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INTROENUMERABILITY, AUTOREDUCIBILITY,
AND RANDOMNESS

ANG LI

Abstract. We define Ψ-autoreducible sets given an autoreduction procedure Ψ. Then, we show that
for any Ψ, a measurable class of Ψ-autoreducible sets has measure zero. Using this, we show that classes
of cototal, uniformly introenumerable, introenumerable, and hyper-cototal enumeration degrees all have
measure zero.

By analyzing the arithmetical complexity of the classes of cototal sets and cototal enumeration degrees,
we show that weakly 2-random sets cannot be cototal and weakly 3-random sets cannot be of cototal
enumeration degree. Then, we see that this result is optimal by showing that there exists a 1-random
cototal set and a 2-random set of cototal enumeration degree. For uniformly introenumerable degrees and
introenumerable degrees, we utilize Ψ-autoreducibility again to show the optimal result that no weakly
3-random sets can have introenumerable enumeration degree. We also show that no 1-random set can be
introenumerable.

§1. Introduction. In 1959, Friedberg and Rogers [4] introduced enumeration
reducibility. A set A ⊆ � is enumeration reducible to another set B ⊆ � if there
is a c.e. set W such that A = {x : (∃y)〈x, y〉 ∈W and Dy ⊆ B}, where {Dy}y∈�
gives a computable listing of all finite sets. We call the c.e. set W that witnesses
this reduction an enumeration operator and write A =W (B). The degree structure
induced by enumeration reduction ≤e consists of the enumeration degrees. We can
identify subsets of � with infinite strings in the Cantor space 2� . Therefore, we can
consider the measure of different classes of enumeration degrees (often abbreviated
by e-degrees), including cototal e-degrees, uniformly introenumerable e-degrees,
introenumerable e-degrees, and hyper-cototal e-degrees.

Given a set A of natural numbers and any number n, we may ask whether the
membership of n in A can be determined using the oracle A without asking “is n in
A”. If so, A has a kind of self-reducibility. The notion of autoreducibility introduced
by Trakhtenbrot [12] in 1970 is a formalization of this idea. A set A is said to be
autoreducible if there is a Turing functional Φ such that for any n,A(n) = ΦA–{n}(n).
We will generalize the autoreduction notion by defining Ψ-autoreducibility for any
autoreduction procedure Ψ, which is a function from� × 2� to {0, 1}. The classes of
enumeration degrees mentioned above all have natural autoreducibility by replacing
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2 ANG LI

the Turing functional with different autoreduction procedures. Next, we will show
that any measurable class of Ψ-autoreducible sets has measure zero for any Ψ. Then,
we use this property of classes of Ψ-autoreducible sets to show that the classes of
above e-degrees all have measure zero.

Intuitively, given a setA ⊆ �, or equivalently an infinite string in 2� , it is random
if it is hard to compress or one cannot predict the next bit or it has no rare properties.
In 1966, Martin-Löf introduced a randomness notion using the latter idea that a
random set is in no effective measure zero set in [8]. An infinite string A ∈ 2�

is Martin-Löf random (n-random), if A is not in
⋂
m Gm, where {Gm}m∈� is any

uniformly Σ0
1 (Σ0

n, respectively) sequence of open sets such that the measure of each
Gm is smaller than 2–m. A set A is weakly n-random if A avoids all Π0

n classes.
Generally, a set is random if it avoids a particular kind of null classes. Such null
classes can be arithmetical as above or even go beyond arithmetical.

Since our classes of e-degrees have measure zero, sufficiently random sets must
avoid such measure zero classes. Therefore, we can ask questions about what level
of randomness the above sets or e-degrees can reach, and what level of randomness
the above sets or e-degrees must avoid. We answer such questions for cototal
sets, cototal e-degrees, uniformly introenumerable sets, uniformly introenumerable
e-degrees, introenumerable sets, and introenumerable e-degrees. For references for
randomness notions, see [2] or [10].

We start by giving the definitions of the sets and e-degrees we mentioned. First,
a set A is total if A ≤e A. It is named total because the degree of a total set is the
degree of the graph of a total function. In [1], the notion of cototality is given by
reversing the relationship between A and A.

Definition 1.1. A set A is cototal when A ≤e A.

Definition 1.2. An infinite set X is uniformly introenumerable if there is an
enumeration operator Γ such that for every infinite subset Y of X, Γ(Y ) = X .

In [7], Jockush introduced the notion of uniform introenumerability. The
definition of uniform introenumerability we give here is slightly different by using
an enumeration operator instead of a c.e. operator, though the two definitions were
shown to be equivalent in [6] by Greenberg et al. Recently, Goh et al. [5] also
showed that Jockush’s notion of (non-uniform) introenumerability is equivalent to
the following notion:

Definition 1.3. An infinite set X is introenumerable if, for every infinite subset Y
of X, there is an enumeration operator Γ such that Γ(Y ) = X .

In [11], Sanchis introduced a reduction that is related to hyperarithmetical
reduction and only uses positive information about membership in the set:

Definition 1.4. Let A and B be sets such that, for some c.e. set W, the following
relation holds: x ∈ B if and only if

(∀f ∈ �<�)(∃n, y)[〈f � n, x, y〉 ∈W ∧Dy ⊆ A].

Then we say that B is hyper-enumeration reducible to A and write this relation:
B ≤he A.

Definition 1.5. A is called hyper-cototal if A ≤he A.
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INTROENUMERABILITY, AUTOREDUCIBILITY, AND RANDOMNESS 3

Theorem 1.6. The relationship of enumeration degrees of the above notions is the
following:

Cototal → Uniformly Introenumerable

��� Introenumerable → Hyper-cototal.

Remark 1.7. The solid arrows are strict. For proof of the first arrow, see [9]. The
third arrow and the strictness of the first arrow are proved in [5] by Goh et al. It is
still unknown whether there is a set of introenumerable e-degree that does not have
uniformly introenumerable e-degree.

§2. Measure of classes with autoreduction. In this section, we define
Ψ-autoreducible sets given an autoreduction procedure Ψ and show that any
measurable class of Ψ-autoreduction sets has measure zero. Next, we apply the
autoreducibility of hyper-cototal e-degrees to show that the measure of the class of
such e-degrees is zero.

Definition 2.1. Given a function Ψ : � × 2� → {0, 1}, A set A is
Ψ-autoreducible if and only if

(∀n)[A(n) = Ψ(n,A – {n})].

Here, we say that the function Ψ is an autoreduction procedure.

Next, to show that the measure of a class of Ψ-autoreducible sets is zero, we use
the Lebesgue density theorem.

Theorem 2.2. Fix an autoreduction procedure Ψ, a measurable class S of
Ψ-autoreducible sets has measure zero.

Proof. Suppose a class S of Ψ-autoreducible sets has positive measure. By
the Lebesgue density theorem, for any ε > 0, there is a string � ∈ 2<� such that
�(S∩[�])
�(S) ≥ 1 – ε. Fix ε = 1

4 along with the corresponding string �. Consider an
n ∈ � larger than |�|. Define subsets Pi(i = 0, 1) of S as follows:

Pi = {X ∈ S : Ψ(n,X – {n}) = i}.

Since P0 and P1 partition S, one of them must have the following relative measure:
�(Pi∩[�])
�(S) ≥ 1–ε

2 = 3
8 . Without loss of generality, assume that such subset is P0. Now,

consider the set

P2 = {X̂ : X ∈ P0, X̂ (n) = 1, (∀i �= n)[X (i) = X̂ (i)]}.

Notice that if x ∈ P0, X (n) = 0. So, P2 also has relative measure �(P2∩[�])
�(S) ≥ 3

8 >
1
4 .

Therefore, �(P2∩S∩[�])
�(S) > 0. So, P2 ∩ S is not empty. For any Y ∈ P2 ∩ S, Ψ(n,Y –

{n}) = 0 �= 1 = Y (n). This is a contradiction. Therefore, S has measure zero. �

Remark 2.3. In this theorem, the assumption that the class S is measurable is
necessary. Consider the finite difference equivalence classes: two sets A and B are
in the same equivalence class if and only (A – B) ∪ (B – A) is finite. Now, we can
define a class S0 that contains exactly one element from each of the equivalence
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classes. It is not difficult to see that S0 is not measurable. We can define a function
Ψ0 such that if A ∈ S0 and n ∈ �, then Ψ0(n,A – {n}) = A(n). It is well-defined
because, for any B ∈ S0 and B – {n} = A – {n}, Ψ0(n, B – {n}) has to equal A(n)
by the definition of S0. Therefore, S0 is a class consisting of Ψ0-autoreducible sets
that does not have measure zero since it is not measurable.

Now we use the above theorem to show that the measure of the class of hyper-
cototal e-degrees is zero. First, we discuss the autoreducibility of hyper-cototal sets.

Lemma 2.4. For every hyper-cototal set A, there is a Ψ such that A is Ψ-
autoreducible.

Proof. Suppose A is hyper-cototal and there is some hyper-enumeration
operator Δ such that A = Δ(A). When n ∈ A, A ⊆ A – {n}. Therefore, n ∈ ΔA ⊆
ΔA–{n}. When n �∈ A, n �∈ ΔA = ΔA–{n}. So, A(n) = ΔA–{n}(n). Then, we can define
Ψ(n,X ) := ΔX (n). �

In fact, each set of hyper-cototal degree is Ψ-autoreducible for some autoreduction
procedure Ψ as well.

Lemma 2.5. Any set in the class of hyper-cototal e-degrees is a hyper-cototal set.

Proof. In [11], Sanchis proved that If A ≤e B , then A ≤he B and A ≤he B .
Suppose A has hyper-cototal e-degree and A ≡e B , where B is a hyper-cototal set.
Then, A ≡he B ≤he B ≡he A. �

Next, in order to apply Theorem 2.2 to show that the measure of the classes of
hyper-cototal e-degrees is 0, we first need to show that the class of hyper-cototal
e-degrees is measurable by analyzing the arithmetical complexity of

{A : A ≤he A} =
⋃

Γ

{A : (∀n)[n ∈ A→ n ∈ ΓA ∧ n �∈ A→ n �∈ ΓA]}.

Notice that n ∈ ΓA and n �∈ ΓA are Π1
1 and Σ1

1, respectively, for a hyper-enumeration
operator Γ by Definition 1.4. So, the class of hyper-cototal e-degrees is the difference
of two Π1

1 classes. Recall that Π1
1 sets are measurable. Therefore, the class of hyper-

cototal e-degrees is measurable. Now, we use the results from above to see that the
class of hyper-cototal e-degrees has measure zero.

Lemma 2.6. The classes of hyper-cototal, introenumerable, uniformly introenumer-
able, and cototal e-degrees all have measure zero.

Proof. Suppose the class of hyper-cototal e-degrees has positive measure.
Because there are only countably many hyper-enumeration operators, there exists a Γ
such that the class of hyper-cototal e-degrees witnessed by this operator has positive
measure. However, any set in this class would be Γ-autoreducible by Lemma 2.4.
Now, applying Theorem 2.2 gives us a contradiction. By the relationship between
the e-degrees mentioned above in Theorem 1.6, we see that the measure of these
classes are all zero. �

§3. Bounds of randomness. Notice that, for any class of measure zero, sufficiently
random sets avoid it. So, we now discuss what level of randomness these e-degrees
could and could not have. In this section, all necessary background knowledge of
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randomness is from Nies’ book [10]. We first discuss the class of cototal sets and the
class of cototal e-degrees.

Theorem 3.1. Weakly 2-random sets are not cototal.

Proof. The class of cototal sets {A : A ≤e A} is defined by
⋃
e

{A : A = ΓAe } =
⋃
e

{A : ∀n[n ∈ A→ (∃Dy ⊆ A)[〈n, y〉 ∈ Γe〉]

∧ n �∈ A→ (∀y)[〈n, y〉 ∈ Γe → Dy ∩ A �= ∅]]},

where Γe ’s are enumeration operators. Therefore, the class of cototal sets is a union
of Π0

2 classes. By Lemma 2.6, all such classes have measure zero. Because any weakly
2-random set avoids all null Π0

2 classes, weakly 2-random sets are not cototal. �

To see that weak 2-randomness is optimal, we show that the 1-random Chaitin’s
Ω is a cototal set.

Theorem 3.2. There exists a 1-random cototal set.

Proof. Because Ω is left-c.e., there is a non-descending computable sequence
{qn} of rationals such that Ω = limn→∞ qn. For any enumeration of Ω, we can
enumerate Ω using this computable sequence. First, to determine whether 0 is in Ω
or not, either for some n, we see the dyadic expansion of qn starts with 1 or we see
1 enter Ω. Only for the first case, we enumerate 0 in Ω. Then, we can iteratively do
this process for each nature number in order. Eventually, we obtain an enumeration
of Ω. Therefore, Ω ≤e Ω. �

For the class of cototal e-degrees, we first discuss what level of randomness is
enough to avoid them.

Theorem 3.3. Weakly 3-random sets do not have cototal e-degree.

Proof. Notice that the class of cototal e-degrees defined by an enumeration
operator Γe is

{A : A = ΓKAe } = {A : (∀n)[n ∈ A→ (∃y)[〈n, y〉 ∈ Γe → Dy ∩KA = ∅]

∧n �∈ A→ (∀y)[〈n, y〉 ∈ Γe → Dy ∩KA �= ∅]]}.

Since D ∩KA = ∅ and D ∩KA �= ∅ are Π0
1 and Σ0

1 respectively, the class of cototal
e-degrees defined by Γe is Π0

3. Since each of these classes is null, weakly 3-random
sets avoid them all. So, we conclude that weakly 3-random sets do not have cototal
e-degree. �

Next, we see that weak 3-randomness is optimal by showing that there is a
2-random set of cototal e-degree even though any cototal set cannot be weakly
2-random.

Theorem 3.4. There exists a 2-random set of cototal e-degree.

Proof. Consider Chaitin’s Ω relativized to ∅′, i.e., Ω∅′ , which is 2-random.
Let L be {q ∈ Q2 : q < Ω∅′}. Then, L ≤e Ω∅′ ≤e L⊕ L. Notice that L is Σ0

2.
In [1], it was shown that every Σ0

2 set has cototal e-degree. So, there exists M

https://doi.org/10.1017/jsl.2023.95 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.95


6 ANG LI

such that M ≡e L and M ≥e M . Then, Ω∅′ ⊕ L⊕M ≥e L⊕M ≥e L⊕M ≡e
L⊕ L ≥e Ω∅′ ≡e Ω∅′ ⊕ L⊕ L ≡e Ω∅′ ⊕ L⊕M . Hence, we have a cototal set that
is enumeration equivalent to Ω∅′ . �

In the proofs above, we did not use autoreducibility since it is enough to analyze
the arithmetical complexities of the class of cototal sets and the class of cototal
e-degrees to show the optimal level of randomness the sets in these classes must
avoid. However, a similar analysis would not work for the classes of (uniform)
introenumerable sets or e-degrees. We can verify the complexity of the collection of
uniformly introenumerable e-degrees:

⋃
e

{A : ∃i, m∀B[∀a[a ∈ A↔ ∃b[〈a, b〉 ∈ Γm ∧Db ⊆ Γi(A)]]∧

[B ⊆ Γi(A) ∧ [∀p ∈ B∃q > p] →
∀t[t ∈ Γi(A) ↔ ∃s[〈t, s〉 ∈ Γe ∧Ds ⊆ B]]]]}.

This is Π1
1. We suspect that the class of uniformly introenumerable e-degrees is Π1

1-
complete. This was shown to be true for the class of uniformly introreducible sets
in [6]. Assuming that there is no simpler definition, the analysis we used for cototal
e-degrees would not work. Instead, for each set A of uniform introenumerable e-
degree, we show Ψ-autoreducibility for some autoreduction procedure Ψ so that we
can apply Theorem 2.2 again.

Theorem 3.5. Weakly 3-random sets do not have uniformly introenumerable
e-degree.

Proof. We will show that uniformly introenumerable e-degrees are contained in
a countable union of measure zero Π0

3 classes. To do this, we show that each set A
of uniformly introenumerable e-degree is Ψ-autoreducible for some Ψ. Since A has
uniformly introenumerable e-degree, there is a set B, enumeration operators Φ, Γ,
and Δ such thatA = Δ(B), B = Φ(A), and for any infinite subset C of B, Γ(C ) = B .
Let

Ψ(n,Z) =

⎧⎪⎨
⎪⎩

1, n ∈ Δ(Γ(Φ(Z)))
or Φ(Z) is finite,

0, otherwise.

Note that n has to be in A when Φ(A – {n}) is finite. So, A is Ψ-autoreducible. Now
we consider the class of Ψ-autoreducible sets:

{D : ∀n[[n ∈ D → n ∈ Δ(Γ(Φ(D – {n})))

∨ (∃p∀t > p)[t �∈ Φ(D – {n})]]

∧ [n �∈ D → (∀q∃s > q)[s ∈ Φ(D – {n})]

∧ n �∈ Δ(Γ(Φ(D – {n})))]]}.

This is a Π0
3 class. By Theorem 2.2, this is a null class. Because weakly 3-random

sets cannot be in any Π0
3 null class, weakly 3-random sets do not have uniformly

introenumerable e-degree. �
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Meanwhile, there also exists 2-random uniformly introenumerable e-degrees
because of Theorem 3.4 and the fact that every set of cototal e-degree has uniform
introenumerable e-degree.

With more work, the previous result can be improved to show that weakly 3-
random sets do not have introenumerable e-degree either.

Theorem 3.6. No weakly 3-random set has introenumerable e-degree.

Proof. Suppose a weakly 3-random set A has introenumerable e-degree. Let B
be an introenumerable set such that there are enumeration operators Φ and Δ with
A = Δ(B) and B = Φ(A). For a contradiction, we define C =

⋃
i ci as an infinite

subset of B such that Γi(C ) �= B for any enumeration operator Γi (here we identified
strings ci with corresponding sets). When we are constructing C, we also define a
set Di at each stage i. Let c0 = ∅ and D0 = ∅. Suppose ci and Di have been defined.
By inductive assumption, Φ(A – Di) is infinite. First, we consider whether there
is an extension e of ci such that e � ciΦ(A – Di) � [|ci |,∞), and Γi(e) – B �= ∅. If
so, we define ci+1 to be the least such e that contains at least one more element
than ci and Di+1 = Di . If not, we consider whether there is an extension e of ci
such that for some n, Φ(A – Di ∪ {n}) is infinite, e � ciΦ(A – Di) � [|ci |,∞), and
Γi(eΦ(A – Di ∪ {n}) � [|e|,∞)) � B . If so, we define ci+1 to be the least such e that
contains at least one more element than ci , and Di+1 = Di ∪ {n}. If not, we can
define

Ψ(n,Z) =

⎧⎪⎨
⎪⎩

1, n ∈ Δ(Γi(ciΦ(Z – Di) � [|ci |,∞)))
or Φ(Z – Di) is finite,

0, otherwise,

similar to the proof in Theorem 3.5. Notice that A is Ψ-autoreducible and the class of
Ψ-autoreducible sets is Π0

3. This is impossible because A is weakly 3-random. This is a
contradiction. Therefore, at least one of the two cases we considered has to be true. In
this way, we obtain an infiniteC =

⋃
i ci ⊆ B . Now we show that Γi(C ) �= B for any

i. For any i, if the first case we considered is true, then Γi(C ) contains an element not
in B. If the second case is true, Γi(C ) ⊆ Γi(ci+1Φ(A – Di+1) � [|ci+1|,∞)) � B . �

Again, by Theorems 1.6 and 3.4, we conclude that there exists 2-random
introenumerable e-degree while there is no weakly 3-random introenumerable e-
degree. Next, we consider the class of uniformly introenumerable sets. We use the
proof ideas of Proposition 8 given by Figueira, Miller, and Nies in [3] that showed
no random is autoreducible.

Theorem 3.7. No 1-random set is uniformly introenumerable.

Proof. We will apply Schnorr’s theorem. To do so, we will show that the initial
segment of any uniformly introenumerable set A can be compressed beyond any
fixed constant.

Let Γ be the enumeration operator such that Γ(B) = A for any infinite subset
B of A. For each m, there is a least nm such that nm > np for any p < m and
Γnm (0mA � [m, nm)) � m = A � m since A – {0, 1, ... , m – 1} is an infinite subset of
A. Let cm be the number of 1’s in the string A � m.

Now we define a prefix-free machine M that outputs A � nm with input
� = 0|�|1�0|�|1�A � [m, nm), where �, � are binary strings corresponding to m, cm.
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M first obtains the length of � by reading until the first 1 and then obtains the
number m by reading |�| many bits after the first 1. Next, M can find out cm in
the same way by reading the input until �. Now, M’s read head keeps on moving
forward to readA � [m, nm) bit by bit to do the enumeration of Γ(0mA � [m, nm)) � m
step by step to enumerate A(x) for x between 0 and m – 1 until cm many of such
A(x) is determined to be 1, which means the other bits on A � m are zeros. M can
output A � nm by concatenation. Therefore, K(A � nm) ≤+ nm – m + 4 log(m). By
Schnorr’s theorem, A is not 1-random. �

For introenumerable sets, we combine the methods used in Theorems 3.6 and 3.7.

Theorem 3.8. No 1-random set is introenumerable.

Proof. Suppose there is a 1-random introenumerable set A. We prove the
theorem by constructing an infinite subset B =

⋃
i bi of A such that Γi(B) �= A for

any enumeration operator Γi (here we identified the strings bi with its corresponding
set).

Let b0 = ∅. Suppose we have already defined bi . There are two possible cases. One
of the two cases must hold for it to be 1-random.

First, We consider whether there is an n such that Γi(biA � [|bi |, n)) contains an
element that is not in A. If so, we let bi+1 = biA � [|bi |, n). In this case, we have
a finite extension bi+1 of bi such that bi+1 is a subset of A, and for any infinite
extension B of bi+1, Γi(B) has an element not in A.

Second, if there is no such n in the first case, we consider whether there is an m such
that Γi(bi0mA � [|bi | +m,∞)) � A. If so, we let bi+1 = bi0m. In this case, we have
a finite extension bi+1 of bi such that applying Γi to A’s subset bi+1A � [|bi+1|,∞)
does not output A.

If one of the cases holds for every i, we can show that for any i, Γi(B) �= A,
contradicting introenumerability. If the first case holds for i, then for any extension
B0 of bi+1, Γi(B0) �= A. If the first case does not hold, notice that B is a subset of
B1 = bi0mA � [|bi | +m,∞). Then, Γi(B) ⊆ Γi(B1) � A.

If neither cases hold for some i, we show that A is not 1-random using a method
similar to the one used in the proof of the above theorem. For each m, there is a
least nm such that nm > np for any p < m and

Γi,nm (bi0mA � [|bi | +m, nm)) � |bi | +m = A � |bi | +m

because the failure of the second case guarantees that eventually numbers in A �
|bi | +m will be enumerated and no other numbers would be enumerated by the
failure of the first case. Let cm be the number of 1s in the string A � [|bi |, |bi | +
m). Now we define a prefix-free machine M that outputs A � nm with input � =
0|�|1�0|�|1�A � [|bi | +m, nm), where �, � are binary strings corresponding to m, cm.
M obtains m, cm in the same way as the proof above by reading until �. Then, M
obtains the first |bi |bits of A using Γi . Next, its read head keeps on moving forward to
readA � [|bi | +m, nm) bit by bit to do the enumeration of Γi(bi0mA � [|bi | +m, nm))
step by step to enumerate A(x) for x between |bi | and |bi | +m – 1 until cm many
of such A(x) is determined to be 1 and output A � nm by concatenation. Therefore,
K(A � nm) ≤+ nm – m + 4 log(m). By Schnorr’s theorem, A is not 1-random. �
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