ALMOST-BOUNDED HOLOMORPHIC FUNGTIONS WITH PRESCRIBED AMBIGUOUS POINTS

G. T. CARGO

1. Introduction. Let f be a function mapping the open unit disk D into the extended complex plane. A point ζ on the unit circle C is called an $a m b i$ guous point of f if there exist two Jordan arcs J_{1} and J_{2}, each having an endpoint at ζ and lying, except for ζ, in D, such that

$$
\lim _{\substack{z \rightarrow 5 \\ z \in J_{1}}} f(z) \text { and } \lim _{\substack{z \rightarrow \zeta \\ z \in J_{2}}} f(z)
$$

both exist and are unequal. Bagemihl (1) proved that the set of ambiguous points of f is at most countable, even if f is not required to be continuous in D.

Since bounded holomorphic functions in D have no ambiguous points (6, p. 303 ; 9, p. 5), several subsequent investigations have centred about the question of the existence of ambiguous points for functions which are "almost" bounded in some sense. Bagemihl and Seidel (2) proved that if E is a denumerable subset of C, then there exists a function f, regular and of bounded characteristic in D, for which every element of E is an ambiguous point.

A function f, regular in D, is of bounded characteristic if it satisfies the growth condition

$$
\sup \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta: 0 \leqslant r<1\right\}<\infty .
$$

In this paper, we consider classes of functions which are subject to more stringent (Orlicz-type) growth conditions.

If h is a non-negative, non-decreasing function defined on the non-negative real axis, then let $H(h)$ denote the collection of holomorphic functions f in D for which

$$
\sup \left\{\int_{0}^{2 \pi} h\left[\left|f\left(r e^{i \theta}\right)\right|\right] d \theta: 0 \leqslant r<1\right\}<\infty
$$

We observe that $H\left(x^{p}\right)$ is the Hardy class $H^{p}(p>0)$ and that

$$
H\left(e^{x}\right) \subset \bigcap_{0<p<\infty} H^{p}
$$

Theorem 2 of this paper asserts that if E is a denumerable subset of C and if h is a non-negative, non-decreasing function defined on the non-negative real axis, then there exists a function f in $H(h)$ for which every point of E is an ambiguous point. (For finite sets E, this result was anticipated by Gehring (5).)

[^0]In order to establish Theorem 2, we first prove (Theorem 1) that if h is a non-negative, non-decreasing function defined on the non-negative real axis and if E is a subset of C whose (linear) measure is zero, then there exists a function Q in $H(h)$ such that

$$
\lim _{\substack{z \rightarrow 5 \\ z \in D}} Q(z)=\infty
$$

for each ζ in E. Some interest may attach to this result inasmuch as no regular function in D can have infinite angular limits on a set of positive measure (6, p. $378 ; \mathbf{1 0}$, p. 212). Theorem 1 (without proof) has been used in another connection (4).

Let ζ be a point on C. Then the familiar function

$$
f(z)=\frac{1}{\zeta-z} \exp \left\{-\frac{\zeta+z}{\zeta-z}\right\}
$$

is in $H\left(\log ^{+} x\right)$ since it is the quotient of two bounded functions (6, p. 345 ; $\mathbf{1 0}$, p. 56), and it has ζ as an ambiguous point. Indeed, if z is in D,

$$
\left|\exp \left\{-\frac{\zeta+z}{\zeta-z}\right\}\right|=\exp \left\{-\frac{1-|z|^{2}}{|\zeta-z|^{2}}\right\},
$$

and

$$
|f(z)|=\frac{1}{|\zeta-z|} e^{-1}
$$

if z is on the circle which has for its diameter the radius of D terminating at ζ. This function serves as a prototype in our proof of Theorem 2. A generalization of the factor $1 /(\zeta-z)$ is embodied in the functions described in Theorem 1; and the remaining factor motivates our study of the tangential limits of functions of the form

$$
\exp \left\{-\sum_{1}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right\} .
$$

2. Some lemmas. The primary purpose of this section is to establish Lemma 3.

Lemma 1. Let $E=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}, \ldots\right\}$ be a denumerable subset of C, and let $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers such that

$$
\sum_{1}^{\infty} \alpha_{n}<\infty .
$$

Then

$$
\begin{equation*}
P(z)=\exp \left\{-\sum_{1}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right\} \tag{1}
\end{equation*}
$$

is a holomorphic function mapping D into D which has zero as a radial limit at each point of E. On the radii in question, the inequalities

$$
\begin{equation*}
\left|P\left(r \zeta_{m}\right)\right|<\exp \left\{-\alpha_{m} \frac{1+r}{1-r}\right\} \quad(m=1,2, \ldots ; 0 \leqslant r<1) \tag{2}
\end{equation*}
$$

hold.
Proof. The regularity of P is an immediate consequence of the inequality

$$
\left|\alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right| \leqslant \alpha_{n} \frac{1+|z|}{1-|z|}
$$

in conjunction with the Weierstrass M-test. The remaining assertions of the lemma follow from the relations

$$
\begin{aligned}
|P(z)|=\exp \left\{-\sum_{1}^{\infty} \alpha_{n} \frac{1-|z|^{2}}{\left|\zeta_{n}-z\right|^{2}}\right\}<\exp \left\{-\alpha_{m} \frac{1-|z|^{2}}{\left|\zeta_{m}-z\right|^{2}}\right\} & <1 \\
& (z \in D ; m=1,2, \ldots)
\end{aligned}
$$

Convention. Throughout this paper, if θ_{1} and Θ_{2} are angles, the shortest distance on C between $e^{i \theta_{1}}$ and $e^{i \theta_{2}}$ is denoted by $\left|\theta_{1}-\theta_{2}\right|$. The expression $|\theta-0|$ is abbreviated to $|\theta|$.

Let f be a complex-valued function defined on D, and let γ be a fixed number $(\gamma \geqslant 1)$. Then f is said to have a T_{γ}-limit at a point $e^{i \theta}$ on C provided there exists a complex number L such that, for each positive real number m, $f(z) \rightarrow L$ as $z \rightarrow e^{i \theta}, z$ being confined to the set

$$
R(m, \Theta, \gamma)=\left\{z: 1-|z| \geqslant m|\arg z-\Theta|^{\gamma} ; 0<|z|<1\right\} .
$$

We note that the T_{1}-limit is equivalent to the classical angular limit. T_{γ}-limits have been studied in connection with Blaschke products (3); for purposes of analogy, it is sometimes convenient to think of $\left(1-\alpha_{n}\right) \zeta_{n}$ as a pseudo-zero of the function P given by (1). If $e^{i \theta}$ is an accumulation point of the set E in Lemma 1, then one can easily verify that 0 is in the cluster set of P at $e^{i \theta}$. Nevertheless, we now prove the following lemma.

Lemma 2. Let $E=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}, \ldots\right\}$ be a denumerable subset of C, let γ be a fixed number satisfying $\gamma \geqslant 1$, and let $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers such that

$$
\sum_{1}^{\infty} \alpha_{n} /\left|\theta-\arg \zeta_{n}\right|^{\gamma}<\infty
$$

for some real number θ. Then

$$
P(z)=\exp \left\{-\sum_{1}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right\}
$$

has a T_{γ}-limit of modulus 1 at $e^{i \theta}$.
Proof. From the hypothesis, we see that $\sum \alpha_{n}<\infty$; hence P is defined.
Clearly, it will suffice to consider the case when $\theta=0$.

Using Dini's theorem (8, p. 293), select a null sequence $\left\{w_{n}\right\}$ of positive numbers such that

$$
\begin{equation*}
\sum_{1}^{\infty} \alpha_{n} / w_{n}\left|\arg \zeta_{n}\right|^{\gamma}<\infty \tag{3}
\end{equation*}
$$

and then set

$$
S_{n}=\left\{z:\left|\zeta_{n}-z\right|<w_{n}\left|\arg \zeta_{n}\right|^{\gamma}\right\} \quad(n=1,2, \ldots)
$$

Given $m>0$, we want to prove that $P(z)$ approaches a limit of modulus 1 as $z \rightarrow 1, z$ being confined to the set $R(m, 0, \gamma)$.

Assume for a moment that $R(m, 0, \gamma)$ and

$$
\bigcup_{n=n_{m}}^{\infty} S_{n}
$$

are disjoint for some positive integer n_{m}. Then

$$
\sum_{n=n_{m}}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}
$$

converges uniformly on $R(m, 0, \gamma)$; for, if

$$
z \in D-\bigcup_{n=n_{m}}^{\infty} S_{n}
$$

then

$$
\left|\alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right| \leqslant \frac{2 \alpha_{n}}{w_{n}\left|\arg \zeta_{n}\right|^{\gamma}} \quad\left(n \geqslant n_{m}\right)
$$

and the conclusion follows from (3) and the Weierstrass M-test.
In virtue of the uniform convergence,

$$
\sum_{n=n_{m}}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z} \rightarrow \sum_{n=n_{m}}^{\infty} \alpha_{n} \frac{\zeta_{n}+1}{\zeta_{n}-1}
$$

as $z \rightarrow 1, z$ being confined to $R(m, 0, \gamma)$. Since

$$
\sum_{n=1}^{n_{m}-1} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}
$$

is continuous at the point 1 , the conclusion of the lemma follows at once.
We still have to prove that n_{m} exists. To this end, take n_{m} to be an integer such that

$$
\begin{equation*}
w_{n}<m\left(1-\frac{1}{2} \pi w_{n}\left|\arg \zeta_{n}\right|^{\gamma-1}\right)^{\gamma} \tag{4}
\end{equation*}
$$

and

$$
w_{n}\left|\arg \zeta_{n}\right|^{\gamma}<1
$$

both hold for all $n \geqslant n_{m}$. Then let n be any integer such that $n \geqslant n_{m}$, and suppose that $z_{0} \in S_{n} \cap D$. We want to prove that $z_{0} \notin R(m, 0, \gamma)$, that is, that

$$
\begin{equation*}
1-\left|z_{0}\right|<m\left|\arg z_{0}\right|^{\gamma} . \tag{5}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
1-\left|z_{0}\right| \leqslant\left|\zeta_{n}-z_{0}\right|<w_{n}\left|\arg \zeta_{n}\right|^{\gamma} \tag{6}
\end{equation*}
$$

An obvious geometric argument yields

$$
\left|\arg z_{0}-\arg \zeta_{n}\right|<\operatorname{arc} \sin \left\{w_{n}\left|\arg \zeta_{n}\right|^{\gamma}\right\}<\frac{1}{2} \pi w_{n}\left|\arg \zeta_{n}\right|^{\gamma},
$$

and a simple analogue of the triangle inequality for real numbers gives

$$
\left|\arg \zeta_{n}\right|-\left|\arg z_{0}-\arg \zeta_{n}\right| \leqslant\left|\arg z_{0}\right| .
$$

From these last two inequalities, we conclude that

$$
m\left(\left|\arg \zeta_{n}\right|-\frac{1}{2} \pi w_{n}\left|\arg \zeta_{n}\right|^{\gamma}\right)^{\gamma}<m\left|\arg z_{0}\right|^{\gamma} .
$$

This, combined with (4) and (6), yields (5), as desired.
Lemma 3. Let $E=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}, \ldots\right\}$ be a denumerable subset of C. Then there exists a sequence $\left\{\alpha_{n}\right\}$ of positive numbers such that, for each m,

$$
P(z)=\exp \left\{-\sum_{1}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right\}
$$

is bounded away from zero on the intersection of D and the circle whose diameter is the radius of D terminating at ζ_{m}. (The bound depends on m.)

Proof. Let $\alpha_{1}=2^{-1}, \alpha_{2}=2^{-2}\left|\arg \zeta_{1}-\arg \zeta_{2}\right|^{2}$, and, for $n>2$, let

$$
\alpha_{n}=2^{-n} \min \left\{\left|\arg \zeta_{k}-\arg \zeta_{n}\right|^{2}: 1 \leqslant k<n\right\} .
$$

We note that $\sum \alpha_{n}<\infty$. For a fixed point ζ_{m}, it is clear that

$$
\alpha_{m+k} /\left|\arg \zeta_{m}-\arg \zeta_{m+k}\right|^{2} \leqslant 2^{-(m+k)} \quad(k=1,2, \ldots)
$$

Then, according to Lemma 2 ,

$$
P_{m}(z)=\exp \left\{-\sum_{\substack{n=1 \\ n \neq m}}^{\infty} \alpha_{n} \frac{\zeta_{n}+z}{\zeta_{n}-z}\right\}
$$

has a T_{2}-limit of modulus 1 at ζ_{m}. Let $z\left(z \neq 0, z \neq \zeta_{m}\right)$ be a point on the circle whose diameter is the radius of D terminating at ζ_{m}. Since, obviously, $|z|=\cos \left(\left|\arg z-\arg \zeta_{m}\right|\right)$, it follows that

$$
1-|z|=2 \sin ^{2}\left(\frac{1}{2}\left|\arg z-\arg \zeta_{m}\right|\right)>2 \pi^{-2}\left|\arg z-\arg \zeta_{m}\right|^{2}
$$

Accordingly, z is in $R\left(2 \pi^{-2}, \arg \zeta_{m}, 2\right)$, and $\left|P_{m}(z)\right| \rightarrow 1$ as $z \rightarrow \zeta_{m}$ along the circle in question. Thus, $|P(z)| \rightarrow \exp \left\{-\alpha_{m}\right\}$ as $z \rightarrow \zeta_{m}$ along the circle; and, since $P(z)$ never vanishes in D, the conclusion of the lemma follows at once.
3. Infinite limits. We now turn our attention to the problem of constructing almost-bounded functions having infinite limits on prescribed subsets of C. To effect the construction, we use a familiar technique (10).

Throughout this paper, we let

$$
P(r, \theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}}
$$

Given a measurable subset M of the interval $[0,2 \pi]$, we denote its characteristic function by χ_{M}; and we denote the Poisson integral of χ_{M} by u_{M}, that is,

$$
u_{M}\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(r, t-\theta) \chi_{M}(t) d t
$$

Clearly, $0 \leqslant u_{M}\left(r e^{i \theta}\right) \leqslant 1$ if $0 \leqslant r<1$ and $0 \leqslant \theta \leqslant 2 \pi$. If A is a measurable subset of the real line, we denote its measure by $m A$ or $m(A)$.

Lemma 4. Let N be a subset of ($0,2 \pi$) whose measure is zero. Then, given $\epsilon>0$, there exist an open set G and a measurable set B such that $N \subset G \subset(0,2 \pi)$, $B \subset[0,2 \pi], m G<\epsilon, m B<\epsilon$, and $u_{G}\left(r e^{i \theta}\right)<\epsilon$ if $0 \leqslant r<1$ and $\theta \in[0,2 \pi]-B$.

Proof. Select an open set S such that $m S<\epsilon / 2$ and $N \subset S \subset(0,2 \pi)$. For almost all θ in $[0,2 \pi]$,

$$
\lim _{\tau \rightarrow 1-} u_{S}\left(r e^{i \theta}\right)
$$

exists and is equal to $\chi_{S}(\theta)$, according to Fatou's theorem (6, p. 337). Using an extension of Egoroff's theorem (7, p. 124), we conclude that the convergence is uniform off some set T where $m T<\epsilon / 2$. Hence, there exists a number $r_{\epsilon}\left(0<r_{\epsilon}<1\right)$ such that $u_{S}\left(r e^{i \theta}\right)<\epsilon$ if $r_{\epsilon}<r<1$ and

$$
\theta \in[0,2 \pi]-B
$$

where $B=S \cup T$. Finally select an open set G such that $N \subset G \subset S$ and

$$
\frac{1}{2 \pi} \frac{1+r_{\epsilon}}{1-r_{\epsilon}} \cdot m G<\epsilon
$$

Then, clearly, $u_{G}\left(r e^{i \theta}\right)<\epsilon$ if $0 \leqslant r \leqslant r_{\epsilon}$ and $0 \leqslant \theta \leqslant 2 \pi$; and, since $u_{G}\left(r e^{i \theta}\right) \leqslant u_{S}\left(r e^{i \theta}\right)<\epsilon$ if $r_{\epsilon}<r<1$ and $\theta \in[0,2 \pi]-B$, the lemma is proved.

Lemma 5. Let h be a positive, increasing, continuous function defined on the non-negative real axis; and let N be a subset of $(0,2 \pi)$ whose measure is zero. Then there exist open sets $G_{k}(k=1,2, \ldots)$ such that

$$
N \subset G_{k} \subset(0,2 \pi), \quad \sum_{1}^{\infty} m G_{k}<\infty
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} h\left[\exp \left\{\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right] d \theta<2 \pi h(e)+1 \tag{7}
\end{equation*}
$$

if $0 \leqslant r<1$ and $n=1,2, \ldots$.
Proof. For $k=1,2, \ldots$, let $\epsilon_{k}=2^{-k} \min \left\{1,1 / h\left(e^{k+1}\right)\right\}$. Using Lemma 4,
select an open set G_{k} and a set B_{k} such that $N \subset G_{k} \subset(0,2 \pi), B_{k} \subset[0,2 \pi]$, $m G_{k}<\epsilon_{k}, m B_{k}<\epsilon_{k}$, and

$$
u_{\epsilon_{k}}\left(r e^{i \theta}\right)<\epsilon_{k}
$$

if $0 \leqslant r<1$ and $\theta \in[0,2 \pi]-B_{k}$.
Letting $B_{k}{ }^{*}=[0,2 \pi]-B_{k}$, we see that, for each positive integer $n,[0,2 \pi]$ is the union of the disjoint sets

$$
\begin{align*}
& B_{1}{ }^{*} \cap B_{2}{ }^{*} \cap \ldots \cap B_{n}{ }^{*} \\
& B_{1} \cap B_{2}{ }^{*} \cap \ldots \cap B_{n}{ }^{*} \\
& B_{2} \cap B_{3}{ }^{*} \cap \ldots \cap B_{n}{ }^{*} \tag{8}
\end{align*}
$$

$$
\begin{array}{r}
B_{n-1} \cap B_{n}{ }^{*}, \\
\mathrm{~B}_{n} .
\end{array}
$$

For $\theta \in B_{1}{ }^{*} \cap \ldots \cap B_{n}{ }^{*}$, we have

$$
0 \leqslant u_{G_{k}}\left(r e^{i \theta}\right)<\epsilon_{k} \quad(k=1,2, \ldots, n ; 0 \leqslant r<1)
$$

consequently,

$$
\begin{gathered}
\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)<\sum_{1}^{n} \epsilon_{k}<1, \\
h\left[\exp \left\{\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right]<h(e),
\end{gathered}
$$

and

$$
\begin{equation*}
\int_{B_{1}{ }^{*} \cap \ldots B_{n}^{*}} h\left[\exp \left\{\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right] d \theta<2 \pi h(e) \tag{9}
\end{equation*}
$$

Likewise, if $\theta \in B_{j} \cap B_{j+1}{ }^{*} \cap \ldots \cap B_{n}{ }^{*}(j=1,2, \ldots, n-1)$, then

$$
\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)<j+\epsilon_{j+1}+\ldots+\epsilon_{n}<j+1
$$

and

$$
\begin{equation*}
\int_{B_{j} \cap B_{j+1}{ }^{*} \cap \ldots \cap B_{n}{ }^{*}} h\left[\exp \left\{\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right] d \theta \leqslant m\left(B_{j}\right) h\left(e^{j+1}\right)<2^{-j} \tag{10}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\int_{B_{n}} h\left[\exp \left\{\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right] d \theta \leqslant m\left(B_{n}\right) h\left(e^{n+1}\right)<2^{-n} \tag{11}
\end{equation*}
$$

The integral appearing in (7) can be decomposed into a sum of integrals over the disjoint sets in (8). The desired inequality then follows from (9), (10), and (11).

Lemma 6. Let g be an extended real-valued function which is defined and summable in $[0,2 \pi]$. If

$$
\lim _{t \rightarrow t_{0}} g(t)=+\infty
$$

for some t_{0} in $(0,2 \pi)$, then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} P(r, t-\theta) g(t) d t \rightarrow+\infty
$$

as

$$
r e^{i \theta} \rightarrow e^{i t_{0}}
$$

from within D.
Proof. A proof of this classical result may be obtained by (correcting and) slightly modifying the proof of a somewhat weaker result given in (10, pp. 20-21).

Theorem 1. Let h be a non-negative, non-decreasing function defined on the non-negative real axis, and let E be a subset of C whose (linear) measure is zero. Then there exists a holomorphic function Q in D such that

$$
\lim _{\substack{z \rightarrow \zeta \\ z \in D}} Q(z)=\infty
$$

for each ζ in E and

$$
\sup \left\{\int_{0}^{2 \pi} h\left[\left|Q\left(r e^{i \theta}\right)\right|\right] d \theta: 0 \leqslant r<1\right\}<\infty .
$$

Proof. Since we can always find a positive, increasing, continuous function h^{*} such that $h(x) \leqslant h^{*}(x)$ for all x in $[0, \infty)$, there is no loss in generality in assuming that h itself has these properties. Moreover, we may assume that $1 \notin E$ and work with the set $N=\left\{t: e^{i t} \in E, 0<t<2 \pi\right\}$.

Let $G_{k}(k=1,2, \ldots)$ be the sets constructed in Lemma 5. Since $\sum m G_{k}<\infty$, the function

$$
\sum \chi_{G_{k}}(t)
$$

is summable in $[0,2 \pi]$ by Beppo Levi's theorem. A straightforward argument shows that

$$
Q(z)=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} \sum_{1}^{\infty} \chi_{G_{k}}(t) d t\right\}
$$

is holomorphic in D and that

$$
\left|Q\left(r e^{i \theta}\right)\right|=\exp \left\{\sum_{1}^{\infty} u_{G_{k}}\left(r e^{i \theta}\right)\right\} .
$$

If $t_{0} \in N$, then, clearly,

$$
\lim _{t \rightarrow t_{0}} \sum_{1}^{\infty} \chi_{G_{k}}(t)=+\infty .
$$

We conclude from Lemma 6 that, for $\zeta_{0}=\mathrm{e}^{i t_{0}}$,

$$
\lim _{\substack{z \rightarrow 5_{0} \\ z \in D}} Q(z)=\infty .
$$

Next, we observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} h\left[\exp \left\{\sum_{1}^{n} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right] d \theta & =\int_{0}^{2 \pi} h\left[\exp \left\{\sum_{1}^{\infty} u_{G_{k}}\left(r e^{i \theta}\right)\right\}\right] d \theta \\
& =\int_{0}^{2 \pi} h\left[\left|Q\left(r e^{i \theta}\right)\right|\right] d \theta
\end{aligned}
$$

which, in conjunction with (7), completes the proof of the theorem.
4. Functions with prescribed ambiguous points. We are now ready to prove the main theorem of the paper.

Theorem 2. Let $E=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}, \ldots\right\}$ be a denumerable subset of C, and let h be a non-negative, non-decreasing function defined on the non-negative real axis. Then there exists a holomorphic function f in D which has each point of E as an ambiguous point, and which satisfies the condition

$$
\begin{equation*}
\sup \left\{\int_{0}^{2 \pi} h\left[\left|f\left(r e^{i \theta}\right)\right|\right] d \Theta: 0 \leqslant r<1\right\}<\infty . \tag{12}
\end{equation*}
$$

Proof. We may assume that $h(x) \geqslant x$ for all x in $[0, \infty)$; for, otherwise, we could prove the theorem for the function $h^{*}(x)=h(x)+x$.

Let $f(z)=P(z) Q(z)$, where P is the function described in Lemma 3 and Q is the function described in Theorem 1. Then, by Lemma $1,|f(z)| \leqslant|Q(z)|$ if z is in D, and (12) obviously holds.

We see at once that, for each $m, f(z) \rightarrow \infty$ as $z \rightarrow \zeta_{m}, z$ being confined to the circle whose diameter is the radius of D terminating at ζ_{m}.

Finally, we note that

$$
\|Q\|=\sup \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|Q\left(r e^{i \theta}\right)\right| d \theta: 0 \leqslant r<1\right\}
$$

is finite since $x \leqslant h(x)$. This, in turn, implies that

$$
\begin{equation*}
|Q(z)| \leqslant(1-|z|)^{-1}\|Q\| \tag{13}
\end{equation*}
$$

for all z in D. Indeed, if $Q(z)=\sum \xi_{n} z^{n}$, then

$$
\xi_{n}=\frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi} Q\left(r e^{i \theta}\right) e^{-i n \theta} d \Theta \quad(0<r<1)
$$

and

$$
\left|\xi_{n}\right| \leqslant \frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi}\left|Q\left(r e^{i \theta}\right)\right| d \theta
$$

Thus, $\left|\xi_{n}\right| \leqslant\|Q\|(n=0,1,2, \ldots)$; and, since $|Q(z)| \leqslant \sum\left|\xi_{n}\right||z|^{n}$, the result follows at once (see 11, p. 103; 10, p. 58).

Inequality (13) and inequality (2) of Lemma 1 yield

$$
\left|f\left(r \zeta_{m}\right)\right|<\frac{\|Q\|}{1-r} \exp \left\{-\alpha_{m} \frac{1+r}{1-r}\right\} \quad(m=1,2, \ldots ; 0<r<1)
$$

so that $f(z) \rightarrow 0$ as $z \rightarrow \zeta_{m}$ radially. This completes the proof of the theorem.
5. Conclusion. Theorem 1 of this paper was called to the author's attention by Professor Piranian, who has devised an elegant proof of Lemma 4 which is entirely elementary, the elaborate machinery of Fatou's theorem being avoided altogether. We take the liberty of sketching his proof.

Let B be an open set for which $m B<\epsilon$ and $N \subset B \subset(0,2 \pi)$. Divide each component of B into a set of intervals whose end-points lie in the complement of N and whose ordering by position is isomorphic to the usual ordering of the integers. Order into a single sequence $\left\{I_{k}\right\}$ the set of all intervals thus constructed in B, and let d_{k} denote the distance between I_{k} and the complement of B. For each k, cover the set $N \cap I_{k}$ with an open covering that lies in I_{k} and has measure less than $2^{-k} d_{k} \epsilon$. Let G denote the union of these coverings. If $t \in I_{k}$ and $\theta \in[0,2 \pi]-B$, then

$$
\left|\frac{e^{i t}+r e^{i \theta}}{e^{i t}-r e^{i \theta}}\right|<\frac{2 \pi}{d_{k}} ;
$$

this, in turn, implies that

$$
\int_{I_{h}} P(r, t-\theta) \chi_{G}(t) d t<2 \pi 2^{-k} \epsilon,
$$

from which the desired result follows at once.

References

1. F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Natl. Acad. Sci. U.S., 41 (1955), 379-382.
2. F. Bagemihl and W. Seidel, Functions of bounded characteristic with prescribed ambiguous points, Mich. Math. J., 3 (1955-56), 77-81.
3. G. T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Can. J. Math., 14 (1962), 334-348.
4. - Radial and angular limits of meromorphic functions, Can. J. Math., 15 (1963), 471-474.
5. F. W. Gehring, The asymptotic values for analytic functions with bounded characteristic, Quart. J. Math. Oxford Ser. (2), 9 (1958), 282-289.
6. G. M. Golusin, Geometrische Funktionentheorie (Berlin, 1957).
7. H. Hahn and A. Rosenthal, Set functions (Albuquerque, 1948).
8. K. Knopp, Theory and application of infinite series (2nd English ed.; New York, 1947).
9. K. Noshiro, Cluster sets (Berlin-Göttingen-Heidelberg, 1960).
10. I. I. Priwalow, Randeigenschaften analytischer Funktionen (Berlin, 1956).
11. A. E. Taylor, Introduction to functional analysis (New York, 1958).

Syracuse University

[^0]: Received February 6, 1963. The author gratefully acknowledges the support of the National Science Foundation (NSF Grant GP-1086).

