two sexes, could have been to countenance gatherings of males and females without
discrimination of sex oquantityof partners (that is, simply all partitions of the set
of males and females). Possible such gatherings are illustrated in Figure 3 (note that
the representation of a gathering is not unique here), and in fact the composition
illustrated in Figure 3 brings us to the abstrpattition algebraP,(v) D J,(v)

[16]. This is a still larger algebra with an action 8", in casev — d. The action

is called the ‘Potts representation’ [11, 8] — see Section 2. Note that the symmetric
group § may be regarded as a subgroup of the orthogonal gfo@p), acting

by permutation of standard ordered basis elemenis ifihen the action of, (d)
centralizes the action of,;Sliagonally on// ",
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In the present paper we examine this néyl dualitybetween the partition
algebraP, (d) and the symmetric group,Slt is interesting from a physical point
of view, as we will dicuss later, and also induces some interesting combinatorial
results (cf. James and Kerber [6] p. 231), involving graphs characterized;via S
representation theory on the one hand, and Bell and Stirling numbers on the other.
This data is best organized as a correspondence of Robinson—Schensted type.

1.1. ON CORRESPONDENCES OROBINSON-SCHENSTED TYPE

For G an algebra ovet with countably many finite dimensional simple modules
let G denote an index set for these simples. For example, defifjrig be the
set of Young diagrams of boxes (i.e. the set of dominant weights of degree
d, thusT> = {(2),(1,1)} and so on) we may tak€S; = T'y. Let A, be a
sequenced; C A, C --- C A, of finite dimensional semi-simple algebras over
C. The Bratteli diagram foi, is an oriented graph whose point set is the disjoint

union of index sets for all the simple modules, A;, and wheréa, b) is an edge of
multiplicity m if simple with indexa is anm-fold direct summand of the restriction
of simple with index from Ay to A, 1 (Ssomek) [4].
Let A,, B, be two sequences as above, of lengémd!’ respectively. We say
B, is arefinemenof A, if {A;|i =1,2,...,1} C {B;]i =1,2,...,I'}. A refined
Bratteli diagram for an algebrd is a Bratteli diagram for some sequendg of
length! in which A; = C (we takeA; = {e}), A, = A, and each edge has
multiplicity at most 1. Note that if an algebréhas a refined Bratteli diagram then
the dimension of simplé,;,, with indexb € A, is the number of ‘forward’ walks
on the diagram frone to b. By elementary representation theory considerations
dim(A4) = Zbez(dim(Lb))2 and this implies a bijection between any basispf
and the set of pairs of walks to the same vertex. If we have an infinite sequence
of algebras such that truncation at any finitgives a refined diagram; and if
eachA; has a natural basis (e.g. the group in the case of a group algebra); then a
construction for an explicit bijection with the natural basis which works fdnaill
be called aRobinson—-Schensted correspondence4gr Note that theexistence
andconstructiorof a correspondence are in principle entirely separate problems!
For example, consided; = CS;. Then the Bratteli diagram for the sequence
A1 C Ay C --- C A is refined for any. Walks in this case are standard Young
tableaux (since these simply record paths orifie Bratteli diagram). Recall that
the original Robinson—Schensted correspondence constructs a bijection between
the elements of the symmetric group and pairs of standard tableaux of the same
shape. Thexistenceof such a bijection is a consequence of Young’s original
analysis ofS,, circa 1930 [26] (see also Rutherford [21]), but representation theory
alone does natonstructany bijection, and indeed no candidate for a construction
appeared until Robinson [19], and it was not until Schensted [22] that a workable
version was developed. The subsequent uses of the correspondence have been
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manifold — see for example Knuth [9], Dagt al. [14], Stanton and White [23],
Kirillov [15].

The Bratteli diagram for sequences with = P;(v) is notrefined in general.
However there is a natural refinement. The representation theory of the partition
algebraP, (v) then implies the existence of a bijection between its canonical basis
(the set of partitions ofi2 objects) and walks on this refined partition algebra Brat-
teli diagram, which we constructin Section 1.3. Indeed representation theory shows
that a bijection exists respecting the various quotientssEfid*"), i.e. between
partitions intod parts on the one hand, and a suitably truncated representation
theory (see Section 2) on the other. In this paper we construct such a correspon-
dence (Section 3). This has several applications, some of which we mention in the
discussion. We recall some key definitions and results from [12] in Section 1.2.

We can anticipate that walks on the Bratteli diagram for an arbitrary sequence
of algebras, even if refined, are not as easily characterized as those for the sym-
metric group. We conclude this section by considering a class of sequences of
algebras (including the partition algebras) which have, by construction, a natural
organisational scheme for walks.

Suppose that is a bialgebra with countably many finite dimensional simples.
Let C be a category of semi-simple finite dimensiotamodules, closed under
tensor product. Suppodé € C, and that there exists simple, € C such that
V ® R, = V, and considerd; = Endz(V®~1) (and takeV*° := R,). Then
by construction4; C A;;1 and this gives us a ready supply of sequences of
algebras to play with (not necessarily refined). In particular we have seen that in
caseG = CSy, with V' as in the previous section (dii) = d), the centralizer
algebras are quotients of the partition algeliagl).

Suppose further thdt ® R, = @, .z Ma Ry gives the simple content of the
product of with simpleR,, a € G and that the matrixMa),, ¢ is sSymmetric
(for example, as if7 is a finite group algebra and is self-contragredient). By
constructiond; — G, and so walks on the undirected graph with incidence matrix
(M,) are in correspondence with forward walks on the Bratteli diagram .of
Moreover, if F C G is a subalgebra with the same properties thenEn®?) >
Endg(V®). If in addition End-(V®*~1) < Endy(V*?) (for example ifF, G are
finite group algebras and = G ® » Vp wherely is the trivial F-module) then we
may make a refinement of, by inserting at eacit A; ¢ Endr(V® 1) C A;41.

Again by construction, walks on an undirected graph with vertiGeg F will
encode walks on the new Bratteli diagram. In case the new diagram is refined
this new undirected graph will be called ghadowgraph in the following. For
example, we will see that puttingf = CS,; 1 leads to a refinement of the partition
algebra example discussed above.
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In particular, let&, be the bipartite graph with point s U I'y_1 and (), v)
an edge ofs, iff A = 1 + O as Young diagrams. For exampe is:

(4) <(3)<(3,1)<= (2,1 <(2,1,1) «(1,1,1) «(1,1,1,1).

|
(2,2)

We will see that®, is a shadow graph for the diagram of a quotient of the partition
algebraP, (d). Now for G a graph and., v vertices ofG Ieth ,(n) be the set of
walks ong of lengthn from p tov. Let S(n, 7) be theStirling number of the second
kind, which is the number of ways of partltlonlng a set of degtdnto exactly:
parts. Then we find thdD(; , (2n)| = 3271 S(n, i), which ford > n gives the

nth Bell numberB,, .= Y7 ; S(n,z). For example}D(ﬁ‘; (4)(6)| = 5. In this paper
several such identities are established in the algebraic context, as a trivial corollary
of the R-S correspondence for the partition algebra (see equation (6)).

1.2. BASIC DEFINITIONS

(1) We denote the rows of males and femalesnby= {1,2,...,n} andn’ =
{1,2,...,n'} respectively.

(2) For M a setE,, is the set of equivalence relations &, or equivalently the

set of partitions of\/ into disjoint subsets.

(3) Fork afield we writekE,, for the freek module with basi&,, . Thus foru € k

the partition algebra (on pairs) P, = P, (u) is kE ,, i, With product as in Figure

3 (withv — u).

(4) The function #: E ,,,,, — Nis given by # (z) = the number of equivalence
classes of containing both primed and unprimed elements. For example, defining
partitions

A" = ({11}, (2,2}, ..., (i}, {i'}, ..., {n,n'}} and

AY = {{1,1'},{2,2'},....{i, 5,7, 5'}, ..., {n,n'}}

then # (A") = #7'(AY) = n &1.
(5 For givenn we writeE for E ,, 7, and fori = 0,...,n

E[i] .= {z cE|# (z) =i} and E[i]:= {z € E|# (z) <i}.
(6) ThenkE[i] D kE[i <1] is an inclusion ofP, (u) ideals andi[4] is a basis for

theith section with respect to this filtration, which we cBJJ[i].
(7) Furthermore in characteristic 0 and forZ 0 (as we assume hereatfter in this

pape)) there exist idempotents = H;‘;{ ATj' such that

P, (u)e; Py(u) = kE[i]
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(we takee,, = 1) and
e P, (u)el = (CSi, mod kIE[Z <:>1],

which shows that an index set for simple left modu§$n) of P, (u) is
Tni={AFii=012...,n}=JT
=0

(8) P+ (u) is the subalgebra of,1(u) in which the (n + 1)th male and the
(n + 1)th female are always in the same cluster. We whfg¢u) C P, (u) for

the embedding which associates to a diagran®,j(u) a diagram inP, (u) in
which the cluster containing the + 1st male and female does not contain any
other members, and all other clusters are the same as in the original diagram.
(9) It is shown in [12] that the categories of left-modul& (u)-mod and
P, (u<1)-mod are Morita equivalent. Thus the irreducible representafi¢(vs+)

of P, (u) may be indexed by the same set as the irreducible representations of
P, (u), namelyT,,. In order to distinguish them we append the symbdb the
indices in theP,, (u) case, calling this index s}, . .

(10) For v indeterminate, we defingy(n) = Sy(n) (in the following we will
omit then, when there is no ambiguity). Passing through a suitablgbasis (see
[17]) S, is then also defined for any particular valuef v. In fact, whenu ¢ N,

S\ = Sy still holds, that isS), is generically simple, but i, = d € N, S, can have

a proper submoduld{ (in fact always simple if it exists, see [17]). Then one gets:

Sf = 8y\/1§. (1)

We will now calculateS, dimensions using a Bratteli diagram. Note that elementary
considerations give

E o | = Bon = Y (dimSy(n))>.
el

1.3. THE BRATTELI DIAGRAM

(1) The formal infinite matrixU with row and column positions indexed by
partitions (Young diagrams) ordered by degree and then lexicographically ([10]
p. 5) is given by

1 A=yp
Up=41 A=p+0O
0 otherwise
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where+0 indicates adding a box to the diagram. L&t denote the transpose of
U.

PROPOSITION 1The matriced/ and Ut are the generic universal restriction
matrices for generic simple modul&g restricted viaP, 1 D P, D P, respec-
tively. That is

Poy 4 Sa(n +1) = @(U)u/\ Su(n+) and p, | Sx(n+) = @(UT);MSM(”)
B W
(in non-semisimple cases the sums may not be direcflgde

This is an obvious refinement of the case for restriction directly figym to P,
(see [16]).
For example[J begins

1 (0)
1 1 (1)
0 1 1 (122)
U= 8 é 2 é 1 basis labels ((3))
0 0 1 1 0 1 (2,1)
0O 0 0 1 0 0 1 (13)

which data converts to the generic simple module Bratteli diagrai,foe Py C
Py, C Py C Py C...shown truncated in Figure 4.

It follows that there is a R-S correspondence for the generic partition algebrain
which the canonical basis is of partitions rather than permutations, and walks are
on Figure 4 or on the corresponding shadow graph (see Section 2), rather than pairs
of Young tableaux. But in fact there must be more structure. We will now show the
existence of a correspondence filterednoynber of parts

2. The Potts representation
(12) Ford € N andy € d the Pottsy representation of, (d)
MY P,y (d) — End: (V™)

is defined as follows. The spa®&®” has as basis the set of colouringsofites
by d colours,{v¢|f: n — d}, and ifz € E the matrix forrY (z) in this basis is

given by
lin®j= fUg(i)=fuUg'(y)

RU(2)pg= Li~"k=fUg(i)=y i, E{n+1,n+1} 3k, (2)
0 otherwise
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_ . Bm EFm §F@m
oy \/\/M
0+ o+ B, O+ g, B.om+ Ej?r He., B, oo+

Figure 4. Part of the ‘Bratteli’ diagram foPy C Py C P, C Py C P --- (to be precise, all
restrictions ofS oy (9)), inwhich eacls), is represented by its dimension; and the corresponding
part of the associated shadow graph — see equation (5) for ‘universal’ vertex labels.

where the subscriptg, g refer to the given basig, U ¢’ has domaim U n’ and
g'(i") = g(i), i.e. f U ¢ is a colouring of sited1,2,...,n,1,2,...,n'}. The
conditions say that thé, g matrix element ofk(z) is 1 only if the colours of all
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sites connected im are the same, i.e. the elements of a clagsad an equivalence
relation all have the same colour.

In particular all sites connected to ‘dummy’ site+ 1 have coloury. The
colour y is the chosen ‘magnetic field direction’ (differeptgives isomorphic
representations).

(13) This restricts to the Potts representatinof P, (d).
(14) Ford in N, P,(d) (resp.P,(d)) is the image of?, (d) (resp.P,(d)) in the
Potts representation [11] (resp. Pajteepresentation).

PROPOSITION 2For d € N
Py (d) = Ends, (V"), 3)

Pn-l—(d) = Ende_l(V®n)' (4)

Proof. These results are proved in a more general context in [12]. Here we give
a shorter direct proof using an approach of Woodcock.Ldte an element of
End-(V®") expressed via matrix units in the colouring basis (corresponding to
colourings ofn Un'). ForG C S; we havel’ € End; (V®™) iff Ty = Ty f.4 fOr
allw € G. The § orbit of f, g is characterized by the patrtition it defines, thus

d
dim(Ends, (V®™)) Z (2n, 7).

All such partitions appear iR and the partial ordef onE allows us to construct
the correspondin@”s from equation (2), hence equation (3) is proven.

Let §;_; act by permuting the first <1 colours, i.e. fixing coloud. The §_;
orbits are indexed by partitions with a marked point (that containing calpull
such appear i, 1 (d) (the marked part is that containingt 1). O

(15) Ford <1 < n define the set injection
I:Ty—T, (5)

by (Z()\)); = ;41 (i.e. delete the first row of the Young diagram).

Note that this induces an injectionBf 1 in T'; (which adds one to the top row
of a diagram), through Wthijd 1) d _1>(2n) — Da‘i,(d)(Zn). Forw an element
of any of these walk sets we will writ&(w) for the sequence in which each
point in the walk is replaced by its image underThusI(D(@d 1) d _1)(2n)) —
I(D(Q;‘;’(d) (2n)) is an inclusion.

(16) Forr a positive integer the set of partitionsah d parts will be denoteﬂg, and

in < d parts denoteds?. We also putV,? := I(D(@j (2r)\Z(D; Dy "D ().
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PROPOSITION 3 [12]The algebraP, (d) (respectivelyP,  (d)) is semi-simple;
for n > d <1 the simple modules are those induced from the moe[uﬂjég)p\ €
Ly} (respectively{Sg(A)M € T'y_1}); for n < d <1 the simple modules are

induced from théwell definedl subset of modules for whigH(\) € T,,.

The Bratteli diagram foﬁ*(d) is the truncation of thé’, (generic) diagram illus-
trated in Figure 4td@(I'y) on P, layersand’ (I';_1) on P, ; layers. More precisely,
this is the case for > d < 1; while forn < d <1 only the vertice€ (I'y) N Ty,
(respZ(I'y4_1) NT,) survive.

N.B.: The edges thus determined from Proposition 1 on the veitiged';_1 (i.e.
by looking at the first rows of the diagrams as well) exactly match thosg,of
described at the end of Section 1.1.

Thus

dim(S7,)(n)) = |DGi 4 (2n)| =: D(2n,) X € Ty, (6)

dim(Sf (n+)) = D \(2n + 1) = D(2n+1,)) A€Ty 1,

yielding
x| = > (D(2n,1)? = DG 4 (4n)|
Aely
and

ol = 30 (D(n+1,0)° =D g (4n +2)|
d—1

cf. n! = Y (irreducible dimensior) in the symmetric group case.

3. The correspondence

Having established the existence and required properties of a correspondence
betweent! andW¢, for any positive integerd, r, we now construct it. We do

this iteratively ond. The strategy is to show thaf andiw¢ can be built recursively

from {EZ~1|s € r <1} and{Wd~1|s € r <1} respectively. In the following, we

will give these recursions; it will then appear clearly that they are identical, yielding

a common structure fa? andW?. The basis is the correspondenced at 1; it is

forced, sinceg} andWw}! have only one element.
Note that ifd > r bothE¢ andW,¢ are empty sets, so we assume in the following

2 < d < r(d=1isknown).
We first exhibit the structure dﬁg defining a new filtration.
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DEFINITION 1. The chain adjacency number of a partitionyok given by
N:E —{0,1,...,r &1},
Niz— |{ierel|i~"i+ 1},
then

EL™ = {1 € E}|N(z) = m}.

(17) Forz € E, write< <” j if 1 < j andi ~" 5 and Ak such that < k£ < j and
i~ k.

LEMMA 1. There is a bijection

4: EHO) & ge

1
1

given by
z—1y suchthat <¥j < i<¥j+1

N.B.: The number of parts af(z) is one fewer than that af.

Letus consider the following example= {{1, 3}, {2, 4}}. Its chain adjacency
number is zero, so € ]Ei’(o) andu(z) = {{1, 2, 3}}.
(18) Define A,,(m) as the set ofveightsof lengthn, degreem, i.e. sequences
k = (k1, k2, ..., k,) of non-negative integers such that k; = m.
(19) Let z be any reflexive relation, thef(x) is the transitive symmetric closure.
Let relations¢p, ¢1 C N x Nbe{(1,1),(2,2), ..., (i,%),...} and{(1,2), (2,3),
..., (4,7 + 1),...} and let¢ = ¢y U ¢1. The comb of Rollettakes a partition
x and expresses it as a pay, T(x N ¢)) wherey is the partition of the parts
of T'(z N ¢) (in the natural order) corresponding i0 Note thaty N ¢; = 0,
and thatT'(z N ¢) is determined by the sequence of lengths of it's parts in
the natural order. For example, the comb takes- {{1,3,4},{2,5,6,7}} to

({{1,3},{2,4}}, {{1}, {2}, {3,4},{5,6,7}}). Thus

LEMMA 2. For m € {0,1,...,r <1} there is a bijection

w: BH S5 BP0 X Ay (m)

given by

Gz (y, (k1y -y kr_m))
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as above, wherg; + 1is the length of théth part of T'(z N ¢).

Forz = {{1,3,4},{2,5,6,7}} in E° one getsu(x) = ({{1,3}, {2,4}},
(0,0,1,2)).

We can now summarize the recursive structure of the set of partitionsaf
parts.

THEOREM 1.For d andr two positive integers; > d > 1,
r—1
B = | e
o L
defines a partition oIEg andform € {0,1,...,r <1}, the map
20: XM — BITL L X A (m)

given by2y = (4 x ldentity) o U is a bijection.

Remarklf d > r,E¢ = 0, and ifd = 1,E} = {{r}}.

Let us now construct the structuredt? in a parallel way.
(20) We define a certain subset of the set of possible two step subsequences of walks
on the shadow graph of thié, Bratteli diagram as follows. Let 8 I',, denote the

empty diagram, and Ieﬁ denoteX with one box added on the row below the last
row. Then

T = {(0+,0,04)} U {(A+, 0, A+)|A # O}

Let us putw(i, ) for the subwalk of a walkw € W corresponding to steps
1+ 1,...,7 (4,7 two integers such thatQ i < j < 2r); we can now define:

DEFINITION 2.
U:we—{0,1,...,r 21},
Uiw— {ierel|w2iel,2i+1) € T}.
wWem) = {w e W | U(w) = m}.

For A a Young diagram lep(\) be the number of rows of, let A + 0O; denote

adding or subtracting a box from roivlet \; be the number of boxes in thith
row of A, and
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() = max{j|x; = A}

LEMMA 3. There is a bijection
g w0 &S wil
w—=w,

wherew’ is obtained by supressing the first and last steps aind replacing, for
everyl € r &1, the subsequence(2] < 1,2 + 1) according to the following
prescription:

AN Aen)t = A0 em)t A en;

fAA0 AN AT = A (Ae0p,m) A

)\+,>\+Di,(>\+|:li)+ )x,)\Jr,)\-f—I:li

I 1 1 1 ©

ifi#£j >\+,>\+Di,(>\+|:li <=>Dj)+ A, (>\<=>Dj)+,>\+|:]i <0;

ifi ¢ {1,p(\) + 1} A A+05AT = A (Aedne) A
AT A +0L AT = AT A

The following figure sketches the different possibilities for a two step walk between
either two elements of := I', or of I'; = I'o;. TO be precise, this figure
ilustrates the example in which= (4, 3,1).

{(A =87} (A)*

{A -0} {(A-o+D0)} {(A+09}
(N)*

() {(A+0)}

{0 -7 {G-0+207 {(+0)7}
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A direct check proves that all possible subsequeng@s <1, 2; + 1) of an

element ofW,fl’(O) have been considered, and that the various right-hand sides are
well defined and distinct, and that the map is surjective. In particul@yifi, j))

is the minimal value ofl for which, viaZ, the subwalku (7, j) corresponds to a
walk of &4, one sees that for anyc r < 1.

g(D(w(2i 1,2i +1))) = q(w(2i 1,20 + 1)) &1

SO

For examplew = (0,07, 0, 0",0,0", 0,0",0) Wf’(o) givesy’(w) = (0,0T,
0,0%,0,0", 0). In this casey(w) = 2 andq('(w)) = 1 (recall thafy = {0}).

We may encode a wallv as a pair(z, k) wherez is the walk obtained from
w by removing all those adjacent pairs of steps which appe@r andk; is the
number of distinct pairs in th&h continuous chain of removed steg®(nting
chains of length zero). Note that the lengthof the ith removed part contains
enough information, sincg is in one to one correspondence with. Therefore

LEMMA 4. There is a bijection for anyn € {0,1,...,r <1}

o' W) & whO A, (m),
given by

O'wes (2, (k1. krom))-

Wherez is obtained fromw as described above arftk; is the number of steps in
theith extracted part, also as above:

1—1 1—1
ki = max{l €N | w (2z'+22kj +2a<:>1,2i+22kj+2a+1>
j=1 i=1

ETVO<a<l<:>l}
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The Figure below illustrates the steps which may be removed (dotted lines) at level
w(7,9).

For instancew = (0,07, 0,0",0,0",0,0%,0,0",0,0%,0,0", 0) yields
EZ]I(Q‘U) = ((07 0+7 D’ 0+7 D? 0+7 I:‘7 0+7 0)7 (07 07 17 2))'

THEOREM 2.For d andr two positive integers; > d > 1,
r—1
W;i = U W;ia(m),
m=0

defines a partition ofV? and form € {0,1,...,r <1}, the map
' Wrd’(m) — W,fi:nll,l X Ap—m(m)
given by’ = (4’ x Identity) o %' is a bijection.

Remarklf d > r, W¢ =), and ifd = 1, W}! = {(0,07,0,...,0",0)}.

We can now state the main result.

THEOREM 3.The map’y: Ef — W, r > d > 1, given recursively by

o4 B W
Y\ {r} —~ (0,0%,0,0%,0,...0",0)
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Cq = (Qﬂ,)fl o (Cd—l X Identity) o

is a bijection.

Proof. Comparing Theorems 1 and 2 we see that, when they are not empty,
E! andW¢ decompose similarly. The correspondence at lévislthen obtained
schematically via

r—1 r—1
By = | B wi = J wi
m=0 m=0

|

Ef(m) r m— 1XAT m(m)

Cg1XId

i -1
WL % Ay (m) 2 wd(m)

|

Let us now give the graphical representation of the various walks involved in some
examples.

Partition Walk

{{1,3,4},{2,5,6,7}} (0,0¢3,0¢m,0%0,07,050,070,050)

({13124} an 0.0°.0'a.0a,00)

{{1,2,3}} (0,070,0%0,070)

C.({{1,3,4},{2,5,6,7}}) = (0,07, 0,0%,0,0%,0,0%, 3,0%,0,07,0,0%,0)

Most of the steps needed to check this have been given as examples above; there
only remains(;({{1,2,3}}) = (0,0",0,0",0,0%,0).

4. Physics and further motivations

The main physical interest in the partition algebra comes from its role as a master

algebra for the transfer matrices of Potts models, dichromatic polynomials and Potts

guantum chains in high dimensions. These are reviewed extensively elsewhere (see
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[12] for details). Our correspondence may be useful in determining the primitive
types of correlation function of the three-dimensional Potts models in particular.
Recall that the Temperley—Lieb algelsfd,, (v) [24] is a transfer matrix algebra

for two (or 1+ 1)-dimensional systems, and that the algebra basis and associated
models coming, in our terms, from the refined Bratelli diagramf (a truncated
Pascal triangle) have been very useful in analysing two-dimensional models (see
[1] for instance). There is a natural inclusion of the Temperley—Lieb algebras
TLo,(v) C P,(v) (@ndTL2,11(v) C Poy(v)), and the transfer matrix algebra

for three-dimensional models will also include i) (v). The problem is that the
structure of the algebra for three-dimensions has so far defied direct analysis. It
is well known [11] that thePotts quotient®f 7L,, and P, (ﬁzn,f?n resp.) are
isomorphic forv — d = 1,2 (and not isomorphic otherwise — although= 3

is ‘essentially’ isomorphic [8]). The — 1 result is trivial, but ab — 2,3 the
restricted Andrews—Baxter—Forrester basis (coming from the associated restricted
IRF model [1]) has an obvious bijection with one of the walk sets described in
the present paper. Passing through our correspondence this suggests a way to
build the generators af, (2) in terms of those 0fZ2,(2), and hence to build an
action of P, (2) on walks. By restriction this will give an action of the algebra for
three-dimensions. Thén(Z) action should ultimately generalizeto— higherd,

and hence give a partial characterization of the restricted algebras and correlation
functions of Potts models, in three-dimensions and beyond. This work is in progress
(cf. [13, 20)).

Our correspondence may also be useful in constructing the equivalent, in the
partition algebra context, of Young's semi-normal representations of the symmetric
group (recall that, given the standard Young tableaux, it was Young’s next achieve-
ment to figure out the semi-normal action [26]!). As in the Young case it seems
plausible that this would give an insight into the modular theory of the algebra.
Again by analogy with that case we might then expect to be able to define gener-
alized vertex models and restricted models through these representations. Work on
these areas is also in progress.
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