also

$$
d I_{1}^{2}-d A^{2}=D I_{1}{ }^{2}-D A^{2}=r^{2},
$$

therefore

$$
\begin{equation*}
D B^{2} \sim D A^{2}=r^{2} \sim r_{1}^{2} \tag{1}
\end{equation*}
$$

$A a$ and $B b$ meet on the radical axis, and

$$
\begin{equation*}
A X^{2} \sim B X^{2}=r^{2} \sim r_{1}^{2} . \tag{²}
\end{equation*}
$$

if M be the mid-point of $A B$ from (1) and (2), we get

$$
2 A B . M D=r^{2} \sim r_{1}^{2} \text { and } 2 A B . M X=r^{2} \sim r_{1}^{2},
$$

so that $M D=M X$, and the two axes are equidistant from M.
Again, at any point between I and I_{1} a circle can be drawn which all the coaxials d_{1}, d_{2}, etc., cut at ends of diameters. When the point is outwith $I I_{1}$ on $A B$ the circles become the orthogonals to d_{1}, d_{2}, etc.

The question arises here, which are the real circles, A, B, etc., or the orthogonal circles, of which $D d$ is the radical axis.

Townsend, Art. 152, says: "All the circles whose centres are between I and I_{1} are imaginary"; still, by foregoing they seem real enough.

William Finlayson

The Limits of $\left(\cos \frac{x}{n}\right)^{n}$ and $\left(\sin \frac{x}{n} / \frac{x}{n}\right)^{n}$ when n tends

to infinity.

These limits may be proved very simply by applying the following theorem in inequalities:-

If n is a positive integer and $r a$ a positive proper fraction for the values $1,2,3, \ldots n$ of r, then

$$
\begin{equation*}
1-n a<(1-a)^{n}<\frac{1}{1+n a} . \tag{1}
\end{equation*}
$$

These particular cases of the well-known inequalities generally used in connection with infinite products are easily established. Thus

$$
\begin{gathered}
(1-a)^{2}=1-2 a+a^{2}>1-2 a ; \\
(1-a)^{3}=(1-a)(1-a)^{3}>(1-a)(1-2 a) \\
{\left[(1-a)^{3}=(1-a)(1-a)^{2}, \text { etc. }\right]}
\end{gathered}
$$

since $1-a$ and $1-2 a$ are both positive ; therefore

$$
(1-a)^{3}>1-3 a+2 a^{2}>1-3 a,
$$

and so on. The general result is easily proved by induction, though it is really obvious; thus we have the first inequality

$$
1-n a<(1-a)^{n} .
$$

In the same way we find

$$
\begin{equation*}
(1+a)^{n}>1+n a \tag{2}
\end{equation*}
$$

Now

$$
(1-a)^{n}(1+a)^{n}=\left(1-a^{2}\right)^{n}<1
$$

and therefore $(1-a)^{n}<\frac{1}{(1+a)^{n}}<\frac{1}{1+n a}$ by (2).
The only restriction on a is that $n a$ must be a positive proper fraction, n being any positive integer.

To apply these results to the trigonometric limits we take the inequalities

$$
\begin{equation*}
1>\cos \frac{x}{n}>1-\frac{x^{2}}{2 n^{2}} . \tag{3}
\end{equation*}
$$

Since n is to tend to infinity, we may suppose it to be such that $x^{2} / 2 n$ is a proper fraction, and then let $a=x^{2} / 2 n^{2}$. The inequalities (1) give

$$
1-\frac{x^{2}}{2 n}<\left(1-\frac{x^{2}}{2 n^{2}}\right)^{n}<\frac{1}{1+\frac{x^{2}}{2 n}}
$$

Both $1-\frac{x^{2}}{2 n}$ and $1+\frac{x^{2}}{2 n}$ tend to unity when n tends to infinity, provided x is fixed, or, if variable, is such that $x^{2} / 2 n$ tends to zero ; therefore $\left(1-\frac{x^{2}}{2 n^{2}}\right)^{n}$ also tends to unity. But by (3)

$$
1>\left(\cos \frac{x}{n}\right)^{n}>\left(1-\frac{x^{2}}{2 n^{2}}\right)^{n}
$$

Thus $\left(\cos \frac{x}{n}\right)^{n}$ lies between unity and a number which tends to unity when n tends to infinity; the limit of $\left(\cos \frac{x}{n}\right)^{n}$ is therefore unity.

Again the inequalities
give

$$
\begin{aligned}
& 1>\sin \frac{x}{n} / \frac{x}{n}>\cos \frac{x}{n} \\
& 1>\left(\sin \frac{x}{n} / \frac{x}{n}\right)^{n}>\left(\cos \frac{x}{n}\right)^{n}
\end{aligned}
$$

thus $\left(\sin \frac{x}{n} / \frac{x}{n}\right)^{n}$ also tends to unity when n tends to infinity.

We might dispense with the inequalities (3) by writing

$$
\left(\cos \frac{x}{n}\right)^{n}=\left(1-2 \sin \frac{x}{2 n}\right)^{n}
$$

and putting a equal to $2 \sin ^{2} \frac{x}{2 n}$; it is obvious that for large values of n the function $2 \sin ^{2} \frac{x}{2 n}$ differs but little from $\frac{x^{2}}{2 n^{2}}$, and therefore $n a$ but little from $\frac{x^{2}}{2 n}$.

So far as the limit of $\left(\cos \frac{x}{n}\right)^{n}$ is concerned, we may, in place of the inequalities (1), put the single theorem

$$
\coprod_{n \rightarrow \infty}(1-a)^{n}=0
$$

if $n a$ is a positive proper fraction. The restriction that n should tend to infinity by integral values is easily removed, for n will lie between two integers, m and $m+1$ say. Then

$$
(1-a)^{m+1}<(1-a)^{n}<(1-a)^{m},
$$

and therefore, by applying the inequalities (1),

$$
1-(m+1) a<(1-a)^{n}<\frac{1}{1+m a}
$$

G. A. Gibson.

Centre of Curvature.

Professor Bryan's article on Curvature, etc., in your last issue (p. 219) ends with a challenge. I wonder whether he would be satisfied with the following reasoning to prove that the intersection of "consecutive" normals and the centre of the circle through these "consecutive" points of a curve have the same point as limiting position.

The circumcentre of the triangle formed by three points on a curve is the intersection of the mid-normals of the sides $P Q, Q R$, and these are distant by infinitesimal amounts of higher order than $P Q, Q R$ from the normals to the curve at the points of the arcs $P Q$ and $Q R$ where they are touched by tangents parallel to the chords $P Q$ and $Q R$ respectively.

