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Linear Relations Among the Values
of Canonical Heights from
the Existence of Non-Trivial
Endomorphisms

Niko Naumann

Abstract. We study the interplay between canonical heights and endomorphisms of an abelian variety

A over a number field k. In particular we show that whenever the ring of endomorphisms defined over

k is strictly larger than Z there will be Q-linear relations among the values of a canonical height pairing

evaluated at a basis modulo torsion of A(k).

1 Introduction

Let A be an abelian variety over a number field k. In [Ne] Néron constructed a canon-
ical pairing

A(k̄) × Â(k̄) → R.

The choice of a polarization then determines a height pairing 〈 , 〉 on A(k̄). As ob-
served in [Ta] the Rosati involution of an endomorphism is the adjoint with respect

to this canonical height pairing of the endomorphism acting on rational points. We
show that this forces linear relations among the values of the height pairing.

For the precise formulation let us first recall a part of the Albert classification (cf.

[Mu], p. 201 for more details): If A is k-simple then D := End0
k(A) := Endk(A) ⊗ Q

is a skew field carrying an involution,viz., the Rosati involution. Then A/k is said to
be of type I if D is a totally real number field; the involution is trivial in this case.
Types II and III comprise quaternion algebras over totally real number fields. Finally,
A/k is of type IV if the center of D is a CM field; the restriction of the involution to

this field is then complex conjugation.
Denote by W ⊆ R the Q-span of 〈A(k),A(k)〉. For r := rk

(

A(k)
)

we have

(1) dimQ (W ) ≤ r

2
(r + 1)

because 〈 , 〉 is symmetric. Taking into account endomorphisms of A we can prove

the following bound:

Theorem 1 Assume A is k-simple. Then r is divisible by [End0
k(A) : Q] and we have

dimQ (W ) ≤ r

2

(

r

[End0
k(A) : Q]

+ α

)
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272 Niko Naumann

where α = 1, 1
2
, − 1

2
or 0 according to whether End0

k(A) is of type I, II, III or IV in the

Albert classification.

Remark If r 6= 0 and End0
k(A) 6= Q then dimQ (W ) < r

2
(r + 1), i.e., if there are

non-torsion points in A(k) and non-trivial (i.e., 6∈ Z) endomorphisms of A defined
over k then the bound in Theorem 1 is strictly sharper than the a priori bound (1). So

the values of the height pairing on a basis modulo torsion of A(k) satisfy non-trivial
Q-linear relations (inside R).

As an example we prove:

Theorem 2 Let A/Q be an abelian surface with real multiplication and let D be the

discriminant of End0
Q (A). Then there is a basis P1, . . . , P2n ∈ A(Q) ⊗ Q such that for

any canonical height h we have:

h(Pn+i) = Dh(Pi) for i = 1, . . . , n.

Examples of such surfaces are provided by modular abelian surfaces, cf. also the
discussion at the end of Section 3.

Next we generalize to higher dimensional abelian varieties the well known fact
that the canonical height h on an elliptic curve satisfies

(2) h ◦ ϕ = (degϕ)h

for any endomorphism ϕ. For this we will have to deal simultaneously with heights

associated to possibly different line-bundles. We are interested only in heights hL

afforded by symmetric line-bundles L and introduce

SL(A/k) := {L ∈ Pic(Ak) : [−1]∗(L) ' L} ⊗ Q.

Theorem 3 Assume A is k-simple of dimension g. Let L1, . . . ,Ls be symmetric line-

bundles on A constituting a Q-basis of SL(A/k). Then there are quadratic forms

αi j : End0
k(A) → Q ; i, j = 1, . . . , s

over Q such that for all P ∈ A(k) ⊗ Q and ϕ ∈ End0
k(A) we have

hLi

(

ϕ(P)
)

=

∑

j

αi j(ϕ)hL j
(P).

Finally:

det
(

αi j(ϕ)
)

= deg(ϕ)s/g .

Here deg is the degree extended to a homogeneous polynomial function on
End0

k(A), cf. [Mu], 19, Theorem 2.
Section 2 contains the proofs of the above results. We give some examples and the

proof of Theorem 2 in the last section. I would like to thank V. Talamanca for making
a copy of [Ta] available to me and J. Cremona for pointing out [FLSSSW]. I would
also like to thank the referee for making numerous remarks which led to a substantial
improvement of the exposition.
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2 Proofs

We recall some fundamental facts about heights on abelian varieties over number
fields, cf. [La], Chapter 5. There is a canonical homomorphism

Pic(Ak̄) → {quadratic functions A(k̄) → R}, L 7→ hL

which is natural in A. The function hL is called the canonical height associated to L.
In particular, for the Poincaré bundle P on A × Â we have

hP : A(k̄) × Â(k̄) → R.

Here Â is the dual abelian variety of A. Recall the natural homomorphism

Pic(Ak̄) → Hom k̄(A, Â), L 7→ ϕL

with ϕL(a) = t∗a (L) ⊗ L−1 (ta is translation by a), see [Mu], II.8. For L ∈ Pic(Ak̄)
we denote by

LL(x, y) := hL(x + y) − hL(x) − hL(y); x, y ∈ A(k̄)

the bilinear form associated to hL. We say that a line-bundle L on A is symmetric if
[−1]∗(L) ' L.

Lemma 1

1. hP is bilinear.

2. For L ∈ Pic(Ak̄) : LL(x, y) = −hP

(

x, ϕL(y)
)

and if L is symmetric then hL(x) =

− 1
2
hP

(

x, ϕL(x)
)

.

3. For λ ∈ End k̄(A) : hP(λx, y) = hP(x, λ̂y).

4. For the restriction of hP to A(k) × Â(k) the kernels on both sides are exactly the

torsion subgroups.

Proof 1. [La], Chapter 5, Proposition 4.3.

2. [La], Chapter 5, Theorem 4.5.
3. hP(λx, y) = hP

(

(λ × 1)(x, y)
)

= h(λ×1)∗(P)(x, y) = h(1×λ̂)∗(P)(x, y) =

hP(x, λ̂y).

4. As A =
ˆ̂A (over k!) it suffices to consider the left kernel. A(k)tor is orthogonal to

Â(k) because R is torsion free. Let P ∈ A(k) be orthogonal to Â(k). Choose L a sym-

metric ample line-bundle on A, defined over k. Then hL(P) = − 1
2
hP

(

P, ϕL(P)
)

=

0 because ϕL(P) ∈ Â(k) and so P ∈ A(k)tor by [La], Chapter 5, Theorem 6.1.

Fix some symmetric ample line-bundle L on A, defined over k. Associated to

this is the height pairing LL and we denote by 〈 , 〉 the extension of LL|A(k) to V :=
A(k)⊗ Q . Furthermore, L determines an involution ′ on End0

k(A) := Endk(A)⊗ Q ,
the Rosati involution:

ϕ ′ := ϕ−1
L
ϕ̂ϕL for ϕ ∈ End0

k(A).
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We have a natural representation

(3) Endk(A) → EndZ

(

A(k)
)

and as A(k) is finitely generated

EndQ

(

A(k) ⊗ Q
)

' EndZ

(

A(k)
)

⊗ Q.

So from (3) we get a natural representation

φ : End0
k(A) → EndQ (V ).

Lemma 2 For ϕ ∈ End0
k(A) and v,w ∈ V we have

〈φ(ϕ)v,w〉 = 〈v, φ(ϕ ′)w〉.

Proof For v,w ∈ V and ϕ ∈ End0
k(A) we compute:

〈φ(ϕ)v,w〉 = LL(ϕv,w) = −hP(ϕv, ϕLw) (by Lemma 1, 2)

= −hP(v, ϕ̂ϕLw) (by Lemma 1,3)

= −hP(v, ϕLϕ
′w) = LL(v, ϕ ′w) = 〈v, φ(ϕ ′)w〉.

Proof of Theorem 1 As A is k-simple D := End0
k(A) is a skew field acting on V =

A(k) ⊗ Q . So we have V ' Dn as left D-modules for some n ≥ 0, hence [D : Q]
divides r = dimQ (V ). Here we consider D as a left D-module by multiplication, as
usual. The height pairing corresponds to a Q-linear map

(4) Dn ⊗Q Dn → R.

We consider D also as a right D-module by xy := y ′x (x, y ∈ D), where ′ is the Rosati
involution on D. Then the content of Lemma 2 is that (4) factors over a Q-linear map

(5) Dn ⊗D Dn → R.

We can identify

Dn ⊗D Dn '→ Mn(D), (xi)i ⊗ (y j ) j 7→ (x ′

i y j)i j .

The subspace of Dn ⊗D Dn spanned by v ⊗ w − w ⊗ v is then identified with

(6) T := {(xi j) ∈ Mn(D) : x ′

i j = −x ji} ⊂ Mn(D).

Since the height pairing is symmetric, the map in (5) factors over Mn(D)/T, hence

dimQ (W ) ≤ dimQ

(

Mn(D)/T
)

.
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In the computation of the dimension of Mn(D)/T we write | · | as short-hand for
dimQ ( · ) and put S := {x ∈ D : x = x ′} and η := |S|/|D|. Recall that r = n|D|.

From (6) we see that

|T| =

(

1 + · · · + (n − 1)
)

|D| + n(|D| − |S|) =

n(n − 1)

2
|D| + n(|D| − |S|),

hence

|Mn(D)/T| = n2|D| −
( n(n − 1)

2
|D| + n|D|(1 − η)

)

=

n(n + 1)

2
|D| − n|D|(1 − η)

=

r

2

(

n + 1 − 2(1 − η)
)

=

r

2

( r

|D| + 2η − 1
)

.

This proves the theorem with α := 2η− 1. From [Mu], 21 we know η = 1, 3/4, 1/4,
1/2 for A of type I, II, III or IV. Accordingly α = 1, 1/2,−1/2 or 0, as claimed.

Recall the notation

SL(A/k) = {L ∈ Pic(Ak) : [−1]∗(L) ' L} ⊗ Q.

The map

φA : SL(A/k) → {quadratic forms : A(k) ⊗ Q → R}, L 7→ hL

is a transformation of contravariant functors on the category of abelian varieties up

to isogeny over k.
Now we explain when different line-bundles give rise to the same height. Note

that the answer is not immediate because we look at heights restricted to A(k) only
and not on all of A(k̄).

Proposition 1 The map φA is injective if and only if every non-trivial isogeny factor

of A over k has a k-rational point of infinite order.

Proof Assume first that A has a non-trivial factor B with B(k) ⊗ Q = 0. There is a
surjective homomorphism

π : A → B

defined over k. Fix M a non-trivial symmetric line-bundle on B defined over k. Then
L := π∗(M) is non-trivial but

φA(L) = hL = hM ◦ π = 0 on A(k) ⊗ Q,

so φA is not injective.
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For the converse assume that every factor of A has a rational point of infinite
order and there is a non-trivial L ∈ SL(A/k) with hL = 0 on A(k). We derive a

contradiction as follows: There is a simple sub-variety i : B ↪→ A such that M :=
i∗(L) is not trivial but hM = hL ◦ i is zero on B(k) ⊗ Q 6= 0. As B is simple,

ϕM : B → B̂ is an isogeny inducing an isomorphism B(k)⊗ Q
'→ B̂(k)⊗ Q . But this

map has to be zero: For P,Q ∈ B(k) we compute, using Lemma 1:

0 = LM(P,Q) = −hP

(

P, ϕM(Q)
)

,

hence ϕM(Q) ∈ B̂(k)tor and ϕM(Q) = 0 in B̂(k) ⊗ Q .

In order to prove Theorem 3 we want to exploit the relation hL◦α = hα∗(L). Now,
the assignment L 7→ α∗(L) does not give an honest action of End0

k(A) on SL(A/k)
because it is not additive in L and to proceed further we identify SL(A/k) with the
subspace of symmetric elements

S := {α ∈ End0
k(A) : α ′

= α} ⊂ End0
k(A)

as follows:

Lemma 3 Let A be an abelian variety over the perfect field k and choose an ample

line-bundle on A, defined over k. Denote by ′ and λ the associated involution and po-

larization, respectively. Then

ψ : SL(A/k) → End0
k(A), L 7→ λ−1 ◦ ϕL

identifies SL(A/k) with S.

Proof Observing that SL(A/k) '
(

NS(Ak̄) ⊗ Q
)Gk

this is standard for k = k̄,
cf. [Mu], p. 190. The general case follows because ψ is Gk-linear and ′ commutes
with the action of Gk, the absolute Galois group of k. This short proof was pointed

out to me by the referee.

In terms of this identification the sought for expression of α∗(L) is the following:

Lemma 4 Assumptions and notations being as in Lemma 3, given α ∈ End0
k(A) and

L ∈ SL(A/k) we have

ψ
(

α∗(L)
)

= α ′ψ(L)α in S.

Proof

ψ
(

α∗(L)
)

= λ−1 ◦ ϕα∗(L) = λ−1 ◦ α̂ ◦ ϕL ◦ α

= α ′ ◦ λ−1 ◦ ϕL ◦ α = α ′ψ(L)α.

Proof of Theorem 3 In the notation of the theorem we have

hLi

(

ϕ(P)
)

= hϕ∗(Li )(P) = hψ−1(ϕ ′ψ(Li )ϕ)(P),
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where the second equality results from Lemma 4. So we define mapsαi j : End0
k(A) →

Q , recalling that the ψ(Li) form a basis of S, by:

(7) ϕ ′ψ(Li)ϕ =

∑

j

αi j(ϕ)ψ(L j) for all ϕ ∈ End0
k(A)

to get hLi

(

ϕ(P)
)

= h
ψ−1

(

∑

j αi j (ϕ)ψ(L j )
) (P) = h∑

j αi j (ϕ)L j
(P) =

∑

j αi j(ϕ)hL j
(P),

as desired.

It is clear from (7) that the αi j are quadratic forms over Q . Consider

N : End0
k(A) → EndQ (S), ϕ 7→ (s 7→ ϕ ′sϕ).

Then det ◦N is a norm-form on End0
k(A) over Q . As deg is another such form

and End0
k(A) is simple there is a rational number k such that det ◦N = degk([Mu],

p. 179). Evaluating this on n ∈ Z gives

(det ◦N)(n) = det(n2) = n2s
= deg(n)k

= n2gk,

hence k = s/g and det
(

αi j(ϕ)
)

= deg(ϕ)s/g .

Remark Let L be symmetric. One would like to have a formula

hL(ϕP) = f (ϕ)hL(P), all P ∈ A(k)

for a suitable f (ϕ) ∈ Q . The injectivity of φA in Proposition 1 and the above theorem
show that this will hold exactly for those ϕ which have α1 j(ϕ) = 0 for j 6= 1 in the
notation of the theorem (and L1 := L). These ϕ form the intersection of quadratic

hyper-surfaces inside End0
k(A) and the dimension of this intersection most crucially

depends on dimQ (S).

For dimQ (S) = 1 the above specializes to

hL(ϕP) = deg(ϕ)1/ghL(P).

This covers in particular the case of elliptic curves. A glance at the Albert classification
reveals that dimQ (S) = 1 if and only if End0

k(A) is Q , an imaginary quadratic field or

a definite quaternion algebra over Q .

3 Examples

Assume A is k-simple of dimension g and K = End0
k(A) is a quadratic field of dis-

criminant D. For simplicity assume also rk
(

A(k)
)

= 2. Then in a suitable basis of
A(k) ⊗ Q the matrix of the height pairing will be given by

(

α β
β Dα

)
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if D > 0 and by
(

α 0

0 −Dα

)

if D < 0 (for some α, β ∈ R). This illustrates Theorem 1 in this case because K is of
type I if D > 0 and of type IV otherwise. Furthermore, in case D < 0, we have

h ◦ ϕ =

(

deg(ϕ)
) 1/g

h

for any ϕ ∈ K as already noted above because the involution is complex conjugation

in this case, so dimQ (S) = 1. If, however, D > 0 then S = K and for the base
1,
√

D ∈ S the matrix
(

αi j(ϕ)
)

of Theorem 3 becomes

(

a2 + Db2 2ab

2abD a2 + Db2

)

for ϕ = a + b
√

D. So we will have a “transformation formula” h ◦ϕ = f (ϕ)h exactly
for those ϕ satisfying ab = 0. This illustrates Theorem 3 and the last remark of
Section 2.

Finally, it might be tempting to apply Theorem 1 to the following question of Serre
([Se], 3.8.):

What is the transcendence degree of the field generated by the values of B

(= height pairing on an elliptic curve E over Q)? Can it be < r(r + 1)/2,
where r = rank

(

E(Q)
)

?

Clearly, Theorem 1 does not give any improvement over the obvious bound be-

cause End0
Q (E) = Q even if E has complex multiplication as we now assume, say

End0
Q̄

(E) = K. It is known that, for Q ⊂ L, we will have End0
L(E) = K if and only

if K ⊂ L. So we might try to apply Theorem 1 to E/K, hoping that E(Q) ⊂ E(K)

has small co-rank. For A := ResK
Q (E ⊗ K) (Weil’s restriction of scalars) we have

E(K) ' A(Q) and A is isogeneous over Q to E × E ′, where E ′ is the quadratic twist
of E corresponding to Q ⊂ K. Now, E ′ itself is Q-isogeneous to E as follows from
[Mi2], Theorem 3, Remark 2. So rk

(

E(K)
)

= 2rk
(

E(Q)
)

and the “effect” of apply-

ing Theorem 1 to E/K is exactly compensated by this increase of the rank.

It is however immediate that higher dimensional abelian varieties over Q can pro-
vide examples where the analogue of Serre’s question has a positive answer. We for-

mulate this for surfaces only, i.e., we prove Theorem 2:

Let A/Q be an abelian surface with real multiplication, i.e., End0
Q (A) is a real

quadratic field of discriminant D, say. Fix some α ∈ End0
Q (A) with α2

= D. Then
there is a basis {P1, . . . , Pn, αP1, . . . , αPn} of A(Q)⊗ Q and as the Rosati involution
is trivial on End0

Q (A) Lemma 2 gives h(αPi) = 〈αPi , αPi〉 = 〈DPi , Pi〉 = Dh(Pi).

In [FLSSSW] there are a number of explicit examples of genus 2 curves over Q

whose Jacobians meet the assumptions of Theorem 2 with n = 1, many of which are
even absolutely simple. Of course, the generators given in table 3 of [FLSSSW] are
not designed to satisfy the conclusion of Theorem 2.
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