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ABSTRACT 

A white dwarf model with M=.6 M0, Te=12000K, and L=1.2xl0
31 erg 

sec" provided by A.N. Cox has been tested for linear stability of ra
dial oscillations. The radial mode instability first reported for this 
model by Cox, et. al (1979) has been confirmed. The growth rates ob
tained are comparable to the rates found by Cox. A sequence of £=2 g-
modes has also been found to be unstable. The e-folding times range 
from around 1011 periods for a 137 second mode (1 radial node) to less 
than 100 periods for a 629 second mode (17 nodes). It is likely that 
the latter rate is too high because the eigenfunction has been forced 
to vanish at the non-zero inner radius of the model, at which the Brunt-
Vaisala frequency is barely less than the mode frequency. 

I. THE MODEL 

The model used in this study was constructed by Cox, et. al (1979) 
in a study of ZZ Ceti variables. The composition layers from the sur
face inward are: Y=0.28, Z=0.02 to T=106 K; Y=0.58, Z=0.02 to 2xl06K; 
Y = 0.98 , Z=0.02 to 5xl06 K; Y=0.90, Z=0.1 (carbon) to 107 K; Y=0.50 
Z=0.5 (carbon) to p=10l*gm cm-3; the remainder is pure carbon. The model 
has an outer radius of 9xl08 cm, and is cut off at an inner radius of 
2.4xl08 cm. The mass of the omitted core is 1032 gm. The internal lu
minosity varies in proportion to the mass. A convection zone occurs 
between T̂ IO1* K and 2.7x10"* K; however, it carries less than 0.5% of 
the flux at most. For purposes of the stability calculation the entire 
flux in this region has been attributed to radiation. 

The model structure including opacity derivatives and thermodynamic 
quantities required for the stability analysis were specified on a grid 
of 195 points chosen by Cox. 

II. CALCULATIONS 

The eigenfunction and stability calculations were done on several 
different grids, obtained by interpolation (spline and linear) from the 
initial model. The abrupt changes in composition were somewhat washed 
out by this procedure: no effort was made to represent them sharply. 
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In particular, the squared Brunt-Vaisala frequency is formally ± <*> at 
discontinuities in density; however, it was interpolated smoothly across 
such points. The expression actually used was 

in which _ _ 9 In p I ,~. 
q ~ ' 9 In T I U ' 

and the other symbols have their usual meanings. Eq. (1) is valid in 
regions of fixed composition, as is true in a piecewise sense in the 
present model. The Eulerian perturbation of the gravitational potential 
was neglected. 

The adiabatic eigenfunctions were calculated by the inverse itera
tion method, and were used to calculate the Lagrangian perturbation of 
the divergence of the heat flux. The Lagrangian perturbation was calcu
lated as directly as possible to avoid the considerable cancellation 
which sometimes occurs between the Eulerian perturbation and the v • V 
term for quantities which vary rapidly in space in the initial model. A 
brief discussion of the actual equations used was given by Keeley (1979), 
so no details are repeated here. 

The displacement eigenfunction and 6(V • F) were set to zero at the 
inner boundary, for the calculations described below. At the outer 
boundary, the displacement vector was either matched to an outgoing 
evanescent wave, or the Lagrangian pressure perturbation was set to zero. 
The exterior boundary condition on the flux perturbation was (Atricp)*"1 

6(V« F)= 6B, in which the perturbations are Lagrangian, K is the opacity9 
and B is the Planck function. This condition was discussed by Keeley 
(1977). 

III. RESULTS 

a. Radial Modes 

Since these calculations serve mainly to confirm the results pre
sented earlier by Cox, et. al (1979), they are not discussed in detail. 

' Eigenfunctions with zero to twelve nodes were calculated on several 
200 point grids. The lowest few nodes ( periods ^ 3 seconds) were 
stable, with damping times ~10llf periods. Instability with e-folding 
times on the order of 2xl09 periods was found for high modes (e.g., 10 
radial nodes), in reasonable agreement with Cox, et. al. 

Driving regions were located near roughly 1.7xl05 K, between about 
4x10" - 7x10*, and between about 1.6x10* - 3x10*. The latter two together 
provided the necessary excitation; in general neither one alone was suf
ficient to overcome the damping. Although convective flux was ignored, 
the damping by turbulent viscosity was estimated as described by 
Goldreich and Keeley (1977). In no case was it important. The evanes
cent wave boundary condition produced slightly stronger driving. 
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b. p-Modes 

Some p-modes with spherical harmonic index £-2, 10, 50, and 100 
were also checked. The £-2 mode with three radial nodes was stable with 
a damping time of ~107 years (~1011* periods) but the 4 and 5 node oscil
lations were unstable. At £-10, the switch from stability to insta
bility occurred between 2 and 3 radial nodes. At £-100, the lowest mode 
was just barely unstable. Thus it appears that the general pattern 
found for the radial nodes is repeated for the p-modes. 

c. g-Modes (£-2) 

The full sequence of modes between 137 seconds and 629 seconds (17 
radial nodes) was found to be unstable. Growth times decreased syste
matically from ~1010 periods to -100 periods (at 629 seconds). The 
Brunt-Vaisala frequency at the inner boundary of the model is 7x10"3 

sec"1, and rises quickly above lxlO""2, the angular frequency correspond
ing to 629 seconds. Thus the interior boundary condition suppressed the 
eigenfunction artificially in the deep interior. The damping in the 
inner half of the radius of the shell comprising the model was many 
orders of magnitude less than that just below the main driving regions. 
Even an order of magnitude increase in amplitude near the inner boundary 
would not likely influence the net excitation (ergs/sec.) very much. 
However, the kinetic energy associated with a larger interior motion 
could easily be a dominant fraction of the total (for fixed surface 
amplitude), and this would result in a longer e-folding time without any 
tendency to change the sign from excitation to damping. 

The driving regions are essentially the same as those identified for 
the radial modes by Cox, et. al (1979). It is impossible to make a clean 
separation of radial and non-radial effects in the driving or damping. 
Both radial and horizontal flux perturbations depend on the divergence of 
the displacement vector, which in turn depends on both radial and hori
zontal motions. In the 415 second (10 node) mode, both motions contrib
uted substantially to the divergence of the displacement. On the other 
hand, the contribution of the horizontal Lagrangian flux perturbation to 
the divergence of the total flux was typically at the 1% level. The con
tribution to the driving due to the positive flux divergence in the 
initial model was negligible. 

. The outgoing evanescent wave condition was used in all cases. For 
the 415 second mode, the alternative boundary condition resulted in a 7% 
decrease in the growth rate. Since none of the mode frequencies con
sidered here are very close to the critical frequencies at the surface, 
it is unlikely that much larger effects than this will occur for the 
other modes. 

All the modes of the sequence were calculated on 200 point grids, 
and several were calculated with 350 points. The difference in growth 
rates between a good 200 point grid and the 350 point grid with the same 
relative distribution of points was generally less than 5%. 
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d. g-Modes for Higher £ 

A few g-modes were calculated for 1-3, 4, 10, and 50, with periods 
in the range 10-200 seconds. All were found to be unstable, with 
growth rates roughly comparable to £=2 modes with the same number of 
radial nodes. 

IV. CONCLUDING REMARKS 

Many careful calculations in the past have failed to find g-mode 
instabilities, although the observational evidence for their existence 
is extensive [see Van Horn (1979) for a brief discusssion and refer
ences] . The success of the present calculations must be attributed to 
the appropriateness of the model constructed by Cox, et. al. However, 
if so many modes are linearly unstable as has been found here, it will 
be necessary to proceed to non-linear calculations in order to under
stand the fact that only one or a few modes are generally seen to be 
excited. 

I thank A.N. Cox and his collaborators for supplying the model used 
in this investigation. These calculations were done with a computer 
program developed with the support of NASA grant NSG7342 for studying 
solar oscillations. 
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