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Faltings” Finiteness Dimension of Local
Cohomology Modules Over Local
Cohen—-Macaulay Rings

Kamal Bahmanpour and Reza Naghipour

Abstract. Let (R, m) denote a local Cohen-Macaulay ring and I a non-nilpotent ideal of R. The
purpose of this article is to investigate Faltings’ finiteness dimension f7(R) and the equidimension-
alness of certain homomorphic images of R. As a consequence we deduce that f;(R) = max{1, htI},
and if mAssg (R/I) is contained in Assg (R), then the ring R/I + U,,»; (0 :z I") is equidimensional
of dimension dim R — 1. Moreover, we will obtain a lower bound for injective dimension of the local
cohomology module H?t I(R), in the case where (R, m) is a complete equidimensional local ring.

1 Introduction

Throughout this paper, let R denote a commutative Noetherian ring (with identity)
and let I be an ideal of R. For an R-module L, the i*" local cohomology module of L
with respect to I is defined as

H;j(L) = lim Extz (R/I", L).

n>1

We refer the reader to [6] or [3] for more details about local cohomology.

For any finitely generated R-module M, the notion f;( M), the finiteness dimension
of M relative to I, is defined to be the least integer i such that Hi(M) is not finitely
generated, if there exist such i’s and oo otherwise, i.e.,

fi(M) := inf{i € Ny | Hi(M) is not finitely generated }.

Our objective in this paper is to investigate the finiteness dimension f7(R), when
R is a local Cohen-Macaulay ring. More precisely, as a main result we will prove the
following theorem.

Theorem 1.1  Let (R, m) be a Cohen-Macaulay local ring and let I be a non-nilpotent
ideal of R. Then fr(R) = max{1,htI}.

The following proposition will play a key role in the proof of Theorem 1.1.
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Proposition 1.2 Let (R, m) be a Cohen-Macaulay local ring and let X and Y be non-
empty subsets of Assg(R) such that Assgr(R) = XuY and XnY = @. Then R/(I+]) is
an equidimensional local ring of dimension dim R—1, where I = Nyex pand ] = Nypey P .

Recall that a Noetherian ring R, of finite Krull dimension d, is called equidimen-
sionalif dim R/ p = d for every minimal prime ideal p of R. As an another main result,
we will prove the following theorem.

Theorem 1.3  Let (R, m) be a Cohen-Macaulay local ring and let I be a non-nilpotent
ideal of R such that mAssg(R/I) € Assg(R). Then R/ (I+U,51(0 :g I")) is an equidi-
mensional local ring of dimension dim R — 1.

Hartshorne and Speiser [7] proved that if (R, m, k) is a regular local ring, con-
tains a field of characteristic p > 0, and H}(R) is supported only at the maximal ideal,
then Hompg (k, H(R) is a finitely generated R-module and, moreover, H!(R) is injec-
tive. Also, Huneke and Sharp [8] made a remarkable breakthrough. They generalized
Hartshorne-Speiser’s result by proving that if R is any regular ring containing a field
of characteristic p > 0, then injdim H}(R) < dim Supp H}(R), where injdim H}(R)
denotes the injective dimension of H:(R) and dim Supp H:(R) stands for the dimen-
sion of the support of H:(R) in Spec R. Finally, Lyubeznik [9] generalized the above-
mentioned result of Hartshorne-Speiser by proving that if R is any regular ring con-
taining a field of characteristic zero and Y ¢ SpecR is a locally closed subscheme,
then injdim Hi (R) < dim Supp H} (R).

As a final main result, we are able to obtain a lower bound for the injective dimen-
sion of the local cohomology module H'!(R), in the case where (R, m) is a complete
equidimensional local ring.

Theorem 1.4 Let (R, m) be a complete local equidimensional ring and let I be an
ideal of R. Then injdim HM!(R) > dim R — htI. In particular, if R is a regular local
ring containing a field, then injdim HM!(R) = dim R - ht I.

We will end the paper with an example, which shows that Theorem 1.4 does not
hold in general.
For each R-module L, we denote by Ass hg (L) (resp. mAssg L) the set

{p € Assg(L) : dimR/p =dim L}

(resp. the set of minimal primes of Assg L). Also, the set of all zerodivisors on L is
denoted by Zg (L). For any ideal b of R, the radical of b, denoted by Rad(b), is defined
to be the set {x € R : x" € b for some n € N}, and we denote {p € Spec(R) : p 2 b} by
V(b). Finally, for any ideal b of R, the cohomological dimension of an R-module M,
with respect to b is defined as

cd(b, M) := sup{i e Z: H, (M) # 0}.

For any unexplained notation and terminology, we refer the reader to [3,12].
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2 The Results

The following lemmas will be quite useful in the proof of the main results. Following
D := Homg(e, Ex(R/m)) (resp. wg) denotes the Matlis duality functor (resp. the
canonical module for R) (see [4, 3.3]).

Lemma 2.1 Let (R, m) be a local Noetherian ring and let M be a finitely generated
R-module. Let p be a prime ideal of R such that dim R/p =1 and let t > 1 be an integer.
Then Hy, (M) is p-cofinite if and only if (Hy ™ (M)), = 0.

Proof See [1, Lemma 2.1]. [ |

Lemma 2.2 Let (R,m) be a Cohen-Macaulay local ring of dimension d. Then the
R-module H% (R) is indecomposable.

Proof Without loss of generality, we may assume that R is a complete Cohen-Ma-
caulay local ring. Now, we suppose the contrary and look for a contradiction. Let
H%(R) = A ® B, where A and B are two non-zero Artinian R-modules. Then we
have wg = D(A) ® D(B), where wg denotes the canonical module of R. So as the
R-module wp, is indecomposable, it follows that D(A) = 0 or D(B) = 0. Hence, A= 0
or B = 0, which is a contradiction. ]

The following result will be useful in the proof of the main results in this section.

Theorem 2.3  Let (R, m) be a Cohen-Macaulay local ring and let X and Y be non-
empty subsets of Assg(R) such that Assg(R) = XuYand XnY = @. Set

I=Np and J:=Nq.

peX qey

Then R/(I +]) is an equidimensional local ring of dimension dim R — 1.

Proof It follows from the hypothesis X N Y = @ that ht(I + J) > 1. Now, we show
that ht(I+]) = 1. To do this, suppose the contrary is true. Then there exists a minimal
prime ideal p over I + J such that htp := n > 1. Since Assg(R) = X U Y, it follows that
I'nJ=nil(R), and so I n ] is a nilpotent ideal of R. Therefore,
Hi (R) = 0 = H}o (R).
Now, in view of the Mayer-Vietoris sequence (see e.g., [3, Theorem 3.2.3]), we obtain
the isomorphism
Hp,;(R) 2 H{ (R) ® H} (R).

Therefore,

HSRF (Rp) = H?I+I)Rp (Rp) = H?R,, (Rp) & H?Rp (Rp)-

Now, using Lemma 2.2, we deduce that
H;R,, (Ry) = H?R,, (Rp) or H;Rp (Ry) = H?R,, (Ryp).

Consequently, in view of [13, Proposition 5.1], Hyp (Rjp) is an IR, or JRy-cofinite
Ry-module. Next, as htp > 1, it is easy to see that there exists a prime ideal q € V(I)
or g € V(J) such that ¢ € p and htp/q = 1. Now, using [13, Proposition 4.1], one
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easily sees that the Ry-module Hjp (Rp) is qR,-cofinite. Therefore, it follows from
Lemma 2.1 that H ;‘}32 (Rq) = 0. On the other hand, as R is catenary, it follows that
htp/q = htp—htq, and so htq = htp — 1 = n — 1. Hence, in view of Grothendieck’s
non-vanishing theorem we have H gii (Rq) # 0, which is a contradiction. Therefore
htp =1, and so ht(I + J) = 1. Now, as R is Cohen-Macaulay; it follows easily that

R/(I+]) is an equidimensional ring of dimension dim R — 1, as required. ]

Corollary 2.4 Let (R, m) be a Cohen-Macaulay local ring and let xi, ..., x; be an
R-regular sequence. Let X and Y be non-empty subsets of Assg (R/(x1,...,xt)) such
that Assgp(R/(x1,...,%x:)) =XuUYand XnY = @. Set

I=Np and J:=Nq.

peX qey

Then R/(I +]) is an equidimensional local ring of dimension dimR — ¢ — 1.

Proof Since R/(xy,...,x;) is a Cohen-Macaulay local ring, the assertion follows
easily from Theorem 2.3. ]

Lemma 2.5 Let R be a Noetherian ring and let I be an ideal of R such that cd(I,R) =
n > 0. Then the R-module H} (R) is not finitely generated.

Proof Since by the definition we have H} (R) # 0, it follows that Supp H} (R) # @.
Let p € Supp H} (R). Then it is easy to see that cd(IRp, Ry) = n > 0. So replacing of
the ring R with thelocal ring (R, p Ry ), we can assume that (R, m) is a Noetherian lo-
cal ring and I is an ideal of R such that cd(I, R) = n > 0. Then using [3, Exercise 6.1.8]
and GrothendiecK’s vanishing theorem, we have

H}(R)/mH}(R) 2 H}(R) ®r R/m =z H} (R/m) = 0.
Therefore, H} (R) = m H}(R) and hence using Nakayamas lemma we can deduce

that the R-module H} (R) is not finitely generated. [ |

We are now in a position to state and prove the first main result of this paper, which
investigates the finiteness dimension f;(R) over a Cohen-Macaulay local ring.

Theorem 2.6  Let (R, m) be a Cohen—Macaulay local ring and let I be a non-nilpotent
ideal of R. Then f;(R) = max{L,htI}.

Proof There are two cases to consider.
Case 1. Suppose that htI = 0. Put
X:=Assg(R)nV(I) and Y :=Assg(R)\V(I).

Let ] := Npex p and K := Ngey . Since I is not nilpotent, it follows that Y # @. Also,
ashtI = 0, it follows that X # @. Moreover, it is easy to see that Assg(R) = XU Y.
Hence, in view of the proof of Theorem 2.3, we have ht(] + K) = 1. Therefore, there
exists a minimal prime ideal p over J + K such that htp = 1. Since K ¢ p, there exists
an ideal q € Y such that q € p. AsI c ] c p, it follows that I + q S p. Moreover,

as I ¢ q it follows that ht(I + q) > 0. Therefore, ht(I + q) = htp = 1. Thus, pisa
minimal prime ideal over I + q and so IR, + q R, is a pR,-primary ideal. Hence, by
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Grothendieck’s non-vanishing theorem, we have H}Rp (Rp/qRy) # 0. Consequently,
it follows from Grothendieck’s vanishing theorem that cd(IR,, R,/ qRy) = 1. Now,
as Supp(R,/ qRy) < Spec R, it follows from [5, Theorem 2.2] that

cd(IRp, Ry) > cd(IRp, Rp/qRy) = 1.

Using GrothendiecK’s vanishing theorem we can deduce that cd(IR,,R,) = 1 and
so by Lemma 2.5, the R,-module H}Rp (Ry) = (H}(R)), is not finitely generated.
In particular, the R-module H}(R) is not finitely generated. Now, as the R-module
H?(R) is finitely generated, it follows that

fi(R) =1=max{1,0} = max{l,htI},
as required.

Case 2. Now suppose that ht] = n > 1. Then we have gradeI = n, and so in view
of [3, Theorem 6.2.7], fi(R) > n. Moreover, by the definition there exists a minimal
prime ideal q over I such that htq = n. Hence, in view of GrothendiecK’s vanishing
and non-vanishing theorems, we have

cd(IRq,Rq) = cd(qRq, Rq) = 1.

Thus, by Lemma 2.5, the Rq-module Hyp (Rq) = (H}(R))q is not finitely generated.
In particular, the R-module H} (R) is not finitely generated. Hence, in view of the
definition, we have

fi(R) = n = max{1,n} = max{L,htI},
and this completes the proof. ]

The next theorem is the second main result of this paper.

Theorem 2.7  Let (R, m) be a Cohen—Macaulay local ring and let I be a non-nilpotent
ideal of R such that mAssg (R/I) € Assg(R). Then R/(I+T1(R)) is an equidimensional
local ring of dimension dim R — 1.

Proof Since I is not nilpotent, it is clear that I'(R) € Zg(R), and so it follows from
(12, Theorem 17.4] that dim R/T;(R) = dim R. Moreover, as
Assg( R/T;(R)) = Assg(R) \ V(I),
it follows that I contains an R/T7(R)-regular element x, and so
dim R/( xR + T;(R)) = dim R/T(R) - 1.

Hence, dimR/(I+Tj(R)) <d - L
Next, in view of the Artin-Rees lemma there exists a positive integer s such that
P nTi(R) =0,and so

Hionry(R) = 0 = Hii o gy (R).

Hence, the Mayer-Vietoris sequence (see e.g., [3, Theorem 3.2.3]) yields the isomor-
phism

Hi,r,r)(R) = Hfypy(r) (R) 2 Hi:(R) @ Hp, (1) (R) = H[ (R) & Hy, ) (R).
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Now, suppose that p is a minimal prime ideal over I + I';(R) such thathtp = n > 1.
Then, as p is minimal over I + I;(R), we get the isomorphism

Hyg, (Ry) 2 Hig, (Ry) ® Hr,, (Rp).
Now, using Lemma 2.2, we deduce that
Hyg,(Rp) = Hpp (Ry) or Hpp (Rp)= H?,Rp (r,) (Rp)-

Assume that Hyg (Ry) = Hpp (Rp). Then, in view of [13, Proposition 5.1],
Hg, (Rp) is an IR,-cofinite Ry-module. Next, as htp > 1 and mAssg(R/I) <
Assg(R), it is easy to see that there exists a prime ideal q € V(I) such that q € p
and htp/q = 1. Now, using [13, Proposition 4.1], it follows easily that the R,-module

Hyg, (Rp) is qRy-cofinite. Therefore, it follows from Lemma 2.1 that H;’ii (Rq) =0.
On the other hand, as R is catenary, it follows that htp/q = htp — htq, and so

htq=htp-1=n-1
Hence, in view of Grothendieck’s non-vanishing theorem, we have H Zii (Rq) # 0,
which is a contradiction.

Now, assume that Hyp (Rp) = H ) (Rp). Then, again using the fact that

Tie, (R
Assg(R/T1(R)) = Assgr(R)\V (I) c Assg(R),
and repeating the above argument, we derive a contradiction. Therefore htp = 1, and

soht(I+T7(R)) = 1. Now, as R is Cohen-Macaulay; it follows easily that R/(I+T;(R))
is an equidimensional local ring of dimension dim R — 1, as required. ]

Corollary 2.8 Let (R, m) be a Cohen-Macaulay local ring and let A be a non-empty
proper subset of Assg(R).Then R/(I + I1(R)) is an equidimensional local ring of di-
mension dim R — 1, where I = Nyea p.

Proof The assertion follows easily from Theorem 2.7. ]

Proposition 2.9 Let (R,m) be a Cohen-Macaulay local ring and let Assg(R) =
{pir-- s put, n 22 Let Aj = Assp(R)\{p;} and I = Nypea, b, for all1 < j < n. Then
0 = M} I1;(R) is the unique reduced primary decomposition of the zero ideal 0 in R,
I7,(R) is a pj-primary ideal of R and R/(I; + T1;(R)) is an equidimensional local ring
of dimension dim R — 1.

Proof As
Assg( R/Tp,(R)) = Asse(R)\V(I;) = {p;},

it follows that I';, (R) is a p;-primary ideal of R. Now, we show that N7 I';(R) = 0.
To this end, we assume that N7, I';(R) # 0 and derive a contradiction. Let a €
N7.4T7;(R) be such that a # 0. Then (0 :x a) € Zr(R), and so there exists p; €
Assp(R) such that (0 :x a) € p;. Next, as a € I';(R) it follows that there exists a
positive integer k such that I j‘ € (0:r a) Spj;,and so I; € p;. Therefore, there exists
p; € Ajsuch thatp; & p;, which is a contradiction (note that Assg(R) = mAssg(R)).
Now, using [12, Theorem 6.8] we see that p;-primary component I'7;(R) of the zero
ideal 0 of R is uniquely determined. That is, 0 = ﬂ;‘le‘Ij(R) is the unique reduced
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primary decomposition of the zero ideal 0 in R. Moreover, it follows from Corollary
2.8 that the ring R/(I; +I7,(R)) is equidimensional local of dimension dimR-1. H

The following lemma is needed in the proof of Theorem 2.11.

Lemma 2.10 Let (R, m) be a local ring and M an arbitrary R-module. Let x be an
element of m such that x ¢ Upeassg(M)\v(m) P- Then Try (M) = T (M).

Proof As x € m, it is enough to show that T, (M) S I'n(M). To do this, let w €
Trx(M). Then x € Rad(0 :zr w). Since mAssg R/(0 :g w) S Assp(M), it follows
from the assumption x ¢ Upeassy(m)\v(m) P that Rad(0 :r w) = m, and so there exists
n € N such that m” w = 0. Thus w € I\, (M), as required. ]

The following theorem is in preparation for the third main result of this paper,
which gives us alower bound of injective dimension of H!(R). Here, D;(R) denotes
the ideal transform of R with respect to I (see [3, 2.2.1]).

Theorem 2.11 Let (R, m) be a complete local equidimensional ring of dimension d
and I an ideal of R such that ht I = t. Then H"'(H!(R)) # 0. In particular,

injdim Hj(R) > d - t.

Proof As R is catenary, it follows from [12, Lemma 2, p. 250] that
ht] + dimR/J = dim R,

for every ideal J of R. In particular, we have dim R/I = d — t. We now use induction
ond - t. When d = t, the ring R/I is Artinian and so Rad(I) = m. Hence, H}(R) =
H! (R) and so as H), (H:(R)) = HE (R), the assertion follows from Grothendieck’s
non-vanishing theorem (see [3, Theorem 6.1.4]) in this case.

Assume, inductively, that d —t > 0 and that the result has been proved for the ideals
JwithdimR/] = 0,1,...,d — t — L. Since the sets Assg (H}(R)) and Assg(H}*'(R))
are countable, it follows from [11, Lemma 3.2] that

me( U p)yf U pu( U »).

peAssg (Hj(R))\V(m) peAssp (H{' (R))\V(m) peAsshr(R/I)

Whence, there exists x € m such that

xf U p)u( U p)u( U »).

peAssg (H{(R))\V(m) peAssg (H™ (R)\V(m) peAsshr(R/I)

Then it follows easily from x ¢ Upeasshe (r/r) ¥ that
dimR/(I+Rx)=d-t-1,
and in view of Lemma 2.10, we have
Tew(HY(R) = Tn(Hi(R)) and  Tas(H{™(R)) = Ln( HY (R)).
Moreover, there is an exact sequence

Q) 0 HY(HI(R)) — Hizh(R) — HO(HI(R)) — o0,
(see [14, Corollary 3.5]).
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Now, if dimR/I = 1, then in view of [2, Theorem 2.6] the R-module H}(R) =
HY7Y(R) is I-cofinite. Next, it is easy to see that dim Supp H¢!(R) = 1 (note that
dim R/I = 1). Hence, it follows from [10, Theorem 2.9] that H (H¢"!(R)) # 0, and
so the result has been proved in this case. Therefore, we assume that dim R/I > 2.
Then

dimR/(I+Rx)=d-t-12>1,
and so in view of Grothendieck’s vanishing theorem
HI N (Tw( HY'(R))) = 0.
Hence, using the exact sequence (2.1), we obtain the exact sequence
Hy ™ (Hpo(H1(R))) — Hy ™ (H[{pe(R)) — 0.
Thus, by the inductive hypothesis, HS 1 (H%, (H!(R))) # 0.
On the other hand, since d — t > 0, it yields that
Hy '(Hi(R)) 2 Hy'(Hi(R)/Tw(H}(R))).

Now, let T := H!(R) /T (H:(R)). It is thus sufficient for us to show that HZ (T # 0.
To do this, in view of [3, Remark 2.2.17], there is the exact sequence
(2.2) 0 —> T —> Dgy(T) — Hp, (T) — 0.
Also, in view of [3, Theorem 2.2.16], we have D, (T) 2 Ty, and so

Dgx(T) = Dr«(T)
is an R-isomorphism. Therefore, for all i > 0,

Hy, (Dre(T)) = Hyy(De(T))

is an R-isomorphism, and hence H! (Dry(T)) = 0, for all i > 0. Consequently, it
follows from the exact sequence (2.2) that

Hy ! (T) 2 Hy ' (Hy, (1)) -
As HE-"Y(HY (T)) # 0, this completes the inductive step. [

Corollary 2.12  Let (R, m) be a Cohen-Macaulay local ring of dimension d and let I be
an ideal of R such thathtI = t. Then H3 '(HL(R)) # 0. In particular, inj diim H!(R) >
d-t

Proof Let R denote the completion of R with respect to the m-adic topology. Then
as (R, mR) is a complete local equidimensional ring of dimension d, the assertion
follows from Theorem 2.11, the faithfully flatness of the homomorphism R — R and
the fact that

htI = grade = grade IR = ht IR. |

Lemma 2.13  Let (R, m) be a regular local ring containing a field and let I be an ideal
of R. Then, for any integer n with Hf (R) # 0,

injdim Hj (R) < dim Supp HJ (R).

https://doi.org/10.4153/CMB-2016-092-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-092-9

Faltings’ Finiteness Dimension of Local Cohomology Modules 233
Proof The result follows from [8,9]. [ |

Corollary 2.14 Let (R, m) be a regular local ring containing a field and let I be an
ideal of R such that htI = t. Then injdim H;(R) = dim R — ¢.
Proof In view of Corollary 2.12 and Lemma 2.13, it is enough to show that
dim Supp Hj(R) = dimR — ¢.
To this end, as Supp Hf(R) ¢ V(I) and dim R/I = dim R - ¢, we have
dim Supp H;(R) < dimR - ¢.

On the other hand, since htI = t, there exists a minimal prime p over I such that
htp = t. Now, in view of [3, Theorems 4.3.2 and 6.1.4], we deduce that

(HI(R)) , = Hig, (Ry) = HE g, (Ry) £0.
Thus, p € Supp H{(R), and so as dim R/ p = dim R — ¢, it follows that
dim Supp H;(R) > dimR - ¢.
This completes the proof. ]

We end the paper with the following example, which shows that Corollary 2.14
does not hold in general.

Example 2.15 Let (R, m) be a regular local ring of dimension d > 3, p a prime ideal
of R such that dimR/p = 1and x € m\ p. Then

injdim HRfn N '(R) =0 and  dim Supp Hims '(R) =1.

Proof LetdimR = d. Since Rad(p+Rx) = m, it follows from the Mayer-Vietoris
sequence (see e.g., [3, Theorem 3.2.3]) that
(2.3) 0 — Hi'(R) — HZ'(R) — HE(R)

is an exact sequence. Since, in view of the proof of Corollary 2.14, dim Supp H, g (R) =

1and H% (R) is Artinian, it follows that dim Supp H%;, 1(R) =1
On the other hand, the exact sequence

0— R—->R—>R/xR—0
induces the exact sequence
HY?(R/xR) — HE ' (R) = HEY(R) — HY'(R/xR).
Since Iy, (R/xR) = R/xR and d > 3, it follows that
HI2(R/xR) = 0= HZ'(R/xR).
Therefore, the R-homomorphism H?, (R) — HY, » (R) is an isomorphism, and so

(HE (R))x 2 HEH(R).
On the other hand from the exact sequence (2.3), we have

(Hp (R))x 2 (Hy ' (R))x
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Moreover, the exact sequence 0 — Hg’l(R) — Er(R/p) — Eg(R/m) im-
plies that

(Hy'(R)), = (Er(R/p)), = Er(R/p).

Therefore, Hff;l(R) ~ Ex(R/p), and so injdim Hﬁ;l(R) = 0, as required. [ |
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