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THE DUAL OF H*(R+*+l) FOR p < 1 

T. WALSH 

Introduction. The dual of IP of the unit disk for 0 < p < 1 has been 
characterized by Duren, Romberg and Shields (see [3]). The present paper is 
concerned with the analogous result for Hp(R+

n+1) in the sense of Stein and 
Weiss (see [11]). In this connection it may be recalled that the dual of H1 has 
been characterized by Fefferman (see [4]). Recall that a system 

F = {F0, Fi, . . . , Fn) 

of (n + 1) harmonic functions in the half space 

R+
n+1 = {(x,y) : x £ Rn,y > 0} 

belongs to Hv(R+
n+l) for p ^ (n — l)/n if F is the gradient of a harmonic 

function and 

\\F\\[H*} = s u p { | | F ( - f y ) H , : y > 0 } < oo. 

Here \F\ = (Z"=o \Fj\2)1/2. The Poisson kernel P is defined by 

P(x, y) = cn~
ly(y2 + \x\*)-<H+»/2, c~l = T^n+^/2T((n + l ) /2 ) . 

Suppose that a > 0, k is the least integer larger than a and [a] is the largest 
integer at most equal to a. Then the Lipschitz space Aa is denned to consist 
of all residue classes of measurable functions / modulo polynomials of degree 
[a] at most such that 

| |/ | |[A«] = sup{|AM|A*(A)/|U: A G Rn} < oo. 

Remark 1. If the notation Xa is used for the Lipschitz space A^^* defined by 
Herz in [6] then the present Aa is linearly homeomorphic to the second dual ( \ a )" 
of Xa in such a way that the usual embedding of Xa into (Xa)" followed by the 
inverse of this homeomorphism is the inclusion Xa C Aa (cf. [9]). 

The following result will be proved. 

PROPOSITION. Suppose that (n — l)/n < p < I .mis an integer >n(l/p — 1) 
and for F G H^R^1), <p 6 A*1'*-» define 

(1) faF) = (- l)m2w[(m - I)!]"1 P f Fo(x,yWm)(x,y)ym-1dxdy 

where $(m)(x, y) = [(d/dy)mP(- , y)]*<p(x). This definition does not depend on 
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568 T. WALSH 

m and the mapping <p —> {<p, •) is a topological isomorphism from Aw(1/P_1) onto 
the dual Hv(R+

n+l)' of H*(R+
n+1). 

Needless to say, the Proposition extends to Hp spaces consisting of more 
general systems of conjugate harmonic functions (see, e.g., [2]) with lower 
bounds for p which are possibly different from (n — l)/n. 

Proof of the Proposition. The proof will require two lemmas the first of 
which is well-known and is stated separately for the sake of easy reference 
only. If /3 = (#i, . . . , pn) is a multi-index of non-negative integers put 
|0| = Z)^=i Pj'i if ^ is a non-negative integer a n d / is a sufficiently often differen
t i a t e function in R+

n+l put / ^ Z ) = {d/d%Y{d/dy)lf. As usual the letter C 
will be used to denote constants whose dependence on quantities other than 
the dimension n may be indicated by subscripts. 

LEMMA 1. If (n — l)/n S P ^ °°, then 

(2) yW+l\\F^l)(-,y)\\vè Cm+l\\F\\m. 

Furthermore if {n — l)/n < p < oo, then 

(3) limyw+l\\^l\-,y)\\, = 0. 
2/->oo 

Proof. Suppose \p is a radial Cœ function in Rn+1 supported in the ball of 
radius 1 about the origin, J \j/{z)dz = 1 and as usual define ^r{z) = r~~n~l\p(r~lz) 
for r > 0 and z £ Rn+1. Differentiation of the relation F = ypyji*F valid for 
any harmonic function F yields 

(4) ym+i\F^^(x,y)\ S C W , m a x { | F ( t t , 0 | : \u - x\2 + \t - y\2 

^ (y/m-
As in [11] let s denote the least harmonic majorant of |JF|(W-I)/W in R+

n+1. Then 
by Harnack's inequality the maximum on the right-hand side of (4) is bounded 
by Cs(x}y)n«n-l\ Hence y^l + ̂ w . i ) (Xj y)\ g CW{+ls(x, y)"/c~-D. Now (2) 
and (3) follow from the results of [11] for the harmonic majorant s. 

LEMMA 2. For F £ Hp, (n — l)/n ^ p ^ 1 and v > n(l/p — 1) define 

TvF(x,y) = jyv+1(y + \x - u\yn-v-1F,{u,y)du 

where 

F*(x, y) = max{|F(w, /) | : \u — x| + \t — y| ^ y/2}. 

Then for à = v/(l/p — I) — n, 

(5) | | 7 \F( . , ;y)||p g C,C^^b-^-^\\F\\[m. 

Proof. The case £ = 1 being obvious it will be assumed that p < 1. Let sp 

denote the least harmonic majorant of \F\V in R+
n+1. Hence by the results of [11] 
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Sp(%> j) — P(' » y) * /*(*) where /x is a finite (positive) Borel measure on Rn 

and 

(6) n(Rn)1/p = | | F | | [ ^ ] . 

(If £ > (w — l)/n ^ is necessarily absolutely continuous with respect to 
Lebesgue measure.) 

As in the proof of Lemma 1, F*(u, y)v ^ Csp(u, y). Hence 

(7) T,F(x,y) S Csupty'Cv + I* " « i r ^ (w f y) 1 / p _ 1 ] 
u 

X \ y(y + \x — w|)_n_15„(w, 3>)rfw. 

Note that 

b/(y+\*-»\)Ynl*-\(M,'y) 

g [y/(y + \x - u\)Ynl/p-1) jy/(y + \u - v\)n+%(v). 

Split the domain of integration Rn in the last integral into the set {v : \u — v\ ^ 
2\x — u\} and its complement to obtain 

[y/(y+\x-u\)Y'Wp-\(u,y) 

g @/2y'il"-1)y"J\y/(y+\x-v\)]«il/>-,idlt(v) 

+ y-n(y/rYnlh-1) f dy.(v) 
where r = y + |x — u\. 

Next observe that 

s u p f r / r ) " ^ f <fc(«0 ^ É 2- ( z - 1 ) ^ ( 1 / - 1 ) f dM(r). 
2/̂ r «/|a;-p|^3r 1=0 J \x-v\^.1ly 

Thus if x denotes the characteristic function of the ball about the origin in Rn 

of radius 3, 

CO 

y(x) = (3/2)"(1/^"(l + l*!)-""^1' +53 2-<|-1)'/<1/^1)x<i"-) 

and 
a(x, y) = sup{[;y/(y + |* - tt|)]F/(1/*-%(tt, y) : u e Rn} 

then o-(x, 3O :g ^~ W T(^ _ 1 •) *M(#) hence by Young's inequality for convolu
tions and (6), 

lk(-,y)IM IMW**) ^ C2'(r1 + É 2 - " ) ||/?||[HT. 
Thus 

(8) | K - . y ) | | i ^ C2^\\F\\[H^. 
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Now (7), (8), | M - ,y) | | i Û v(Rn) and (6) imply 

\\T,F(-,y)\\, â C\\<r(- ,yW"-'\\sv(- ,y) | | i ^ C>CJ<>+'&-<"-»\\F\\{H']. 

This completes the proof of Lemma 2. 

The main result can now be proved similarly as the result for the unit disk. 
Additional difficulties seem to be mainly due to the fact that HQ is not con
tained in Hv for p < q. Let Q(x, y) = (Qi(x, y), . . . , Qn(x, y)) = cn~

lx(y2 + 
|X|2)-(W+D/2 denote the conjugate Poisson kernel and put S — (P, Q) so that S 
forms a system of conjugate harmonic functions. Observe that 

\S«-l>(xty)\ ^ Cm+i(y + |x|)-w-i£i-'. Hence for |£| +l>n(l/p- 1) 

and y > 0 

(9) \\SV-H- + (0, y))\\[H>] g Cp,m+ly»«">-v-W-'. 

Suppose now that X G (Hp)' and define $[".'] by 

q>v>.H(-x,y) = (-1)I"IX(5W.«)(. + (*,?))) 
so that 

(io) \*U'lHx,y)\ g c;.,/1,+,||x||[(fl»')']y»*-«-wi-'. 
From harmonicity and the compatibility conditions satisfied by the deriva

tives of 5 it is easy to see that there exists a function <i> in R+
n+l such that 

<$(£.*) = $IP>1} for |j8| + I = m. This, of course, is also a consequence of 
general existence theorems for over-determined systems of differential equa
tions with constant coefficients. 

Next it will be shown that 

!!$(. , y ) | | [ A - » ^ » ] ^ cp | |x| |L(iP)']. 

I t is easy to see that for this it suffices to establish 

( i i ) | |A*(A)*<»( - , y)| |„ ^ c,||x||[(H»)']|ft|»<i*-»-<» 

for |/3| equal to the largest integer N less than a. This in turn follows similarly 
as in [12, p. 425] by applying A2(h) to 

$<» (•,30 = - l "* '**^ (-,? + *)<& 

+ |A|* a , , 1 )(-^ + l*l) + * t f ) ( - , y+ |A | ) 
and writing A2(ft)$w,1)(' ,y + |ft|) and A2(^)$ (^(- ,y + \h\) as integrals of 
the partial derivatives of &P>j) with respect to x which can be estimated 
by means of (10). 

It is elementary to verify that (11) implies 

3=1 
C,||X||[CZO']|*|(l+|log|*||) 
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for some linear form £"=i Cj(y)xj9 or 

|*<»(*,y) - *(»(0,y)| g C,\\\\\[(H'y]\x\'»^o-st (^ = N) 

according as n(l/p — 1) is an integer or not (cf. [6] and [14]). Hence for some 
polynomial ^ ( 0 ; . . . , y) in X\, . . . , xn of degree n(l/p — 1) at most (the 
Taylor polynomial of <£(• , y) about 0 if n(l/p — 1) is not an integer) and 
\y\ ^ N 

(12) \*V(x,y) - %^(0;x,y)\ ^ Cp\\\\[(H>)']\x\*«'*-»-M(l + |log|*||). 

As a consequence of (11) and (12) the family {$<*>(• , y) — $p
(7)(0; • , y) : 

IT| S Ny y > 0} is equicontinuous and uniformly bounded in any compact 
set. Hence by the Arzelà-Ascoli theorem there exists a sequence {yk} and a 
function <£(• ,0) such that lim^^y* = 0 and 

^ (•, yk) - $,w (• ; 0, yk) - *<*> (•, 0) -+ o 

locally uniformly as k —> oo hence (11) and (12) continue to hold for y = 0 
with $,(0; • , 0) = 0. 

By (10) (see [11; 13]) 

*<">(*, y + y*) = P ( - , y) * $<m)(-, ?*)(*) 

= p ( - ) ( . , y ) ** ( - , y» ) (* ) , 
hence 

(13) * w (x, y) = lim * w ( * , y + yk) = P™(• , y) * $(• , 0) (*). 
£->co 

(This would also follow from the fact that Aw(1/2>_1) is the dual of a space 
containing all functions P<m>(- — x, y), for x 6 î w, y > 0, and the Banach-
Alaoglu theorem; see Remark 1.) 

Suppose now F G Hp. Then for y > 0 

(14) Fim\x, 2y) = jsim\x + u, y)F0(-u, y)du. 

Let J = (ji, . . . fjn) denote any integer lattice point in Rn. It will be shown 
that for any y > 0 

in i P where 

(15) F™(.+ (0,2y)) = H m ^ f J 

Ul^z2 

Clearly any Fi>y
(m) belongs to ff\ Note that for TmF as defined in Lemma 2 

with v = m 

sup TB 2 |5(m)(x + r 1 / , y ) F o ( - r 1 J , y ) \ û TmF(x,y) 
J>2/K I/I S i 2 
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hence by Lemma 2, 

de) iisuP|^,;m)(- ,o)i H, ^ c„.„iiF||[fn. 
i 

Also by (14) and since FQ(- , y) is bounded and continuous 

\imFlty
in\x,0) = F{m\x,2y) 

for any x G Rn. Hence by (16) and dominated convergence 

l i m / ^ G ,0) = F(m)(-,2y) 
Z->oo 

in Lv. Since the functions Fhy
{m) are in Hp for I = 1 , 2 , . . . (15) now follows 

from the general theory of Hp spaces. (15) implies 

Hm \(Fjm)) = Hm rB £ $(m)(rV, y)F0(r
1j, y) 

Hence by the continuity and boundedness of $ (m) (•,;>>) and since 
l|^*(- » y)W < oo it follows that 

(17) \(F«*\. + (0,230)) = f * ( m ) (x ,y)Fo(x ,y)^ . 
*J Rn 

Clearly 
|| sup |^(m)(-,y + 0l | | ,^Cm . , . e | |F | | [m 

for any y > 0, c > 0. Hence similarly as before it can be seen that for rj, R > 0 
(17) implies 

(18) \ ( f* Fim)(• + (0, 2y + ri^-'dy) 

= J JVm)(x, y)F0(x, y + v)y
m-ldxdy. 

Next note that for (n — l)/w < p < co 

(19) lim ( - l ) m [ (m - I)!]"1 C F™(- + {0, yfty^dy = F 

in Hp. For by integration by parts the expression after the limit sign equals 

m 

^ + £ (-l)m-l+1[(m - /)!]-\F (m-°(- + (0,R))Rm-' 

and as a result of Lemma 1 the last sum tends to 0 in Hp. 
(18) and (19) imply 

(20) HF(-+(0,v)) 

= (-l)m2m[(m - I)!]"1 lim f f $(m)(x, y)F0(x, y + ^y^dxdy. 
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By a result of Flett [5, Theorem 3] generalizing an inequality of Hardy and 
Littlewood 

/»oo 

(21) ||F(- ,y)Mill^ï)-1dy Û CV\\F\\[IP\-
«Jo 

Hence by dominated convergence as rj —> 0 the right-hand side of (20) 
approaches the right-hand side of (1). Moreover since l im^0P(- + (0, 7?)) = F 
in Hp it follows that any X £ (Hp)' can be represented by (1) where (p = <£(• , 0) 
and by (11), |H|[A"«*-»] g ^ | |X| | [ ( iP) ' ] . 

Conversely for any <p £ An(1/P~1) (1) defines a continuous linear functional 
on Hp. First observe that since 

(d/dy)2p = - E (a/^)2p and (a/a^P = - E (d/d*,)& 
it follows that 

(d/dy)mP = £ c ^ - - ^ or = - S Ê duQ?^™ 
\P\=N |/3|=JV J = l 

for certain nonnegative constants ^ , ^ y according as N is even or odd. 
It can be shown that if <p £ Aw<1/2?-1} then 

(22) sup H^lltA^1^-1^] ^ ClI^UtA^^] . 
I/3|=AT 

In the case of the Lipschitz algebras Aa C\ L°° the analogous result is of course 
well-known (see also [6]). Hence by a previous argument (12) is valid with 
| | \ | | [ ( iP) ' ] replaced by IMKA»'1'*-1']. It follows that if N is even 

while if N is odd 

${m)(x,y) = - E Ê mQj(m-N)(- ,y) *<PW)(X). 

Note that since m > N, p(m~N) (• , 3;) has mean value 0 on i?w. Hence by 
use of (12) for even N 

*(m)(pc,y) = (1/2) £ ^ f p ^ - ^ ^ . ^ A 2 ^ ) ^ ^ ) ^ . 

Thus 
f*oo 

|$(m)(x, y) | g C,|M|[A"<1*-1)] (y + u)-n-m+NunWv-1)-N+n-1du 
Jo 

^ CP,m\W\\{Ana"'-1)]fll/p-1)-m. 
It follows that for F ^ H" 

(23) \(<p, F)\ ^ C^IMIIA*1^] P \\F(-,y)\Wll'r-vdy. 
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Hence by (21) for even N 

(24) |<„, F)\ è QJWlU^'^nWFWlH"]. 

If N is odd 

U{m)(x, y)F0(x, y)dx = Z Z dfi fp^"\. , y) * ^\x)Fi{x, y)dx 

and (23), (24) follow as in the case of even N. (Use of the functions Fj for 
1 ^ j ^ w could have been avoided by noting that the results of [6] and 
Remark 1 imply that the Riesz transform preserves Aa.) 

To see that the right-hand side of (1) does not depend on m note that for 
X = (<p, •) defined by (1) and any other m! > n(l/p — 1) the corresponding 
function $x defined by $x«'»(-x,y) = (-l)M\(SV-l)(- + (x,y))) for 
\f3\ + 1 = m! satisfies 

^m'\-x,y) 

= (-l)m2m[(m - I)!]"1 P f Pim'\u + x,t + y)Pim\u, t) * <p{u)tm7ldudt 

hence by changes of the variables of integration and integration by parts 
<£>x(m/)(x, y) = p(w/)(- , 3;) * <p(x). Thus by the first part of the proof X is also 
represented by (1) with mf in place of m. 

Remark 2. Let HP(U+) denote the space of functions/ holomorphic in the 
upper half-plane 11+ = {z : I m z > 0} such that 

sup (\f(x + iy)\vdx = \\f\mr 
v>0 *s y>0 

Note that the mapping r from HP(U+) to HP(R+
2), the space of i£2-valued 

functions in HP(R+2) as defined in the Introduction which sends/ to (F0, Fi) = 
(Re/, Im/) is a linear isometry between HP(U+) and HP(R+

2, R) over the real 
numbers. If a complex structure / is defined on HP(R+

2) by means of 
J(F0, Fi) = ( — Fi, FQ) then r is linear over the complex numbers. A complex 
linear functional X on HP(U+) gives rise to a complex linear functional 
X o r_ 1 on HP{R+

2) if and only if the real linear mapping X o r _ 1 from HP(R+
2, R) 

to C satisfies X o r~l(JF) = X̂ o T~1(F). Hence by the Proposition for some 
complex valued function <p satisfying 

MU^'^] ^ cv,m\\\\\wy}, 

( - l ) m 2- m (m - 1)!X(/) = j J Re/ (x + iy)$(m\x, y)ym'idxdy 

= ij J Im /(* + iy) $(m) (x, y)ym~xdxdy. 
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As a result any bounded complex linear functional X on HP(TL+) is of the form 

HI) = (-l)m2m-\{m - l)!]-1 J £ f(x + iyWn\x,y)ym-1dxdy. 

Remark 3. In case n ^ 2 and /> = (w — l)//z the proof of the Proposition 
can be modified to show that if X is a bounded linear functional on H(n~1)/n 

then its restriction to the subspace consisting of those F Ç #(»-i)/» which 
satisfy 

lim ||F(- ,yù - F(- , j 2 ) | |(w_1)M = 0 

and 

lim | |F(. ,y)11(„-«/„ = 0 

is still given by 

\(F) = ( - i r 2 w [ ( m - I)!]"1 lim f f F0(x,^)$(m)(x,3;)3;m-1J^3; 
7 ^ + 0 , i2_>co « J* ^ « n 

for some <p such that IMItA^""1*] ^ Q||X||[(#(W-1)/W)']. For the proof note 
that by the assumed uniform integrability of \F(- , y)| (n-1) /w the measure /x is 
absolutely continuous with respect to Lebesgue measure. It follows that 
l l^( - ,y) l | i = o ( y i / ( " - 1 ) ) a s y - * 0 . 

Define A^i" to consist of all equivalence classes of measurable functions 
such that fora, k as before (cf. [6]) 

f ||A*(/*)/ \Uh\-a-ndh = |H|[A-œ .i] < » . 
«/ Rn 

Then any <p G AOÛ)i
B/(w*1) by virtue of (1) gives rise to a bounded linear 

functional {<p, •) on H^~l)/n such that 

This is immediate from \\F(- , y)||i ^ C||F||[fl'<,I-1>/n]y-,,/(w-1> and 

fœ ||<ï>(m)(- ,3 ' )IUm"w / ( w~1 )-1^ ^ C l I ^ U t A ^ ^ ] . 
«/o 

Remark 4. For m > v > 0 define P (y ) by 

(24) P(v)(x, y) = éTM ' -m )r(m - ^ ) _ 1 f p ( r a ) ( x , y + t^^dt 

or equivalently P{v)(• , y) (x) = e"~iirp\x\ve~'v^x^ where for g ^ L1 the Fourier 
transform | is defined by g(x) = J e~ixvg(y)dy. (The corresponding inverse 
Fourier transform of h £ L1 is denoted &v) (24) implies P(v)(x, y) = o{\x\~n~v~l) 
as |x| —» oo for fixed y > 0 hence <E(,,) can be defined by 

(25) $<"> (x, ;y) = P<"> (. , y) * ^ ( x ) . 
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With this notation (1) can be generalized to 

(26) (<p,F) = 2 V " r < > r 1 P f F0(x,y)^,,)(x,y)yv-1dxdy 

for */ > w(l/£ - 1). Note that P(- , y)A(x) = e~^x\ hence F{- , 0)A is well-
defined by F(- , 0) (x) = F(- ,y) (x)ey\xK One way to establish (26) is by 
observing that for <p £ Û, the space of Fourier transforms of functions which 
are infinitely often differentiable and vanish near 0 and infinity the right-hand 
side of (26) equals 

2 T M " 1 P f Fo(- i0)A(x)\x\v^(x)e-2y{xlyv-1dxdy 
*/ 0 *J Rn 

= f Fo(-,0)A(x)^v(x)Jx = lim (F 0 ( - ,0) A (x)e-* l V(*)<& 

= lim I F0(x,y)<p(x)dx. 

For general <p Ç ^«(I/P-D n o t e that ^ is dense in Aw(1/2,_1) wTith respect to the 
weak* topology of A ^ 1 7 ^ as the dual of (x»u/*-D)' (see [6] and Remark 1). 
Also by (24) and similar arguments as in the proof of the main result the inner 
integral over Rn on the right-hand side of (26) is bounded by 

C,, , | |^I |[A^ I^- I)] | |F(. , y)lliyicl/p-1)-1. 

Hence again by the result of Flett used above for any fixed F £ Hp the right-
hand side of (26) defines a continuous linear functional on An(1/2?_1). It follows 
that (26) holds for any tp £ A**1'*"1*. 
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