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I. Introduction
Suppose that (X, 38, /A) is a probability measure space and T is an invertible measure
perserving transformation of (X, 38, /x). T is called weakly mixing if for any two
sets Au A2e 38 one has:

In this case we will say that (X, 38, fi, T) is weakly mixing system. Furstenberg
proved in [Fl] that any weakly mixing system is 'weakly mixing of all orders': if T
is weakly mixing then for any k e N and Ao, A , , . . . , Ak e 38

lim — I (/»(AonT-"A1nr2"A2n'"nrt"Ali)
,V-oo TV n = i

One can show (see [FKO, Theorem 3.1]) that the last statement is equivalent to the
following:

THEOREM 1.1. 7/* (X, 98, /A, T) is a weakly mixing system, then for any fceN and any

lim
JV-.00

^A-nJy;. = 0.
L2(X)

The purpose of this paper is to prove an extension of Theorem 1.1 which we will
call weakly mixing PET (PET stands for polynomial ergodic theorem). We will say
that polynomials p(t), q(t) are essentially distinct if p(t)-q(t)^const.

THEOREM 1.2 (weakly mixing PET). Suppose that (X, 5ft, }i, T) is a weakly mixing
system and let Pi(t), p2(t), • • •, PkU) be pairwise essentially distinct polynomials with
rational coefficients taking on integer values on the integers. Then for any f,f2,... ,/& e
L°°(X, 98,/i) one has:

lim
iV-»oo

1 N

_ y r'^A-nJy;^
L2(X)

= 0. (1.1)
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338 V. Bergelson

Remark, As a matter of fact, one can prove that under the conditions of Theorem 1.2

1 ~"1

lim
N-M Br

Tpk ( i ) = 0.

This uniform version of the weakly mixing PET will be dealt with in § 3 where as
an application of it we will show that any weakly mixing system is 'uniformly
polynomially mixing of all orders'. Our weakly mixing PET is so to say a result of
crossbreeding of Theorem 1.1 with the following PET of Furstenberg ([F2, p. 70]).

THEOREM 1.3. Suppose that p(t) is a polynomial with rational coefficients that takes
on integer values on the integers and let U be a unitary operator on a Hilbert space
dK. Assume that U has the following property: if for some neN and fe ffl, U"f=f
thenf=0. Then:

lim — = 0.

Furstenberg's proof of Theorem 1.3 makes use of the spectral theorem. We will give
below quite a different proof (avoiding the use of the spectral theorem). A generaliz-
ation of this method will lead us to the proof of weakly mixing PET. The main
tools in the proof of Theorem 1.2 will be Theorem 1.4 which is an abstract version
of classical van der Corput's difference theorem (cf. [KN, pp. 25-26]) and Theorem
1.5 which is a generalization of Theorem 1.4.

THEOREM 1.4. Suppose that {xn}°^=i is a bounded sequence of vectors in Hilbert space
and suppose that for any h > ho> 0

1
— I {xn,xn+h) =
N

Then

lim
N-»co

Proof. By the classical van der Corput's fundamental inequality, if xu x2,..
complex numbers and H is an integer with 1 < H < JV then

(1.2)

(1.3)

., xn are

H2
N

I

+ 2(JV+H-1) l(H-h)Re I xnxnxn+h, (1.4)

where Re z denotes the real part of ze C.
Examining the proof of (1.4) one sees that the same inequality holds for vectors

in Hilbert space, absolute values in (1.4) being replaced by the norm and the products
xnxn+h by the scalar products (xn, xn+h). We get:

N

I xn
n = l

2 (JV+H-1) (1.5)
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Weakly mixing PET 339

Assuming (without the loss of generality) that ||xn|| < 1 for n = 1, 2 , . . . , N we get
from (1.5):

N + H-l "-HN+H
TIN

 +
 fc=!

Using the assumption (1.2) we obtain:

H2N2
1 N-h

N-h nt,
(xn,xn+h)

lim
N.t,i *.r=4. (1.6)

As H is arbitrary, (1.6) gives us (1.3). Theorem 1.4 is proved.

It is clear from the proof of Theorem 1.4 that the conclusion remains true if (1.2)
is replaced by

( \ N \
lim I lim — X {xn, xn+h) =0 .

As a matter of fact it is enough even to assume that

/ 1 N \
D-hm I hm — X (xn, xn+h) = 0;

(D-lim,, ah = 0 means that l im^oo^p ah = 0, where P c M is a set of zero density).
This leads to the following:

THEOREM 1.5 (cf. Lemma 4.9 in [F2]). Suppose that {xn}™=1 is a bounded sequence
of elements in a Hilbert space. If

then

( 1 N \
D-hm I hm — I (xn, xn+h) = 0,

lim
N-<x>

1

N

N

y
n = l

= 0.

Before giving the formal proof of Theorem 1.2 (in § 2) we shall give two illustrative
examples.

To begin with, let us prove Furstenberg's PET (Theorem 1.3) with the help of
Theorem 1.4. We will use the induction on the degree dp of polynomial p(t). If
dp = 1 then the result in question follows from the von Neumann's classical mean
ergodic theorem. Suppose that dp> 1. Writing xn = Up(n)f, we have:

— If (_/p("+'")-p('')r\

Notice that for any h&N the degree of p(n + h)— p(n) is equal to dp — 1. By the

induction hypothesis

lim -[- I (xn,xn+h)= lim -J- £ (f £/'<"+'"-'<">/> = 0,

and the result follows from Theorem 1.4.

Remark. Suppose that T is a weakly mixing invertible transformation of (X, 38, /x).
Then Tx T is also a weakly mixing transformation (of the product space). Applying
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340 V. Bergelson

Theorem 1.3 to the unitary operator induced by TxT and performing routine
computations we obtain that for any / i , / 2 e L2{X, 58, /x)

This gives

The last formula will be used in the proof of implication (ii)=>(iii) below.
Suppose now that (X, 08, /x, T) is a weakly mixing system. Let 3€= L2(X,

/ , , / 2 e L°°(X, 38, /x) and let us try to prove that

D-lim J /, r<n)/2 d» = | /, dy. J f2 dp. (1.7)

lim = 0. (1.8)

One might try to apply the same idea as above to the sequence xn = T" / , T2n f2.
Unfortunately, the expressions (xn, xn+h) do not look too simple in this case.
Nevertheless one can give the following multi-stage proof to (1.8). Consider the
following statements.

(i) If aua2,. • • ,a7 are pairwise distinct non-zero integers then for any

lim
JV-»0O ^ n = l i = l i — 1 J

= 0.

Remark Statement (i) is 'almost' a partial case of Theorem 1.1. We say 'almost'
because Theorem 1.1 deals with positive powers of T only. One checks readily that
this restriction is insignificant in any of the proofs of Theorem 1.1, given in [Fl],
[F2], [FKO]. The reader is also referred to § 3 of the present paper where a slight
generalization of Theorem 1.1 is proved (formula (3.1)fc).

(ii) For any non-zero integer c, any pairwise distinct integers d\,a2, «3, <*4 and

lim

(iii) For any Oi, a2, b, ceZ with a, 5̂  a2, b, c # 0 a n d f o r a n y / 0 , / ! , / 2 e L°°(X, 38,,

JV n = i J J J
d = 0.

(iv) Forany/1 , / 2£Lo°(X,38, / i )

lim
N-.00

= 0.

We will prove (taking - as we may - (i) for granted) that

Before giving the proof of (1.8) we want to make two agreements (which will be
kept in § 2 as well). First of all, we will confine ourself to the case of real scalars;
it is completely clear that this can be done without the loss of generality. Second,
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Weakly mixing PET 341

if (s) denotes a statement of the form: '/„ is strongly convergent t o / ' we will denote
by (s)K the (weaker) statement '/„ is weakly convergent t o / ' . We will prove actually
the following:

(i),,,=»(ii). Assume without the loss of generality that j / 1d /x=0 and denote
n t i Tc"2+a'"/ by xn. We have to prove that

lim
1

L^ n = 0.

By Theorem 1.4 it is enough to check that for h > ho>0

1 *
im — I <xn, *„+,,> = 0.

We have:

= f/. ft T«
J i = 2

ai)"fi n r2cfin+(a' a')n+c)1 + a ' h / j 4 "

"/ n T(2ch+a'-a^"i,dfi, (1.9)

where / = Tch*+a'hft, i = 1,2,3,4.
It is clear that for sufficiently large /i the powers of T appearing in (1.9) are

pairwise distinct. Thus by (i)w (and by assumption J / d/x =0) we get:

lim -}- I (xn,xn+h}= lim -J- I | /, ft T<a'-<)ny- ft r(2c*+a'-')"/l dM

4 f 4 f 2
 4 / f \2

= n u ^ n r*1 +°ihfidfi = u\\fidfi)=o.

The application of Theorem 1.4 now gives (ii).

(ii)w=>(iii). For the proof of this implication Theorem 1.5 is needed. Assuming
without the loss of generality that J/o dp, = 0 and writing

T bnr rj*cn2+a.n r Tcn2+a^n r
JO1 J\l J2,

we get:

I
— \

x

bnr *r*cn2+a.n r T*cn2+a~n r *rb{n + h) r T*c{n + K)2+a,(n + h) r
JO I J\l Jl1 Jo1 J\

"(/o^ foTc" "' nfij
cn + '

x TCn2H2ch + a2-b)n + ch2
+a2hj-j ^

= j /Or"2 + ( a . - b )"/ 1r"2 + < a 2 -b ) / 2r"2

where fo=foT
bhfo, / , = r"2^-"/,, / 2 = T ^

b)n r '-
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It follows from (ii)w that

Hm ~ I (xn,xn+h)= f / » r / 0 ^ if, dp \f2dp\ r^".*/, dp
N^cc N „ = ! J J J J

x I Tch2+aihf2 dp

= ( J / o ^ / , rf/*) ( J /i 4*) ( J /2
By (1.7) and by assumption J/o djU=0we get:

( J ) ( J ) =0.
This proves (iii).

(iii)w=»(iv). Assuming J/ , dp = 0 and denoting xn = T"2fT2"2f2 check (1.4):

v v- \— I T"V T 2 n V T"1+2nh + hlf T
xn,xn+h)- \ i jii j2i ]xl

I r *r2nhT *rn2 f xn2+4nh

2"2+inh+2h2

where

It follows from (iii)w that

^n^ TT I <xn. ^n+h) = / i dM / i dM /2 ^M I hdp= 0.

Application of Theorem 1.4 now gives (iv).

2. Proof of Theorem 1.2
In this section we will assume that all the polynomials involved have zero constan
term. It is clear that such an assumption can be made without the loss of generality
On the other hand, this assumption will allow us to read in the formulation o
Theorem 1.2 'pairwise distinct polynomials' instead of'pairwise essentially distinc
polynomials'. Let F = {pl(t),... ,pk(t)} be a finite set of polynomials and assumi
that the largest of the degrees of p{(t) equals d. In such a case we will write deg F = a
We have: F-{Jd

i=x Ft where F{ denotes the subset of F consisting of polynomial
having degree i, 1 s i < d. By our assumption Fd ^ 0 . Each Ft can be furthe
decomposed into the disjoint union

.7 = 1
(° and q(t) e F('where F j° , j = 1,2, , n, have the following property: if p(t) e F(
r° and q(t) e F

then the leading coefficients of p(t) and g (0 are equal if and only if r = s. We hav<
thus
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Weakly mixing PET 343

It follows that to any finite set of polynomials F one can attach a vector
(nu n2,..., nd) where d =deg F, «,>0 for i = 1, 2 , . . . , d-\ and nd >0. The ith
coordinate of this vector is equal to the number of different groups of polynomials
of degree i (the groups are defined by the demand that polynomials p(t) and q(t)
belong to the same group if and only if their degrees are equal and their leading
coefficients coincide). We will say that («,, n2,..., nd) is the characteristic vector
of F.

Let &(n\, n2,..., nd) be the family of all finite sets of polynomials having
characteristic vector (nu n2,..., nd). Emphasizing on sets of polynomials for which
Theorem 1.2 is valid, consider the following two statements:
7(n,, n2,..., nd): "Theorem 1.2 is valid for any F e &(nu n2,..., nd)\
T(nl,...,ni,ni+U...,nd): 'T(nun2>... ,nd) is va l id for a n y nu n2,..., n{\

Noting that Theorem 1.2 is equivalent to the statement: lT(nu n2,..., nd) is valid
for any d' and bearing in mind that for d = 1 and n, = 1, 7(w,, n2,..., nd) is a
partial case of von Neumann's theorem, we see that Theorem 1.2 follows from the
following implications:

T(nA^T(n. + U «, > 1 ^
T(nit n2,..., nd)=^> 7(fij, n2,..., Md+i), d '•

We claim that in order to prove (2.1) it is enough to prove the following implications:

7(H1, n2,..., nd)=> 7(n, +1, n2,..., nd); "i , • • •, «d-i *zO,nd>l,d>l (2.2)d

(2.3)*.
«! , . . . , nd_,>0, nd s i , d> i> 1

(2.4)d

dzeros

Indeed, suppose that for some d > 1 7 ( / i , , . . . ,nd) is given. Then by (2.4)d and
(2.2)d+1 we see that T{\, 0,. . , 0, l,)d+isYmbois is true. Recursive application of

(2.2)d+1 gives then 7 ( n 1 ) 0 , . ; . ,0 , l)d + l s y m b ois for any n,. Then by (2.3)d+1>2 we get

7 ( 0 , 1 , 0 , . . . , 0, l)d+ l symbois. Applying (2.2)d+1 once again, we get

7(w,, 1,0, . . . ,1)^+1 symbols which in its turn (by (2.3)d+1>2) gives

7 ( 0 , 2 , 0 , . . . , 0, ,l)d+i symbols- Repeating this procedure, we see that

7(0, n 2 , 0 , . . . , 0, l)d+isymbols is true for any n2. It follows then from (2.2)d+1 that

7(»i, n2,0,.. . , 0 , l)d+isymbois is true. By the same procedure one gets

7 ( / i i , . . . , H~ 0 , . . . , 0, l)d+isymbQis for any l< i "<d . In particular, one gets

7 ( n , , . . . , n d , 1). By (2.3)d+i>d this gives 7 ( 0 , . . . , 0, 2)d + l s y m b o l s . Analogously to the

foregoing one arrives at 7 ( « l 5 . . . ,nd,2) and more generally to 7 ( n , , . . . ,nd, nd+x)
for any nd+x > 1. This is equivalent to 7 ( n , , . . . , nd, nd+i) and gives (2.1). Thus, to
finish the argument we have to show (2.2)d, (2.3)d>1 and (2.4)d. We will prove (2.3)d>1;
the proofs of the other two implications are left to the reader (the proof of (2.4)d

is the same as that of (2.3)dl; the proof of (2.2)d is completely analogous to that
of the implication (ii)=>(iii) which was proved in the first section).
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344 V. Bergelson

Before embarking on the proof of (2.3)<j we shall formulate a lemma, the easy
proof of which is left to the reader.

L E M M A . If the polynomials px(t),..., pk(t) are painvise distinct then for sufficiently

large (and fixed) h the polynomials px(t),..., pk(t), px{t + h),... ,pk(t + h) are

painvise distinct.

Another important remark is that in proving (1.1) we can assume without the loss
of generality that one of the functions has zero integral. This can be shown with
the help of the following elementary identity (see 3.8 in [FKO]):

k k k lj-\ \ / k \

n a, - n b,= i n <*, K - *,-) n &, , (2.5)
• = 1 i=l 7=1 \ i = l / \ i=j + l /

(where by definition fl°=1 a, = 1 and U*=k+1 b, = 1). Putting a, = Tp>ln% fc, = \f d/x,
we obtain from (2.5):

k r i N / k k r

^f-u L/;^=-1 n T"^f-u \fidp
j = i J JVn = i \ f = i i=i J

f n' T^fiir^ifj- \fjdp)) n T^f]. (2.6)
k I N fj-l

We see that by (2.6) the general case is reduced to the sum of expressions satisfying
the above condition.

Suppose now that F is a finite set of pairwise distinct polynomials and assume
that the characteristic vector of F equals ( 0 , . . . ,0j_ l z e r o s , n, + l, ni+1,..., nd). Fix

any of the n, +1 groups of polynomials of degree i and denote its polynomials by
Pi{t),... ,pk(t). Denote the rest of the polynomials in F by qx(t),..., qi(t). Let
xn = T ^ - y , . . . Tp^")fkT"'{n)gl... T"^gh where / , , . . . ,fk, g , , . . . , g, e L°°(X, 98, M ) .
By the remark above we may assume without the loss of generality that one of the
functions fx,... ,fk, g,, , g, has zero integral. With this assumption we have to
show that

lim
7\r->co

This will follow from Theorem 1.5 the conditions of which we will verify now. We
have

< * ,

"I

"I

k

k

7 = 1

k

f FT Tpi1'j \ 11 ^
7=2

(

) 11 07

k

7 = 1

/

7 = 1

k

n)fj n T"
7 = 1

k

7 = 1

I

,.->-„<

- • )
/

7 = 1
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where

Pj(n)=pj(n)-p1(n),j = 2,...,k

<&(«) = qj(n)-Pi(n)J = 1, 2 , . . . , /

h)-pj(h)-p1(n)J=l,2,...,k

-p1{n),j= 1,2,...,/

By the lemma above for any sufficiently large (and fixed) h the polynomials appearing

in (2.7) are pairwise distinct. The degrees of polynomials pt and pj are smaller than

i (and >1 ) , whereas deg <jj = deg ^ = deg qj for j = 1 , 2 , . . . , / ; the leading coefficients

of those of <jj and q} which have degree i, have the form cq - cp where cp is the

leading coefficient of px and are different from those of any of q] and q).

Note also that if the degree of qj is larger than i, then not only the degree but

also the leading coefficients of q) and q) are the same as those of <&. It follows that

the characteristic vector of the set {p2,. • •, Pk, Pi, • • • , Pk, <7i, • • •, q~i, <]\, • • •, <?/} has

the form {ax,a2,..., a,_,, nt, ni+i,. ..,nd). Applying ( T ( n , , . . . , « , _ , , «,-, ...,nd))w

and using the fact that one of the functions fh g, has zero integral, we get

^ f gj n r'/->/, n
xl\ n = , J J = 2 J^J ^=1

= n \
The application of Theorem 1.4 completes the proof.

3. Uniform weakly mixing PET and the "polynomial mixing of all orders'
in weakly mixing systems
The following uniform version of weakly mixing PET bears the same relation to
Theorem 1.2 as the notion of well distribution to that of uniform distribution.
THEOREM 3.1. Suppose that {X, 3ft, /A, T) is a weakly mixing system and let
Pi(t),... ,Pk(t) be pairwise essentially distinct polynomials with rational coefficients
taking on integer values on the integers. Then for anyf,... ,fk e L°°(X, 38, M) one has:

lim
JV-M-»oo

T>*wfk - n [ f, dJ =0
J H 2

The proof of Theorem 3.1 is analogous to that of Theorem 1.2. One has just to
check that the uniform limits can be pushed through the inductive steps. The
following two statements, the proofs of which are left to the reader, play the role
which was played by Theorem 1.4 and Theorem 1.5 in the proof of Theorem 1.2.
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THEOREM 3.2. Suppose that {xn}^=-co is a bounded sequence of vectors in Hilbert
space, and suppose that for any h > ho> 0

I N - l

li.m TT 77 I! (*n, *«+(•) = 0-

Then

lim
1 7 S T - 1

N-M X xn = 0.

THEOREM 3.3. Suppose that {Xnl^-oo is a bounded sequence of vectors in Hilbert
space. If

I N-l

D-lim lim ——— X (xn,xn+h) = 0,

then

lim
1 N - l

N-M n^
I xn = 0.

As an illustration let us prove the uniform version of Theorem 1.1 with the help of
Theorem 3.3. We have to show that if (X, 98, /x, T) is a weakly mixing system, then
for any ke f̂ J, any pairwise distinct non-zero integers a , , . . . , ak and a n y / , . . . ,fk e
L°°(X, 98,/t) one has:

1 N-l

lim
N-M nr i=l J ' ^

= 0. (3.1),
L'(X)

Note that (3.1), follows from the von Neumann's uniform ergodic theorem. Suppose
that the assertion in question is valid for fc-1. We shall establish it for k. Taking
any k non-zero integers ax,..., ak and any / , , . . . ,fk e L°°(X, 98, /x) and assuming
without the loss of generality that J/i d/x = 0, let

We have

(Xn,Xn + h) =

= f Ta>"(f1T">hfl)T
a*n(f2T

a*nf2) • • • Ta'"(fkT
a'nfk)= f

= J (/1T
a.'1/1

By the induction hypothesis, we get:

:dfx

dfi.

lim —l—: Y (xn, xn+h) = ( f /, T^f, rfM) ( fl f f^'

Using the fact that T is weakly mixing, we finally get:

i "-1 k

h JVM ôo NM
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Thus by Theorem 3.3 formula (3.1) holds for k. In similar fashion, one checks the
uniform analogs of formulas (2.1), (2.2), (2.3), (2.4). We omit the details.

We are going now to apply Theorem 3.1 to the multiple recurrence in weakly
mixing systems.

Definition 3.4. The uniform density du(C) of a set C c Z is

N-M-.cc N — M

provided this limit exists.

Definition 3.5 (cf. Definition 4.2, page 84 in [F2]). A bilateral sequence {xn}"=_cc
of points in a topological space X converges to a point x e X uniformly in density
if for every neighbourhood V of x in X the set of n for which xn e V has uniform
density one. In this case we will write UD-limn xn = x. We will need the following
technical lemma.

LEMMA 3.6. If {an}"=_oo is a bilateral sequence of real numbers with

then

UD-lim an = a. (3.2)
n

Proof. It follows from the assertion of the lemma that

Km TTT;T(a--«)2 = 0,

which is obviously equivalent to (3.2).

THEOREM 3.7. If (X, 0i, /x, T) is a weakly mixing system and Pi(t),... ,Pk(t) are
pairwise essentially distinct polynomials with rational coefficients taking on integer
values on the integers, then for any fo,f\,..., A £ L^iX, 38, /JL.)

UD-lim [ /or 'w/ ,T'^Vi • • • T^n)fk d» = ft [fdn.
" J i=0 J

Proof. It follows from theorem 3.1 that

Hm
N-M-.cc

[—: Y [ /oT^10/, Tp^f2 • • • T^n)fk dp = f[ [ fd».

Applying Theorem 3.1 once again, this time to the product transformation TxT
and to the functions /•(*, y) =fi{x)f{y) we get

The desired result follows now from Lemma 3.5. Applying Theorem 3.6 to charac-
teristic functions f = lAl, we get the following result which might be regarded as
the statement that weakly mixing systems are 'uniformly polynomially weakly mixing
of all orders' (cf. Th. 4.11 in [F2]).
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THEOREM 3.8. If (X, 38, /x, T) is a weakly mixing system, Ao, A2,..., Ak are fc +1
sets in 38 and px{t) pk(t) are pairwise distinct polynomials with rational coefficients

taking on integer values on the integers, then for any e > 0 the set

{n: \p(Aon TP^")A1 n T"*MA2n- • • n Tp*(n)Ak)-M(A0)M(A,) • • • /*(Afc)|< e}

has uniform density one.

4. Relatives of weakly mixing PET
Theorem 1.2 is a representative of a large variety of PETs. In this section two
additional examples will be given (without proof). The proofs will appear elsewhere.

(i) Definition 4.1 ([F2, p. 86]). Let G be a commutative group of measure preserving
transformations of a measure space (X, 38, /*). G is called totally weakly mixing if
each TeG, T^ identity, is weakly mixing.

It is known ([F2, Th. 4.10]; see also [FK1, Th. 1.4]) that if G is a totally weakly
mixing group of transformations of a probability space (X, 98, /x) then for any
distinct Tu T2,... ,TkeG and any fo,f,... ,fk e £°°(X, 38, fi) one has:

D-lim I /o 77 / , T"2f2 • • • T"k fk dp = ft I f, dp. (4.1)

The following theorem is a generalization of (4.1).

THEOREM 4.2. Suppose that TUT2,..., Tk, T{ ^ identity, are distinct elements of a
totally weakly mixing group of transformations of a probability space (X, 38, /x). Then
for any polynomial p(t) which takes on integer values on the integers and for any
/ o , / , , . . . ,fke If"(X, 38, M) one has:

UD-lim [ /oT^-y,Tp
2̂ f2 • • • Tiwfk d»=i\ Ifd/ji.

J i = 0 J

Remark. While generalizing (4.1), Theorem 4.2 is not a generalization of Theorem
1.2. However, it is possible to give an extension of Theorem 4.2 which will include
Theorem 1.2 as a special case.

(ii) Our second example is mildly mixing PET. The notion of mild mixing was
introduced in [FW] and plays the crucial role in the proof of the Furstenberg-
Katznelson ergodic theorem for commuting IP-systems ([FK2]). We will give here
only that minimal amount of facts about mild mixing which is necessary for the
formulation of mildly mixing PET (Theorem 4.8 below). For a comprehensive
account the reader is referred to [FW], [F2], [F3], [FK2].

Definition 4.3. Let (X, 38, /x, T) be a measure preserving system. A function
/ e L2(X, 38, fi) is rigid for T if for some sequence n f c>l , T"kf^f strongly in
L2(X,33,M).

Definition 4.4. A measure preserving system (X, 38, /u., T) is mildly mixing if there
are no non-constant rigid functions in L2(X, 38, /A).

Definition 4.5. A set of positive integers is called an IP-set if there exists a sequence
nl,n2,...eN such that the set in question consists of the numbers «, together with
all finite sums nh + nh+ • • • + nik with i, < i2< • • • < ik.
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Definition 4.6. A set C <= M is called an IP*-set if it intersects each IP-set non-trivially.

Definition 4.7. Let {xn}™=l be a sequence of points in a topological vector space X
A point x € X is said to be an IP*-limit of {xn}"=1 if for every neighbourhood V of
x the set of n for which xn e V is an IP*-set. In this case, we will write: IP*-limn xn = x.

THEOREM 4.8. Suppose {X, S3, fi, T) is a mildly mixing system and letpM,..., pk(t)
be pairwise essentially distinct polynomials which take on integer values on the integers.
Then for any f0, / i , . . . , fk e V°{X, 58, /JL) one has:

IP*-lim I f0T"'MfiT^n)f2 • • • Tpx(n)fk d^=\\ \ / , dp.
J i=oJ

We leave to the reader the formulation of the mildly mixing analog of Theorem 4.2.
Many other PETs are beyond the scope of this paper. The author plans to take

care of them in some other papers.
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