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Abstract

Gunningham [‘Spin Hurwitz numbers and topological quantum field theory’, Geom. Topol. 20(4) (2016),
1859–1907] constructed an extended topological quantum field theory (TQFT) to obtain a closed formula
for all spin Hurwitz numbers. In this note, we use a gluing theorem for spin Hurwitz numbers to re-prove
Gunningham’s formula. We also describe a TQFT formalism naturally induced by the gluing theorem.
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1. Introduction

Let X be a surface of general type with a smooth canonical divisor D. The complex
curve D has genus h = K2

X + 1 and the normal bundle N to D is a theta characteristic
on D (that is, N2 = KD) with p ≡ h0(N) ≡ χ(OX) (mod 2). The pair (D,N) is called a
spin curve of genus h with parity p. The Gromov–Witten (GW) invariants of X are the
same as the local GW invariants of the spin curve (D,N) that depend only on (h, p). In
particular, for d > 0 the dimension zero local GW invariant of the spin curve (D,N) is
given by the formula

GT h,p
d =

∑
f

(−1)h0( f ∗N)

|Aut( f )|
, (1.1)

where the sum is over all degree d étale covers f (see [10, 11, 13]). One can calculate
these local invariants by extending the (weighted) signed sum to certain ramified
covers, which are the spin Hurwitz numbers.

A partition α ` d is odd if all parts in α are odd. We set

OP(d) = {α ` d : α is odd}.

Fix k points y1, . . . , yk in D and consider degree d holomorphic maps f : C → D from
possibly disconnected curves C of Euler characteristic χ(C) that are ramified only
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over the fixed points yi with ramification profile αi = (αi
1, . . . , α

i
`i

) ∈ OP(d). By the
Riemann–Hurwitz formula, the (ramified) covers f satisfy

dχ(D) − χ(C) +

k∑
i=1

(`(αi) − d) = 0, (1.2)

where χ(D) = 2 − 2h and `(αi) is the length of the partition αi. By the Hurwitz formula,
the twisted line bundle

N f = f ∗N ⊗ OC

(∑
i, j

1
2

(αi
j − 1)xi

j

)
(1.3)

is a theta characteristic on C where f −1(yi) = {xi
j} and f has multiplicity αi

j at xi
j. We

define the parity p( f ) of a map f as

p( f ) ≡ h0(N f ) (mod 2).

Given α1, . . . , αk ∈ OP(d), the spin Hurwitz number of genus h and parity p is defined
as a (weighted) sum of covers f satisfying (1.2) with sign determined by the parity
p( f ):

Hh,±
α1,...,αk =

∑
f

(−1)p( f )

|Aut( f )|
(1.4)

where + or − denotes the parity of the spin curve (D,N). If k = 0 (or unramified) then
this is the étale spin Hurwitz number that equals the local invariant (1.1). We will call
χ(C) in (1.2) the domain Euler characteristic for the spin Hurwitz number (1.4).

Eskin, Okounkov and Pandharipande [5] first studied the spin Hurwitz numbers
for genus h = 1 with trivial theta characteristic, that is, (h, p) = (1,−). They related the
parity of maps to combinatorics of the Sergeev group C(d). A partition λ = (λ1, . . . , λ`)
of d is strict if λ1 > · · · > λ`. Let SP(d) denote the set of strict partitions of d and set

SP+(d) = {λ ∈ SP(d) : `(λ) is even} and SP−(d) = {λ ∈ SP(d) : `(λ) is odd}.

The irreducible spin C(d)-supermodules Vλ are indexed by strict partitions λ ∈ SP(d)
and the conjugacy class corresponding to an odd partition αi ∈ OP(n) acts in Vλ as
multiplication by a constant, which is the central character fαi (λ) (see Section 2).

Theorem 1.1 [5]. With the notation as above,

H1,−
α1,...,αk = 2χ(C)/2

( ∑
λ∈SP+(d)

∏
i

fαi (λ) −
∑

λ∈SP−(d)

∏
i

fαi (λ)
)
, (1.5)

where χ(C) is the domain Euler characteristic.

Recently, Gunningham [6] constructed a fully extended (spin) topological quantum
field theory (TQFT). His extended TQFT gives a formula for all spin Hurwitz numbers.
For each strict partition λ ∈ SP(d), let Vλ be as above and set

cλ =
dim Vλ

|C(d)|
. (1.6)
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Theorem 1.2 [6].

Hh,±
α1,...,αk = 2(χ(C)+χ(D))/2

( ∑
λ∈SP+(d)

2(χ(D))/2cχ(D)
λ

∏
i

fαi (λ) ±
∑

λ∈SP−(d)

cχ(D)
λ

∏
i

fαi (λ)
)
, (1.7)

where χ(D) = 2 − 2h and χ(C) is the domain Euler characteristic.

Independently, Parker and the author [12] adapted the degeneration method of the
GW theory to obtain a gluing theorem for spin Hurwitz numbers. For a partition γ ` d,
let γ(k) be the number of parts of size k in γ and set

zγ =
∏

k

kγ(k)γ(k)!. (1.8)

Theorem 1.3 [12]. Let α1, . . . , αs, β1, . . . , βr ∈ OP(d). Then

Hh,p
α1,...,αs,β1,...,βr =

∑
γ∈OP(d)

zγ · H
h1,p1

α1,...,αs,γ
· Hh2,p2

β1,...,βr ,γ
,

Hh+1,p
α1,...,αs =

∑
γ∈OP(d)

zγ · H
h,p
α1,...,αs,γ,γ

,

where h = h1 + h2 and p ≡ p1 + p2 (mod 2).

Our main goal is to re-prove Gunningham’s formula (1.7). To that end, we need to
calculate the (h, p) = (0,+) spin Hurwitz numbers.

Section 2 gives a brief review of the representation theory of the Sergeev group
C(d) and a key fact (Lemma 2.2) about the central characters of C(d).

Section 3 follows the approach of [5] to show

H0,+
α1,...,αk = 2(χ(C)+2)/2

( ∑
λ∈SP+(d)

2c2
λ

∏
i

fαi (λ) +
∑

λ∈SP−(d)

c2
λ

∏
i

fαi (λ)
)
. (1.9)

In Section 4 we use the gluing theorem with (1.5) and (1.9) to prove the
formula (1.7). We also observe that the formula (1.7) gives the gluing theorem (see
Remark 4.2).

The spin Hurwitz numbers are not defined for (h, p) = (0,−) since the only theta
characteristic on P1 isO(−1). In Section 5 we first extend the gluing theorem to include
the case (h, p) = (0,−) and then describe a TQFT formalism naturally induced by the
(extended) gluing theorem.

2. Representations of the Sergeev group

This section reviews the representation theory of the Sergeev group relevant to our
discussion. We generally follow the notation and terminology of [5]. For proofs and
more details, we refer to [7, 8, 14] and [4, Ch. 3] and references therein.
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2.1. Sergeev group. The Sergeev group C(d) is the semidirect product

C(d) = Cliff(d) o S(d),

where Cliff(d) is the Clifford group generated by ξ1, . . . , ξd and a central element ε
subject to the relations

ξ2
i = 1, ε2 = 1, ξiξ j = εξ jξi (i , j),

and the symmetric group S(d) on d letters acts on Cliff(d) by permuting the ξi.
The group C(d) is a double cover of the hyperoctahedral group B(d) = Zd

2 o S(d).
Since Cliff(d)/{1, ε} � Zd

2, setting ε = 1 gives a short exact sequence of groups

0 −−→ Z2 −−→ C(d)
θ

−−→ B(d) −−→ 0.

The group B(d) embeds in the symmetric group S(2d) on the set {±1, . . . ,±d} via

ξig(±k) =

{
∓g(k) if g(k) = i,
±g(k) if g(k) , i.

Notice that B(d) is the centraliser of the involution k→ −k in S(2d).

2.2. Conjugacy classes. The symmetric group S(d) embeds in B(d) and C(d). An
element g of B(d) and C(d) is a pure permutation if g ∈ S(d). Define a Z2-grading on
C(d) by setting

deg ξi = 1, deg(g) = deg(ε) = 0, g ∈ S(d). (2.1)

An even (respectively, odd) conjugacy class is a conjugacy class of an even
(respectively, odd) element. For each conjugacy class C, either C ∩ εC = 0 or C = εC.

(a) Let Cγ be the conjugacy class in C(d) of a pure permutation g of cycle type
γ ∈ OP(d). Then Cγ and εCγ are disjoint even conjugacy classes and

|Cγ| = |εCγ| =
|C(d)|

2`(γ)+1zγ
(2.2)

where zγ is the order of the centraliser of g in S(d) given by (1.8).
(b) We can write all conjugacy classes of C(d) as

C1, εC1, . . . ,Cm, εCm︸                     ︷︷                     ︸
even

, Ĉ1, εĈ1, . . . , Ĉq, εĈq︸                    ︷︷                    ︸
odd

, C̃1, . . . , C̃s︸      ︷︷      ︸
εC̃i=C̃i

, (2.3)

where m = |OP(d)| = |SP(d)| and q = |SP−(d)|.

The denominator 2`(γ)+1zγ in (2.2) is the order of the centraliser of g in C(d).

Definition 2.1. For a partition γ ` d, we define

ϑγ = 2`(γ)+1zγ.
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2.3. Spin C(d)-supermodules. For a finite group G, let G∧ denote the set of
irreducible complex representations of G. The central element ε acts as multiplication
by either +1 or −1 on each V ∈ C(d)∧. If ε acts on V as multiplication by 1, then
V ∈ B(d)∧. Let C(d)∧− be the set of irreducible complex representations of C(d) on
which ε acts as multiplication by −1. We have

C(d)∧ = B(d)∧ ∪ C(d)∧−. (2.4)

The grading (2.1) makes the group algebra C[C(d)] a semisimple associative
superalgebra. A spin C(d)-supermodule is a supermodule over C[C(d)] on which ε
acts as multiplication by −1. The irreducible (or simple) spin C(d)-supermodules are
indexed by strict partitions λ ∈ SP(d). For each λ ∈ SP(d), let Vλ be its corresponding
irreducible spin C(d)-supermodule.

(c) For λ ∈ SP+(d), we have Vλ ∈ C(d)∧−.
(d) For λ ∈ SP−(d), we have Vλ = Vλ

0 ⊕ Vλ
1 (as a module over C[C(d)]) such that

Vλ
0 ,V

λ
1 ∈ C(d)∧− and they are not isomorphic.

2.4. Central characters. For λ ∈ SP(d), let ζλ denote the character of the irreducible
C(d)-supermodule Vλ. By (2.3), the character ζλ is determined by its values ζλ(Cγ) =

−ζλ(εCγ) on even conjugacy classes Cγ and εCγ where γ ∈ OP(d). For λ, µ ∈ SP(d),

〈ζλ, ζµ〉 =
∑

γ∈OP(d)

2
ϑγ
ζλ(Cγ)ζµ(Cγ) =

{
δλµ if λ ∈ SP+(d),
2δλµ if λ ∈ SP−(d),

(2.5)

where 〈·, ·〉 is the inner product on the space of class functions of the finite group C(d).
For each γ ∈ OP(d), the class sum Cγ =

∑
x∈Cγ

x has degree zero and lies in the
centre of the superalgebra C[C(d)], so it acts on Vλ as multiplication by a constant.
This constant is the central character fγ(λ) obtained from the formula

fγ(λ) =
|Cγ|

dim Vλ
ζλ(Cγ). (2.6)

When λ ∈ SP−(d), the central character fγ(λ) of Vλ = Vλ
0 ⊕ Vλ

1 is equal to the central
characters of the irreducible representations Vλ

0 ,V
λ
1 ∈ C(d)∧−.

Now (2.5) and (2.6) give a crucial fact for our later discussions.

Lemma 2.2. Let cλ be as in (1.6). Then∑
γ∈OP(d)

ϑγfγ(λ)fγ(µ) =

δλµ/2c2
λ if λ ∈ SP+(d),

δλµ/c2
λ if λ ∈ SP−(d).

2.5. Centre. Let C1, . . . ,Ck be conjugacy classes in a finite group G and let
n(C1, . . . ,Ck) be the number of solutions (g1, . . . , gk) ∈ C1 × · · · × Ck of the equation
g1 · · · gk = 1. Then

n(C1, . . . ,Ck) = |G|
∑
λ∈G∧

(dim Vλ

|G|

)2 ∏
i

fCi (λ), (2.7)

where fCi (λ) are the central characters of Vλ (cf. [15, Theorem 7.2.1]).
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The central element ε acts on the centreZ(C[C(d)]) of the (ungraded) group algebra
C[C(d)]) with ±1 eigenvalues. We denote by

Z+
0 ⊂ Z (2.8)

the (−1)-eigenspace consisting of even-degree elements. This space has a basis

{uγ = 1
2 (Cγ − εCγ) : γ ∈ OP(d)}.

For notational simplicity, we set 1 = (1d). Since uαuβ ∈ Z+
0 and u1uα = uα for all

α, β ∈ OP(d), the spaceZ+
0 is a commutative associative algebra with identity u1.

Now (c) and (d) in Section 2.3 and (2.7) give the following formula.

Lemma 2.3. If uαuβ =
∑
γ aγαβuγ, then the structure constants aγαβ are given by

aγαβ = ϑγ

( ∑
λ∈SP+(d)

2c2
λfα(λ)fβ(λ)fγ(λ) +

∑
λ∈SP−(d)

c2
λfα(λ)fβ(λ)fγ(λ)

)
.

3. Calculation of genus-zero spin Hurwitz numbers

In this section, we calculate the spin Hurwitz numbers of genus h = 0, following the
arguments of [5]. We generally follow the notation and terminology in [5].

3.1. Quadratic form. Consider a degree d map

f : C → P1 (3.1)

ramified only over fixed points y1, . . . , yk ∈ P1 with ramification profile αi ∈ OP(d) at
yi satisfying (1.2). Let N = O(−1) and let L = N f denote the theta characteristic on C
defined by (1.3). For each (connected) component Ci of C where 1 ≤ i ≤ n, the theta
characteristic Li = L|Ci on Ci determines a quadratic form qLi on the group J2(Ci) of
elements of order two in the Jacobian of Ci by

qLi (ρi) ≡ h0(Li ⊗ ρi) + h0(Li) (mod 2)

such that

(−1)h0(Li) = 2−g(Ci)
∑

ρi∈J2(Ci)

(−1)qLi (ρi).

For ρ = (ρ1, . . . , ρn) in J2(C) = J2(C1) × · · · × J2(Cn), let qL(ρ) =
∑
i

qLi (ρi). Then

(−1)p( f ) =
∏

i

(−1)h0(Li) = 2(χ(C)/2)−n
∑

ρ∈J2(C)

(−1)qL(ρ). (3.2)
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3.2. Canonical lift. Each ρ ∈ J2(C) defines an unramified double cover Cρ → C
which, when composed with f , gives a degree 2d cover

fρ : Cρ → P
1.

Let σ be the fixed-point-free involution in the symmetric group S(2d) given by the
covering transformation permuting the sheets of Cρ → C. By our construction, the
monodromy group of fρ lies in the centraliser of the involution σ in S(2d), which is
the group B(d) (see Section 2.1). The monodromy of fρ thus defines a homomorphism

M fρ : π1(P×)→ B(d), (3.3)

where P× = P1 \ {y1, . . . , yk}.
One can choose a small loop δi encircling only the branch point yi such that

• π1(P×) =
〈
δ1, . . . , δk|

∏
i δi = 1

〉
,

• M fρ(δi) is conjugate to a pure permutation gi of cycle type αi ∈ OP(d) in B(d).

Then by (a) in Section 2.2,

θ−1(M fρ(δi)) ⊂ Cαi t εCαi ,

where Cαi is the conjugacy class of the pure permutation gi in the Sergeev group
C(d). The monodromy of fρ is said to have a canonical lift to C(d) if there exists a
homomorphism M̂ fρ : π1(P×)→ C(d) such that M̂ fρ(δi) ∈ Cαi for all i and the following
diagram commutes:

C(d)

θ

��
π1(P×)

M̂ fρ

;;

M fρ

// B(d)

The following fact is a special case of Theorem 1 of [5]: the case of P1.

Proposition 3.1. qL(ρ) = 0 if and only if the monodromy of fρ has a canonical lift to
C(d).

3.3. Weighted count. Let G be S(d),B(d) or C(d), and let Cαi denote the conjugacy
class of a pure permutation in G with cycle type αi ∈ OP(d). We set

M = {α1, . . . , αk} (3.4)

and denote by HG(M) the set of homomorphisms ψ : π1(P×) → G sending the
conjugacy class of the loop δi into the conjugacy class Cαi . Taking into account the
action of G by conjugation, we set

hG(M) =
|HG(M)|
|G|

.
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The groups B(d) and C(d) have natural homomorphisms to S(d) by definition.
Given a homomorphism φ ∈ HS(d)(M), let HG(M; φ) be the set of homomorphisms
ψ ∈ HG(M) with commutative diagram

G

��
π1(P×)

ψ

;;

φ
// S(d)

where G → S(d) is the natural homomorphism. The weighted count of such
homomorphisms is

hG(M; φ) =
|HG(M; φ)|
|G|

.

By (2.7) and the definition, hG(M; φ) and hG(M) satisfy∑
φ∈HS(d)(M)

hG(M; φ) = hG(M) =
∑
λ∈G∧

(dim Vλ

|G|

)2 ∏
i

fCi (λ). (3.5)

Remark 3.2. There is a bijection between ramified covers f : C → P1 (as in (3.1)) and
orbits of the action of S(d) on HS(d)(M) by conjugation. This bijection is given by the
monodromy M f : P×→ S(d) of the map f . The order of the stabiliser of M f is |Aut( f )|
and hence

hS(d)(M) =
1
|S(d)|

∑
O f

|O f | =
∑

f

1
|Aut( f )|

(3.6)

where O f is the orbit of M f . This is the ordinary Hurwitz number that counts ramified
covers of P1 with ramification data specified by M in (3.4).

Lemma 3.3. Let f : C → P1 and O f be as in Remark 3.2 and let φ ∈ O f . If the domain
C has n (connected) components C1, . . . ,Cn, then

|J2(C)| = 2−d+n|HB(d)(M; φ)|.

Proof. The proof is identical to that of Lemma 3 in [5]. Assigning to each ρ ∈ J2(C)
the monodromy M fρ given in (3.3) defines a bijection between J2(C) and orbits of the
action of Zd

2 ⊂ B(d) on HB(d)(M; φ) by conjugation. Let ρ = (ρ1, . . . , ρn) and Cρi → C
be the double cover determined by ρi in J2(Ci). Then the stabiliser of M fρ is generated
by σ1, . . . , σn, where σi is the involution permuting the sheets of Cρi → Ci. So, every
orbit of the action of Zd

2 on HB(d)(M; φ) has 2d−n elements and hence

|HB(d)(M; φ)| =
∑
orbits

2d−n =
∑

ρ∈J2(C)

2d−n.

This completes the proof of the lemma. �
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3.4. Proof of (1.9). Let φ ∈ HS(d)(M) be as in Lemma 3.3. By our choice of the
conjugacy classes Cαi in G, the homomorphism θ : C(d)→ B(d) induces a one-to-one
function

HC(d)(M; φ)→ HB(d)(M; φ). (3.7)

Moreover, by Proposition 3.1, qL(ρ) = 0 if and only if the monodromy M fρ lies in the
image of (3.7). Using |C(d)| = 2|B(d)| = 2d+1d!, (3.2) and Lemma 3.3,

(−1)p( f ) = 2(χ(C)/2)−n
∑

ρ∈J2(C)

(−1)qL(ρ) = 2(χ(C)/2)−d(2|HC(d)(M; φ)| − |HB(d)(M; φ)|)

= 2χ(C)/2d![4hC(d)(M; φ) − hB(d)(M; φ)]. (3.8)

Now it follows that

H0,+
α1,··· ,αk =

∑
f

(−1)p( f )

|Aut( f )|
=

∑
φ∈HS(d)(M)

2χ(C)/2[4hC(d)(M; φ) − hB(d)(M; φ)]

= 2χ(C)/2
∑

λ∈C(d)∧−

22
(dim Vλ

|C(d)|

)2 ∏
i

fαi (λ)

= 2(χ(C)+2)/2
( ∑
λ∈SP+(d)

2c2
λ

∏
i

fαi (λ) +
∑

λ∈SP−(d)

c2
λ

∏
i

fαi (λ)
)
,

where the second equality follows from (3.6) and (3.8), the third from (2.4) and (3.5),
and the last from (c) and (d) in Section 2.3. This completes the proof of (1.9).

4. A proof of Gunningham’s formula (1.7)

For α1, . . . , αk ∈ OP(d), we set

H(h, p)α1,...,αk = 2(χ(C)+χ(D))/2Hh,p
α1,...,αk ,

where χ(D) = 2 − 2h and χ(C) is the domain Euler characteristic.
Using the Einstein summation convention, we raise indices by the formula

H(h, p)β
1,...,βr

α1,...,αs = ϑβ1 · · ·ϑβr H(h, p)α1,...,αs,β1,...,βs .

For notational convenience, we denote multi-indices α1, . . . , αs by boldface index α.
Then the gluing theorem (Theorem 1.3) can be written as

H(h1 + h2, p1 + p2)β,δα,η = H(h1, p1)β,γα H(h2, p2)δη,γ,

H(h + 1, p)βα = H(h, p)β,γα,γ.
(4.1)

Remark 4.1. By additivity of the Euler characteristic, if χ(C), χ(C1) and χ(C2) are the
domain Euler characteristics for H(h1 + h2, p1 + p2)β,δα,η, H(h1, p1)β,γα and H(h2, p2)δη,γ,
then

χ(C) = χ(C1) + χ(C2) − 2`(γ).

The first formula in (4.1) follows from Theorem 1.3 and the definition ϑγ = 2`(γ)+1zγ.
The proof of the second formula is the same.
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Now observe that

H(1,+)α1,...,αk = H(0,+)γ
α1,...,αk ,γ

=
∑
γ

ϑγ

( ∑
λ∈SP+(d)

2c2
λ

∏
i

fαi (λ)fγ(λ)fγ(λ) +
∑

λ∈SP−(d)

c2
λ

∏
i

fαi (λ)fγ(λ)fγ(λ)
)

=
∑

λ∈SP+(d)

∏
i

fαi (λ) +
∑

λ∈SP−(d)

∏
i

fαi (λ),

where the first equality follows from the gluing theorem, the second from (1.9) and the
last from Lemma 2.2. In this way, the gluing theorem, (1.5) and (1.9) inductively give

H(h,±)α1,...,αk =
∑

λ∈SP+(d)

21−hc2−2h
λ

∏
i

fαi (λ) ±
∑

λ∈SP−(d)

c2−2h
λ

∏
i

fαi (λ). (4.2)

This completes the proof of (1.7).

Remark 4.2. By Lemma 2.2, one can easily obtain (4.1) from (4.2). Therefore,
Gunningham’s formula (1.7) implies the gluing theorem (Theorem 1.3).

5. A TQFT formalism

This section discusses a TQFT formalism via the gluing theorem. Our approach is
analogous to that in [3]. We refer to [1, 9] for Frobenius algebra and TQFT.

5.1. Extended gluing theorem. Recall that spin Hurwitz numbers are not defined
for (h, p) = (0, −) because the only theta characteristic on P1 is the even theta
characteristic O(−1). In lieu of Lemma 2.2 and the formula (4.2), if we define

H(0,−)α1,...,αk =
∑

λ∈SP+(d)

2c2
λ

∏
i

fαi (λ) −
∑

λ∈SP−(d)

c2
λ

∏
i

fαi (λ), (5.1)

then the gluing theorem (4.1) extends to include the case (h, p) = (0,−).

5.2. Functor. The (extended) gluing theorem naturally induces a functor between
tensor categories,

SH : 2Cob± → Vect.

Here Vect denotes the usual tensor category of complex vector spaces. The objects of
the category 2Cob± are finite unions of oriented circles. The morphisms are given by
pairs (D, p), where D is an oriented cobordism (modulo diffeomorphism relative to the
boundary) between two objects and p ∈ Z2. We denote by

Ds
r(h, p)

the connected cobordism of genus h with parity p from a disjoint union of r circles to a
disjoint union of s circles. The composition of morphisms, obtained by concatenation
of cobordisms, respects the Z2-grading (or parity). The tensor structure on the category
2Cob± is given by disjoint union.
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We define SH(S 1) = F to be the vector space with basis {vα : α ∈ OP(d)} labelled
by odd partitions α ∈ OP(d) and let

SH
(
S 1

∐
· · ·

∐
S 1

)
= F ⊗ · · · ⊗ F .

For connected cobordisms Ds
r(h, p), we define a linear map

SH(Ds
r(h, p)) : F ⊗r → F ⊗s by vα 7→ H(h, p)βαvβ,

where vα = vα1 ⊗ · · · ⊗ vαr for α = α1, . . . , αr. Taking tensor product, we extend this
definition to disconnected cobordisms.

SH takes the identity morphism D1
1(0,+) to the identity map on F ,

vα 7→ H(0,+)βαvβ = vα,

by Lemma 5.1(b) below. Also, by the (extended) gluing theorem, SH takes the
concatenation of cobordisms to the composition of linear maps (cf. [2, Proposition
4.1]). Therefore, SH is a well-defined functor. In particular, one obtains a two-
dimensional TQFT, 2Cob+ → Vect, by restricting to even cobordisms.

Recall that 1 denotes the partition (1d) ∈ SP(d). The fact below follows from the
same calculation of Hurwitz numbers because the parity of the maps with domain P1

is even.

Lemma 5.1. For α, β ∈ OP(d),

(a) H(0,+)α = δ1αv1;
(b) H(0,+)βα = δαβ.

5.3. Frobenius algebra. The even cap D1(0,+) defines a unit U : C→F by U(1) =

H(0,+)αvα = v1 (see Lemma 5.1(a)), while the even pair of pants D1
2(0,+) defines a

multiplication F ⊗ F → F by

vα ⊗ vβ 7→ vαvβ = H(0,+)γαβvγ.

By Lemma 2.3 and (4.2), the algebra F is isomorphic to the algebra Z+
0 in (2.8) with

isomorphism vα 7→ uα. The Frobenius algebra structure on F = Z+
0 is given by the

counit

T : F → C, where T (vα) = SH(D1(0,+))(vα) = H(0,+)α = δ1α/ϑ1.

Using Lemma 2.2 and the structure constants aγαβ = H(0, +)γαβ, one can find, by
hand, an idempotent basis {eλ : λ ∈ SP(d)} (eλeµ = δλµeλ):

eλ =


∑

α∈OP(d)

2c2
λϑα fα(λ)vα if λ ∈ SP+(d),∑

α∈OP(d)

c2
λϑα fα(λ)vα if λ ∈ SP−(d).
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The Frobenius algebra F = Z+
0 is semisimple since F = ⊕Ceλ, where the Ceλ are

one-dimensional Frobenius algebras with counit eλ 7→ tλ = T (eλ). Since f1(λ) = 1,

tλ =

2c2
λ if λ ∈ SP+(d),

c2
λ if λ ∈ SP−(d).

Observe that the Frobenius algebra F has an involution given by

A := SH(D1
1(0,−)) : F → F . (5.2)

Remark 5.2. In [6], Gunningham constructed a fully extended two-dimensional spin
TQFT, which is a functor from the 2-category of spin cobordisms to the category of
superalgebras. The spin TQFT gives the formula (1.7) and hence the gluing theorem
(4.1). In our case, on the other hand, we obtained from the gluing theorem a modified
two-dimensional TQFT, which includes both odd and even spin Hurwitz numbers and
whose underlying Frobenius algebra has an additional structure, the involution (5.2)
induced by (5.1). To see the full spin TQFT, one may need more information than the
underlying Frobenius algebra with an involution.

5.4. Dimension-zero GW invariants of Kähler surfaces. The semisimplicity, F =

⊕Ceλ, implies that eλ is an eigenvector with eigenvalue t−1
λ for the genus adding

operator
G = SH(D1

1(1,+)) : F → F .

One can also see, by simple calculation, that eλ is an eigenvector with eigenvalue
(−1)`(λ) for the involution A of F .

Now, noting that U(1) = v1 =
∑

eλ, H(h, p) = SH(D(h, p))(1) and

SH(D(h, p)) = SH(D1(0,+) ◦ D1
1(h, p) ◦ D1(0,+)) = T ◦ Ap ◦Gh ◦ U,

we can write the dimension zero GW invariants of Kähler surfaces (1.1) succinctly as

GT h,p
d = 2(1/2)(χ(C)+χ(D))H(h, p) = 2(1/2)(χ(C)+χ(D))

( ∑
λ∈SP(d)

(−1)p·`(λ)tχ(D)/2
λ

)
,

where χ(D) = 2 − 2h is the Euler characteristic of the smooth canonical divisor and
χ(C) is the domain Euler characteristic.
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