ON FOURIER TRANSFORMS OF RADIAL FUNCTIONS
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1. Introduction

The Fourier transform F(y) of a function f(¢} in L'(E,) where E, is
the k-dimensional cartesian space will be defined by

(1.1) Fy) = @) ¥ [ denf(e)av
We consider the inversion formula f(x) = limg,g(x, R) where
(1.2) g(x, R) = (2n)~1* jB (1—s%/R2)ne=3 = P F (y)dV

in which formula s is the radial vector in y-space and By, is the ball of radius
R with centre at the origin. In the cases considered f,(x) = f(x) almost
everywhere, but this detail will not concern us at the moment.

Following the method of Bochner [1] we substitute (1.1) in (1.2) and
then change the origin to x by writing ¢ = x-}z. Thus we obtain

g(x, R) = (2m)~* fE 2V, fﬂ oy (LS RY" @2V,

We now express the y-system in polar co-ordinates and integrate out all
of the ““angular” co-ordinates. This leaves us with

g(x, R) = (20)7¥ [ f(x+2)aV, [ rit-0st (1R Ty, (rs)ds

where now r is the radius vector of the z-system. The final simplification is
obtained by turning the z-system into polar co-ordinates and integrating
out all the variables except ». The final result is

2-1+8 (1) 1 DhEn
WJ r ol RE T n(R7)Q(r)dr

where Q(r) = [ f(x+7z)dA, the (k—1) dimensional integral (area) over the
surface of the unit sphere.
The particular value of # == 4(k—1) = « is called the critical value of

glx, R) =
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the index (see in particular E.M. Stein [5]). If # > «, we may split the
integral into two parts and write

g R) = [+ [ ar

and it is obvious that limg, . J, --- 47 =0. That is to say limg_ . g(x, R)
depends only on the values of f(¢) near £ = x. The inversion formula will
possess a localisation property. When # < « it is easy to construct a function
f(¢) which is finite near #, but for which the integral will not converge.

The critical value « for the localisation property to hold was obtained
on the assumption that f(¢) belonged to L!(E,). As mentioned by Bochner
if we add further conditions on differentiability and integrability on f(¢)
it is possible to reduce the value of the critical value to zero.

In this paper we will determine what effect symmetry of f(¢) will have
on the critical value. It will be shown that the critical value is closely related
to the singularity (if such exists) of f(¢) at the origin.

2

In this section we assume that f(¢) belongs to L'(E,) and is radial,
that is f(¢) = g(r). We then follow Bochner and Chandrasekharan ([2],
p. 67 et seq.) to see that the Fourier transform is also radial and is given by

(2.1) G(s) = s 32 I:a ¥ T4 agy (57)g (7)dr.

The inversion formula we wish to investigate will then be written as
limg_ g(r, R), where
g, R) =
(2.12) = b (K 1R [y (57)G (s)ds

(2.1b) = 400 [ g ) [ (1= R2)" Jyogy(57) youoay (sw)ds

where now #*~1g(«#) belongs to L1(0, c0). We recall that if [5*p(r)dr exists
then limg, [B(1—73/R2)"p(r)dr also exists and equals [y®p(r)dr (see
Titchmarsh [6], p. 27).

We then divide the integral [§° in (2.1b) into

o [ r—b r+b 0
fo =f0 +J‘a +J.r-b + r+b‘
If we take # = 0 and use Watson ([7], p. 134, (8)) we obtain the contribu-
tion from the last integral to be
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y-h-2) on Rg (u)ud* (7 ]y (R) (P R)— 0 J 41— (7R) J 1 (4 R)) .

2,3
r4b r—u

The asymptotic expressions for the Bessel Functions and the Riemann
Lebesgue Lemma show that this contribution vanishes as R— oo (see for
example Titchmarsh [6], p. 240 et seq.). A similar remark can be made
concerning the contribution [5~®. Thus the contributions to limp_, g(r, R)
from [77° and [73, will both vanish for all » = 0.

Now Titchmarsh (l.c.) shows that the contribution from [§ vanishes if
ui*g(u) belongs to L1(0, a). This is a heavier condition than we wish to
impose. We will assume that

[ w*1lg(w)ldu = P(t) = o(t), for some ¢ = 0

as t > 0.

Writing » = 3(k—2), as is usual, we use the Parseval formula for the
Hankel transforms in conjunction with formulae of Erdelyi ([4], p. 26, (33)
and p. 52, (31)) to obtain

R
SR )], (o) = I(R) (527
e arew [ Lty

7 u’ yn-w

[P Re(r—u)P 4 [Re(r+-u)P—y?P~+dy
Rir—u|

where 4 = 2"-3+['(n+1)/ad'(v+}). Then after a change of variables

I(R) =
(2.2b) AR"_”+1 ('+u)z] (Rv*)
n+v+1 y— v—
P f('_“)’ i P =) (ru) )i,

Integrating equation (2.2b) by parts g times, and using the formula

[r ¥,y = 2v-ie-v],_ (o)

(Watson [7], p. 182, (1), with some change of variable), we write I{R) in
the form
23) I(R)=

- — 2
Ry—n+1-a plr+u) ]n+v+1-q(R'U*
w ( vi(n+v+1—¢)

) i B, [v— (r—u) 1 4-?[ (r4-u)2—v] -t dy
9=0

r—u)®

where B, are constants not containing R or . Thus
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Rv—n+i-a plriu)? |]" el (R‘I)%)l ¢
TR s = [ e e 3 1B i
2.4) = O(R-—u+bur-a)

= O((Ru)>-n-srkyn-t),

If v—1 is an integer we may take ¢ = »4-}. It is then easy to show that
when »—2 is an integer the estimate (2.4) will hold for all g with 0 < ¢ <w--%.

If » is an integer we may only take ¢ = », in (2.3). However we may
take the integration by parts one step further for each term in the summation
in (2.3) except those terms given by $ = 0 and p = ¢ = ». The first of these
terms will be

T(R) =
B [ Lol oo b
= C}:j_"J‘:::f [v— (r—u)2] -} (r+u)2—v]*-# [C——————OS iﬁﬁ;w) —I-O(R'l)] dv
(B, C and w being constants not containing # or R)
- ZCR%f,, = o [ ok
2C Ré—

(4ru)’ =} (r—u)—""1(27) *}f cos (Rv—w) (y*—|r—u|)~tdv
+O(R-+)

with |r—u| < p < |r+u|, by a mean value theorem.
If we now put v = |7—u|-+2z/R in the integral this last expression takes
the form

p—Rir—ul
R‘#J cos {z+ Rir—u|—w)z-¥dz
[

in which the integral is bounded uniformly for all R and #. If we then
substitute back we see that the contribution from the termin 4 = 0 to
I(R) will be O(R—™u~%). A similar treatment will show that the contribution
from the term with » = » will be of the same order.

We have then shown that the estimate (2.4) holds for 0 < ¢ < »+3%
whether » is an integer or not.

We now return to equation (2.1b) to examine the contribution form [§.
It will be useful to split the range into [{/®+4$ = K,+K, (say). K, will
be dominated by a term of the form
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S(R) = CR¥+=—e-} 1" |g(u) ur-1~0du

where C is independent of R (but is dependent on g¢). Recalling that « =
3(k—1) = »+3, we have

S(R) = CRe*+{[Pujw~y"+q [ Plupu~+-1du}.

If ¢ > 0, then we select 0 < g << ¢ and each term is seen to be o(R*—"-*)
as R — 0. If ¢ = 0, we select ¢ = 0 and the second term will vanish so that
S(R) = o(R*—™).

A similar method shows that K, will be dominated by

V(R) = CR"4[P(u)u~]% z+¢ fl';R P(w)u—-1du
— 0(Ra—ﬂ—c)+0(Rz—n—q)

the first term being from the upper limits and the second from the lower.

So provided that we choose # >a—cif c<a and =0 if c >«
we can be assured that the contribution from [§ will vanish. That is to say

that the inversion integral (1.2) or (2.1a) will be localised if #n > a—¢.
We will now show that in general we cannot improve on this result.

3

Suppose that
2t 0 <g <X

g(x)={0 x>Xc>0

so that
[ a1g(@)de = tefc.
We may then write g(z) = f(x)—h(z) with
: fx) = z¢% = z*-2-2, all z
and
2°% = g2 ¢ > X

h(x)z{o, z<X.

Thus equation (2.1b) becomes
g(r, R) = f(r, R)—h(r, R)
=y f:o w1du foRs(I—Sz/ R2)" T, (s7) ], (su)ds
" J': we—r-1gy J': s(—1—s2/R2)" ], (s7) ], (sw)ds.

Now limg_, A(r, R) exists for all » =0 by the proof of theorem 135
of Titchmarsh [6]. We will only need to examine limg_, . f(7, R).
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From Watson ([7], p. 391, (1)),

= A 1 R
31  f(nR) = 2’“°+:F(v(—2{3;30+1) fo 7=+ (1 —s2/R2)" ], (s7)ds.

For our purpose we will put » = 1 and # = m—p where m is an integer
and 0 < 8 < 1. We will assume that # < »+31—c, and will examine

I(R) = [ s~ (R2—s?)" ], (s)ds

as R — oo.
We will require the two formulae
(3.22) [T, (att)it = 2a1 28040 ], (azb)

(Watson (7], p. 133, (1)) and
(3.2b) [7(e—1)*t¥ J,(att)dt = 21D (b41)a 2200 ], (azb),

which is found by expanding the Bessel function in a series form and
integrating.
Now

(3.3) 2(R) = [ -t (RE—a)ab ], (ah)d.

‘We will show that as R —> co the dominating part of I (R) can be expressed
in the form AR**"—¢J . ..(R). More exactly we shall show that as R—> o0

(34) Re=r=HI(R) = AR} ], 100 (R)+0(1).

We now expand (3.3) using integration by parts m times. Then I(R)
will be expressed as a linear combination of terms of the type

(3.5) San = [y ats(Re—g)r-baheai ], . (ch)dz.

The expansion will contain only one term involving b = m. We leave
this term unaltered but carry out one integration by parts step on all the
other terms. We then split the formula for S,, into fi+f¥ = S;+S,.
From which we see that as R - o

51 = O(RZn—zb) and S2 — O(Rv—a—b-}-zn—c-l})_

The only terms in (3.5) which will possibly contribute a term of suffi-
ciently great order will be that in which @ = 0 and & = m.
So

2I(R) =

m B3
2—————F(n+ 1) f zte (Rz—z)“ﬂx*(y+m).]v+m(x&)dx

Ir1—g)

0

+ terms of lower order.
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Further
(F(1—g)/2"I'(n+1))2I(R)
- [x—ic fo’ (R2—u)"u*"‘ﬂ“"”],urm(u*)du]:2
+ic J’:’x‘i"“‘dx J-: (R2—u)=Budt+m [ (u})du
- terms of lower order.

The first term is 21-#(1—g)Rr+*—ot1] . (R). To make an estimate
of the second term we divide the range of integration. (In the next few
lines 4 will denote a constant but not necessarily the same constant).

L(R) = [ a-tetdz [ (Re—u)padesm ], (ub)du
= [§ st (Re—a) P da [ uderm ], @), 1 S p S @
=2 [ 2oL (R ) A0 m ], (uh) o e
Then since = 1 and }(r+m+-1) > 1,
IL(R) < 4 jf’x—w—v—mm»(Rz_x)—ﬂdx
= O(Rr+m—c+i-2h).
L(R) = [P amt1dz [} (RE—u)tubesm ], (ub)dn,
Iy(R) < 4 [ o1 (R —1)dz = O(R-Y).
I(R) = [ z¥o-tda [ (RE—u)Pud+m ], (uh)du
= O(R-%).

Thus examining I,, I, and I, the second term in (3.6) is seen to be of
lower order than R*+"-¢+} provided that § > 0. If § = 0 then

L(R) = [M ot spuieemin], .. () i ds
=0 (Rv+m—c—4})

after one step of integration by parts.
We have thus shown that if #» < a—c,

I(R) = AR+ ] . (R) 4+ terms of lower order.

This result confirms the assertion that we cannot in general take #n << a—c¢
for all ¢ > 0. Putting this result in another way we can say that for each
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n < a—c we can find a g(t) so that [j2*|g(x)|dz = o(¢°) for which the in-
version theorem will not be localised.

Further noting that if [{a*-1|g(z)|dx = o(t°) for ¢ > 0, then [§z*2|g(z)|
dxz = o(1), we can extend our result to say that if » <« we canfind a g(t) so
that [§a*~1|g(x)|dx = o(1) and for which the inversion theorem will not be
localised.

4

Up to this point no comment has been made concerning the contribu-
tion in limg_, ,g(r, R) from the part of the integral [7*> in equation (2.1b).
If g(») is of bounded variation in [r—b, r-+-b], then the limit in (2.1b)

(4.1) lim r-3¢-2) f " du J— 3(fr+)+f(r—))

R+
for n = 0, (T itchmarsh [6], Th. 135). Equation (4.1) confirms the assump-
tion made in the previous section that the contribution from [}* did not
effect the convergence or otherwise of the integral treated there.
Keeping equation (4.1) in mind we will consider

(4.2) F(r, R)=r—40-2 [ it fu)du [ "5 (1= R2)" Jyonsy (57) J1en-n (s0)ds
where f(u) = g{u)—C, and we will assume that as ¢ - 0,

14

75 1)) = o(t)
(a condition corresponding to that in Chandrasekharan and Minakshisun-
daram [3], p. 117). It will be profitable to use formula (2.2a). However the
estimate in (2.4) will fail when |Rv}| < 1. We examine first the integrals in

which |Rvi| > 1.

If we put ¢ = »+3 in (2.4) we see that

[ e fuyau [

r4+1/R u)®

is dominated by a term of the type
w*|f(u) du,

b

AR f ::113

which — 0 for any # > 0. A similar conclusion may be drawn concerning
the integrals

r~1/R (r+u)® +1/R +u)3 {r+u)*
J' duf "'d”’j' R aunl andf .o dy.
r—b (r—u)t r 1/R2 1/R 1/R?

We are finally left with one part

r+1/R 1/R
fr—l/R e du f(,_u)z. cedy = K(R)- say.
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Now
K(R) =
r+1/R 1/R* 3
BR[| wiwan] L;—@—l (1= (r—w)9) >4 ((r-+u)P—0)*-ddo

(with B constant, by equation (2.2a)).
Thus using the estimate for the Bessel function when |[Rvi| < 1, we
see that

K(R) < CR## [T u|f(u)\du f(”_‘; (v— (r—u)2) =4 ((r+u)i—v)"}dv
(C constant)
< CR¥+2 j:j:,fu;f(u)(R—zv—l (druy-tdu

r+1/R
r~1/R

= DR [f(#)|du = o(1) as R - (D constant).

We are then assured that if

Galr, R) = 7400 (™ utg(u)au [ 5(1—5%RY)" Jyouray 57) T o (s0)ds
and there exists a C so that

[ 1 = ot), fu) = gw)—C,
as ¢ — 0+, then
hm Gl(r: -R) = C

Roocco
for all # > 0.
We have thus shown that if f(¢) in (1.1) is radially symmetric, and is
written f(t) = g(u), and

J: w1g(u)du = o(t*) as ¢t - 04,

then limg_, ,g(x, R) in (1.2) is localised if # > 3 (k—1)—c, #n > 0. Also if
there exists a C so that

[ g —Claw = o() as ¢ 0+,

then limg_, g{z, R) = C.

References
[1] Bochner, S., Lectures on Fourier Integrals (Princeton, 1959).

[2] Bochner, S. and Chandrasekharan, K., Fourier Transforms (Princeton, 1949).
[3] Chandrasekharan, K. and Minakshisundaram, S., Typical Means (Tata Institute, Bombay).

https://doi.org/10.1017/51446788700027725 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027725

208 James L. Griffith [10]

[4] Erdelyi and others,! Tables of Integral Transforms (McGraw Hill, New York, 1954).

[5] Stein, E. M. Localisation and summability of Multiple Fourier Series, Acta Math. 100
(1958), 93—147.

{6] Titchmarsh, E. C., Fourier Integrals (Oxford, 1948).

(7] Watson, G. N., Theory of Bessel Functions (Cambridge, 1952).

University of New South Wales
and University of Kansas

https://doi.org/10.1017/51446788700027725 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027725

