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FREE PRODUCTSWITH AMALGAMATION
AND p-ADIC LIE GROUPS

D.D. LONG AND A. W. REID

ABSTRACT. Using the theory of p-adic Lie groups we give conditions for afinitely
generated group to admit a splitting as a non-trivial free product with amalgamation.
This can be viewed as an extension of atheorem of Bass.

1. Introduction. Theexistence of asplitting of afinitely generated group as a non-
trivial free product with amalgamation, or HNN-extension is an extremely useful tool.
The existence of a map to Z determines an HNN-decomposition, however detecting a
free product with amalgamation decomposition is usually harder, but often of more use.
One of the main results of this paper is Theorem 1.1 which guarantees a free product
with amalgamation under certain conditions.

THEOREM 1.1. Let ' be a finitely generated non-elementary subgroup of SL(2, C)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Further supposethat I' does not contain a free subgroup of
finite index.

Then T splitsasa non-trivial free product with amalgamation.

Thetheorem s similar to the GL »-subgroup theorem of Bass[1], [2] (see Theorem 4.1
below). Indeed, using theresult that afinitely generated groupisvirtualy freeif and only
if the groupisagraph of groupswhereall vertex groupsarefinite (see[11], Theorem 7.2)
one can refine the statement of the theorem. For example, Theorem 1.1 can be viewed as
an extension of Theorem 4.1 in the torsion-free case, asit dispenseswith the possibility
of an HNN-extension. A further discussion of thisis given in Section 4.

The methods of the paper are those of p-adic Lie groups, and grew out of our paper
[7] with C. Maclachlan. The present paper provides a more elegant proof to the main
result of [7]. It also re-proves some well-known results in 3-manifold topol ogy.

2. p-adic Lie groups and Lie algebras. Here we collect salient points from the
theory of p-adic Lie groupsand their Lie algebras. Throughout pisafixed primeandkis
afinite extension of Q,. Our main interest isin the group SL(2, k). Thereis considerable
overlap with [7] and so we only give a brief summary. See also [5] or [10] for details.
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2.1

DerINITION 2.1. Let H be a topological group. Then H is defined to be a p-adic
Lie group if H has the structure of an analytic manifold over Q, and if the function
H x H — H defined by (x,y) — xy tisanalytic.

By aLie algebra over k we mean a vector space over k with a multiplication which
satisfiesthe conditions

=0 and (xy)z+ (y2x+(29)y = 0.

The following theorem summarizes what we need here, a reasonably full account
over Qp is given in Section 4 of [7]. The arguments for k are identical. We denote by
dl(2, k) the trace-less matrices in M(2, k). This is a 3-dimensional Lie algebra over k
when equipped with the obvious Lie bracket.

THEOREM 2.2. (i) SL(2,K) isap-adic Lie group whose Lie algebraissl(2, k).

(i) Let L bea 3-dimensional non-solvable Lie algebra over k. Then L isisomorphic
to dl(2, k) or Dy, the pure quaternionsin the unique division algebra of quater nionsover
k. These algebras are non-isomor phic, and any other Lie algebra of dimension at most
3issolvable.

Part (ii) of Theorem 2.2 followsfromthe classification theorem for quaternion algebras
over local fields, [14], which states there are precisely two isomorphism classes of
quaternion algebras over any finite extension k of Qp; namely M(2,K) or the unique
division algebra of quaternions D. The elements of norm 1 in D, which we denote by
D, is acompact p-adic Lie group whose Lie algebrais Do.

We require the following result, which is presumably well-known. We fix some
notation; we let L denote either of the two Lie algebrasin Theorem 2.2(ii).

LEMMA 2.3. Let G be a non-solvable Lie subgroup of SL(2, k). Thenthe Lie algebra
of Gisisomorphicto L, for some subfield ¢ of k.

ProOOF. Let L(G) denote the Lie algebra of G. Since G is a subgroup of SL(2, k),
as usual, we may identify L(G) as a subalgebra of sl(2, k). Therefore this subalgebra
is defined over a subfield, ¢ say, of k. Now L(G) ®, k can be identified with a Lie
subalgebra of sl(2, k) which is defined over k. Since this can have dimension at most 3
over kit followsthat L(G) can have dimension at most 3 over (. Since G ishon-solvable,
Theorem 2.2 implies that L(G) must be L,. "

2.2. If Gisagroup, welet GP = (g | g € G). Recall that aprofinite group is acompact
Hausdorff topological group whose open subgroupsform abase for the neighbourhoods
of the identity and can be characterised as an inverse limit of an inverse system {G; }
of finite groups. If the finite groups G; are all p-groups, we obtain a pro-p group and if,
furthermore, the maps in the inverse system are all surjective and the quotients G; / G/
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abelian, thentheinverselimit isapowerful pro-p group. Finaly, apro-p group istermed
uniformif it isfinitely generated, powerful and satisfies

[Pi(G) : Piua(G)] =[G : P2(G)] forali,

whereP1(G) = G and Pi.1(G) isdefined recursively as Pi(G)P[Pi(G), G]. Oneshould take
closuresin the previous statement, but the assumption that G isfinitely generated makes
this unnecessary. ([5] Corollary 1.20). The following fundamental result characterises
p-adic Lie groupsin terms of these uniform pro-p groups, cf. [5] Theorem 9.34.

THEOREM 2.4. Let G beatopological group. Then Gisap-adic Liegroupif and only
if G contains an open subgroup which is a uniform pro-p group. ]

We now briefly discussthe construction of the Lie algebraof ap-adic Lie group from
an open uniform subgroup. See [5] Chapters 7, 8 and 10 for details.

Let U be an open uniform pro-p subgroup of the p-adic Lie group G. Using the
discussion in Section 8.2 of [5] A = logU can be defined. Then A isa Z,-Lie algebra,
andthe Lie agebraof G isobtained as/A ®z, Qp. Thisturns out to beindependent of the
choice of open uniform subgroup, see[5] Chapter 10.

2.3. We conclude this section with a discussion of SL(2.k) and the group D* (recall
Section 2.1). Throughout this section 7 will denote a local uniformizer for k, v the
valuation on k and O the valuation ring of k. O is a compact open subring of k and
s0 SL(2.0) becomes a compact open subgroup of SL(2.k), and as such is a p-adic
Lie group. One way to view the (unique) p-adic analytic structure on SL(2, O) is by
considering the principal congruence subgroups™; obtained as the kernel of the maps

SL(2,0) — SL(2,0/P),

whereP istheunique maximal ideal in O. These groups are uniform pro-p groups when
p is odd, when p is even, the groupsT; are uniform for j > 2. In either case the groups
I'; form abasis of open neighbourhoods of the identity in SL(2, O).

A fact about D* that we will make use of is:

LEMMA 2.5. Tracesof elementsin D! liein O.

PrROOF. The extension of the valuation v from k to D is simply given by w(a) =
v(np(a)) where np isthe reduced norm on D.

If a has norm one it follows in particular thata € M = {d € D | w(d) > 0}, the
valuation ring of D which is the unique maximal order in D (see [14] Chapter 2). From
the definition of an order, elementsin M havetracesin O. .

If K is afinite extension of k, the uniqueness of a p-adic structure for the Lie group
SL(2,K) (see [5] Theorem 10.6) implies that the induced topology on SL(2,k) as a
subgroup of SL(2, K) coincides with the one described above.

The main technical lemmain this article is the following.

LEMMA 2.6. Let G be a non-compact, non-solvable p-adic Lie subgroup of SL(2, k).
Then the Lie algebra of G isisomorphic to sl(2, £) for some subfield ¢ of k.
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ProoF. Let ¢ bethe field generated over Q, by all the traces of elementsin G.

Since G isap-adic Lie group, Theorem 2.4 implies that G contains an open uniform
subgroup O. The (-algebra, A, generated by finite £-combinations of elementsof Oisa
quaternion algebra over ¢. Therefore A isisomorphic to M(2, ¢) or the unique division
algebra of quaternions D over (. Let Ay denote the pure quaternionsin A. Since £ isa
completefield, Ais acomplete algebra.

We claim that G C A. To see this note that O contains a basis {1, e;, e, e3} for A
over (. Furthermore, this extends to a k-basis of M(2, k). Thus any element of g is a
k-combination of the basis elements. We will show gis an ¢-combination.

Let g = a+ 3xeg, then by definition tr(g) = 2a € (. Now consider ge ! for each
i=1,23.Sincege ! € Gitiseasily seen that each x; € ¢ asrequired.

The proof now proceeds as follows. By Lemma 2.3 the Lie algebra of G is one of
sl(2, 0) or Dy (defined over £). We shall eliminate the latter as a possibility. To do this
we use the construction of the Lie algebralog O discussed abovein Section 2.2.

Using the action of the tree of SL(2, k) (cf. [9]), O is conjugateinto SL(2, O), and on
passing to asubgroup of finiteindex if necessary (whichwill not changethe Lie algebra),
we can assume that this conjugate, which we will continue to call O, is a subgroup of
some ;. We assume that A is conjugated also and continue to call it A. Thus, every
elementin O hastheform x = 1+ r/afor somea € M(2. 0). Notethat sincex € O C A,
X — 1 € Aand so for any integer m, (71a)™ € A.

Now consider log(x). By definition

log(1+7la) = Z(—l)"ﬂ(”jTa)n.

By our remark above, each term in the summation is an element of A, and as A is a
complete algebra we deduce that the sum above convergesto an element of A. We next
claim that log(1 + wla) € Ay. It suffices to show that the reduced trace of log(1 + 7l a)
is zero. First note that if X denotes the usual canonical involution on M(2, k), then its
restriction to A coincideswith the canonical involution on A. Thus, with thisthefollowing
is easy to establish;

tr(log(1+ r'a)) = log(1 +r'a) +log(1 + 7ria) = log(1 + r'a) +log(1 + 7'a)
= log[(1 + 7la)(1 + 7'@)].

Now as1+rla € O, it hasreduced norm equal to one (as the determinant is the reduced
norm), and so we deduce that tr(log(l + wia)) = 0 as was claimed. Hence we conclude
from the discussion in Section 2.2 that the Lie algebraof G is Ag.

Let usassumethat Ag =~ Dg (recall Theorem 2.2), so that A =~ D. Now A C M(2,K),
and by standard results in quaternion algebras we can embed D in M(2,K) for some
quadratic extension K of k. By the Skolem-Noether theorem (see [14]) thisisomorphism
is achieved by an an inner automorphism of M(2, K) and so trace is preserved. From
above G C A, and indeed as elementsin G have determinant 1, G is contained in the
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norm 1 elements of A. As G is hon-compact it contains an element whosetraceis notin
0. However, these comments together with Lemma 2.5 means G cannot be conjugate
into D®. Hence A cannot beisomorphic to D, and this contradiction means Ag =~ sl(2. ()
aswas required. ]

3. Main result. Our main result is a classification theorem for Lie subgroups of
SL(2, k), where throughout this section k will always be afinite extension of Qp, for some
prime p.

THEOREM 3.1. Let G bea non-compact, non-solvable Lie subgroup of SL(2. k). Then
thereisasubfield ¢ of k, containing Qp, suchthat G is conjugateto SL(2, ¢) over afinite
extension of k.

The proof is essentially the argument of [7] Theorem 5.4. We will make use of some
resultsin [10] which we state for convenience (see[10], p. 130-131).

THEOREM 3.2. Let G be a p-adic Lie group and H; and H, Lie subgroups. Then
HiNH; isaLiesubgroup, and if L(H1), L(H2) and L(H; N H) denote the Lie algebras
of Hy, H2 and Hy N H, respectively (identified with subalgebrasof the Lie algebra of G),
then L(Hl M H2) = L(H]_) M L(Hz) | ]

THEOREM 3.3. With the hypothesis as above, if L(H;) = L(H>), then in a neighbour-
hood of the identity H; = Ha. n

PrROOF OF THEOREM 3.1. As in the proof of Lemma 2.6 let ¢ be the subfield of k
generated over Q, by the traces of elements of G. Denote the valuation ring of ¢ by R.
Since G is non-compact it follows from the action on the tree of SL(2.k) (see [9] or
[7]) that G contains an element g whose trace does not lie in R. By conjugating we may
assumethat gis diagonal and G C SL(2, K) where K is at most a quadratic extension of
k.

By Lemma 2.6, G has Lie algebra sl(2, £). By definition SL(2, R) is a Lie subgroup
of SL(2,K), whoseLieagebraissl(2, ¢). Henceby Theorem 3.2, GNSL(2. R) is p-adic
Lie group whose Lie algebrais d(2, ¢). By Theorem 3.3, G and SL(2. R) agree on a
neighbourhood V of the identity in SL(2, K). As discussed in Section 2.3, the topology
on SL(2, R) coincides with induced topology from SL(2, K) and so it follows that V
must contain an open subgroup of SL(2, R), and hence one of the principal congruence
subgroupsT; of SL(2, R) (recall Section 2.3). Hence G contains a group T;.

Now it iswell-known that SL(2, £) is generated by the subgroups ([8]),

o=((3 ) act) o Le((3 2)ocr)

It follows using the diagonal element g that the group (g. ;) contains both U and L and
s0 G = SL(2, () (the details are completely analogousto that givenin [7] Theorem 5.4).
This compl etes the proof. ]
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4. An extension of a theorem of Bass. We now discuss some applications of
Theorem 3.1. We begin with adiscussion of Bass's theorem ([1] and [2]). We will work
in SL(2) rather than GL(2), and in this setting Bass'stheoremis:

THEOREM 4.1. Let I be a finitely generated subgroup of SL(2, C). Then one of the
following cases occurs:;
1. Thereisan epimorphismf: " — Z such that f(u) = O for all unipotent elements
uer.

2. T isanon-trivial free product with amalgamation.
a

3. I isconjugate to a group of upper triangular matrices (0 17a) with a a root

of unity.
4. T isconjugate to subgroup of SL(2, A) where A isaring of algebraic integers. m

Using Theorem 3.1 we are able to show (1) of Theorem 4.1 is removed if we further
assume that I' does not contain a free subgroup of finite index. As remarked in the
Section 1, having afree subgroup of finite index is equivalent to being a graph of groups
where all vertex groups are finite. Denote by H the class of such groups with a unique
vertex.

THEOREM 4.2. Let ' be a finitely generated non-elementary subgroup of SL(2, C)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Supposein additionthat I ¢ H .

Then T splits asa non-trivial free product with amalgamation.

The proof requires the following result in [9] (Theorem 3 on p. 79).

THEOREM 4.3. Let k be a finite extension of Q, and G a subgroup of SL(2,K). If G is
densein SL(2, k) then G splits as a non-trivial free product with amalgamation. ]

PROOF OF THEOREM 4.2. Firstly if I is virtually free, then since it is not in H
there will be anon-trivial free product with amalgamation decomposition. Thus we now
assumethat I' isnot virtually free. The non-elementary assumptionimpliesthat I cannot
be conjugate to a group of upper triangular matrices, and the existence of a trace which
is not an algebraic integer impliesthat I is not conjugateinto SL(2, A).

Since I' is assumed to have algebraic traces, we can conjugate so that entries of
elements of " are algebraic. Let k be the field generated over Q by the coefficients of
matricesin I'. Since I isfinitely generated, k is afinitely generated extension algebraic
extensionof Q. In particular kisafinite extension of Q. Using the existence of an element
gwhosetraceisnot algebraicinteger, we chooseavaluation» on k such that z/(tr(g)) <0.
Denote by k, the completion of k using the v-adic metric. By the classification theorem
of local fields this is afinite extension of Q, for some prime p. Completion induces a
faithful representationi of I' into SL(2, k, ). Let I, denotethe closureof i(I") in SL(2, k,).

Now we claim that i(I") is not discrete. For if it were, then by passingto atorsion-free
subgroup of finite index, we may apply lhara's theorem (see [6] and [9] Chapter I,
p. 82—83) and deducethat i(I") is virtually free, contradicting our assumption.
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As a closed subgroup of a p-adic Lie group I, is a p-adic Lie group (see [10],
p. 155). The existence of the element g impliesthat I',, is noncompact. Exactly asin [7]
Lemmab.2, the nonelementary assumption, together with the fact that ', is non-discrete
impliesthat I, is nonsolvable.

By Theorem 3.1 we can conjugate I, (over a finite extension of k,) so that I', =
SL(2, £) for some subfield ¢. Summarizing we obtain a faithful representation of I" into
SL(2, £) whichisdensein SL(2, ¢). By Theorem4.3it followsthat I splitsasanon-trivial
free product with amalgamation. ]

By the results of [3], we may deducethat I' (asin Theorem 4.2) admits a non-trivial
free product with amalgamation decomposition where the vertex and edge stabilizersare
finitely generated.

A special case of Theorem4.2is:

THEOREM 4.4. Let I' be a finitely generated non-elementary subgroup of SL(2, C)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Supposein addition that I is torsion-free.

Then T splitsasa non-trivial free product with amalgamation. m

Asafinal remark we observethat the condition about “virtual freeness’ in 4.2 is used
to guarantee that the image of I" under the inclusion map into SL(2, k) is not discrete.
The following theorem replaces this assumption.

THEOREM 4.5. Let ' be a finitely generated non-elementary subgroup of SL(2, C)
whose traces consist of algebraic numbers and which contains an element whose trace
is not an algebraic integer. Assume further that there is an element x of infinite order
whose trace is an algebraic integer. Then I' splits as a non-trivial free product with
amalgamation.

ProOOF. The proof follows the arguments above, the only point to check is that (in
the notation of the proof of Theorem 4.2) i(I") is not discrete in SL(2, k), for then the
rest of the argument follows directly asin the proof of Theorem 4.2).

Thus assume that i(I") is discrete. By conjugating i(I") in GL(2, k,) if necessary we
can assumethat the “integral” element x given by hypothesisliesin SL(2, R,), where R,
isthering of v-adicintegersin k. But then all powersof xwill liein SL(2, R,) . However,
SL(2.R,) iscompact and if i(I") is discrete, then we must havei(l') N SL(2, R,) isfinite,
and this contradicts x being of infinite order. ]

5. Applications. We now give some specific applications of Theorem 4.2 to 3-
manifold groups. The results here are already known but this offers a different proof.
We begin with some lemmas. The first is well-known so we omit the proof.

LEMMA 5.1. LetV bean algebraic set defined over Q which hasdimension 0. ThenV
consists of a finite collection of points, all of whose coordinates are algebraic numbers.
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Recall if G is afinitely generated group we denote by Hom(G. SL(2.C)) the set of
homomorphisms of G into SL(2, C). It is astandard fact that Hom(G, SL(2, C)) hasthe
structure of an affine algebraic set defined over Q.

THEOREM 5.2. Let G ¢ H be a finitely generated group for which
Hom(G, SL(2. (C))) has a component V which consists of faithful, irreducible rep-

resentations. Suppose further that V has dimension at least 4.
Then G splitsas a non-trivial free product with amalgamation.

PrROOF. That the dimension of V is at least 4 means that V contains more than one
conjugacy class of representation. Suppose that we add extra Z polynomials to obtain
an algebraic subset of V containing a component of dimension zero. It follows from
Lemma 5.1 that the coordinates of this point p are algebraic. We wish to arrange that
thereis an element o of G such that tr(p«) is hot an algebraic integer. For then we can
apply Theorem 4.2 to obtain a splitting as a free product with amalgamation for p(G)
and hence G.

Given « in G the function f,: V — C given by f,(p) = tr(pa) is polynomial. If for
every « this function is constant then every pair of representationsin V have the same
character as a given irreducible representation, and therefore are all conjugate. But this
contradicts the dimension of V being at least 4.

Choose o for which this function is not constant and choose an algebraic non-integer
zin the image of f,. Thisis possible since f, dominates C, so that the image can omit
only finitely many values. Setting V; to be the preimage f%(2), we see that this is an
integrally defined subalgebraic set of V consisting of faithful irreducible representations.
If V1 containsapair of honconjugate representations, then we repeat this argument.

The argument terminatesin an integrally defined subalgebraic set V'’ consisting of one
conjugacy classof representation, which therefore contains arepresentation of the form:

v@=(0 3) ro=(_2 5

We may add extra Z polynomials to produce a subset of V'’ containing only this repre-
sentation. This completes the proof. ]

In the same vein we have:

THEOREM 5.3. Let G be a finitely generated group for which Hom(G. SL(2, (C)))
has a component V of dimension at least 5.
Then G splitsas a non-trivial free product with amalgamation.

PROCF. As aboveV consists of more than one conjugacy class of irreducible repre-
sentation. We subdivide into two cases:

Suppose first that there is some element of the commutator subgroup o for which
the function f, is nonconstant. Then as above we find a subalgebraic set V; of V where
tr(p(a)) = zfor every p € Vi where z is some agebraic noninteger. Since reducible
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representations take the value 2 on any element of the commutator subgroup (cf. [4]),
we see that V; contains only irreducible representations, moreover, it has dimension at
least 4. It follows that there is at least one further element 8 whose trace varies on Vi,
and we may arrange that the trace of this element is some algebraic integer, not of the
form w + w where w is any root of unity. This guarantees that the representations in this
subset map 3 into SL(2, C) as an element of infinite order.

We now proceed as above cutting down dimensions until we obtain asingle algebraic
representation which satisfies the hypothesis of Theorem 4.5, to deduce the requisite
splitting for the image group, whence the original group.

The second case is only marginally different; suppose that every character of an
element of the commutator subgroup is constant. Notice that there must be at least one
such element whosetraceisnot 2, elseall therepresentationson V are reducible. Whence
consideration of this character showsthat none of the representationson V arereducible.

Now we argue as in the first paragraph, choosing some nonconstant character and
pulling back some nonalgebraic integer value. Theirreduciblity of representationsin V
has now already been guaranteed and we choose the second nonconstant character as
above. ]

As acorollary of 5.2 we have the following result first proved by Shalen [12] when
no boundary component was atorus, and extended in [4] to allow tori. Both these results
require the hypothesisthat Hy (9 M; Q) surjects onto Hy(M; Q).

COROLLARY 5.4. Let M be a compact orientableirreducible 3-manifold with incom-
pressible boundary for which every incompressible torusis boundary parallel. Assume
d M does not consist entirely of tori. Then 71(M) admits a splitting as a non-trivial free
product with amalgamation.

ProOF. By Thurston’s hyperbolization theorem for Haken manifolds, the interior
of M admits a hyperbolic structure. Since there is at least one boundary component of
genus at least 2, Teichmiller theory dictates that the subset of Hom(r1(M), SL(2.C))
consisting of holonomy representations of complete hyperbolic structuresonM isat least
4. The corollary now follows from Theorem 5.2. ]

Asis standard in 3-manifold topology, the existence of a splitting as a free product
with amalgamation of (M) determines an incompressible surface in M. However, in
general, one cannot deducethat thereis aseparating incompressible surface. For instance
if one takes a Seifert fibered space M over a torus with a single cone point with cone
angle 27 /n, the results of [7] imply that 71(M) splits as a non-trivial free product with
amalgamation. However since any incompressible surface in M is horizontal or vertical
it is easy to seein this case that an incompressible surface must be non-separating. The
hypothesis mentioned above in [12], [4] guarantee a separating surface.

Omitted from Corollary 5.4 was the case where al boundary components are tori.
One can get asimilar result if there is component V of Hom(m(M), SL(2, C)) of large
dimension (cf. Theorem 5.3). We simply do the following case, first proved in [4].
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COROLLARY 5.5. Let K C S® be a knot whose complement admits a complete hyper-
bolic structure of finite volume. Then S* \ n(K) contains a separating incompressible
surface, where n(K) denotes an open tubular neighbourhood of K.

ProOF. We first fix some notation. Let L be a longitude for K and let ' =
m1(S* \ K). From [13], the component V of Hom(I", SL(2.C)) containing the faith-
ful discrete representation has dimension 4. Furthermore, since tr(p(L)) is known to
vary on V, the method of proof of Theorem 5.2 implies we can find a representation
p € V for which p(I") has traces which are algebraic numbers, and for which tr(p(L)) is
not an algebraic integer.

The representation p need not be faithful, so we must deal with the possibility that
p(I) € H . Assumethat thisisthe case. Thensincel” admitsaunique map to Z it follows
that the graph G in question is a single loop with a unique vertex. So that there is amap
p(I) — Z. The group I admits only one map to the integers, and this map kills the
longitude. However, the composition

r—pf)—Z

does not kill the longitude, a contradiction.

We deduce that, by Theorem 4.2, p(I"), and therefore I', splits as a non-trivial free
product with amalgamation. The only issueremaining isto ensurethat after compression
the surface separates. To seethis note that as above, the splitting constructed ensuresthat
L does not map into an edge stabilizer under the action on the tree of SL(2). ]

It seemsharder to guaranteethat the surface produced above has non-empty boundary,
asisdonein[4].
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