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The Measurement of Subjective Probability 1

1 Introduction
It’s a commonplace nowadays that beliefs come in degrees, though this isn’t
universally accepted. There are some holdouts – thosewho say the recent uptick
of interest in ‘credences’ and ‘subjective probabilities’ is yet another philosoph-
ical fad that will eventually run its course. But that’s hardly plausible. A very
large body of work across a wide range of disciplines developed overmany dec-
ades depends on the presumption that our beliefs – or something closely linked
to our beliefs – admit of degrees and, moreover, that it makes good sense to
represent those degrees numerically. These numerical representations of belief
are far too useful for far too much to be just a passing trend.
I expect most readers will agree with me about that. But what we’re much

less likely to agree on is what the numbers mean. What is the underlying
psychological reality to which these numerical representations supposedly cor-
respond? Perspectives on this matter vary wildly. For some, degrees of belief
are understood to be explicit, on-the-fly judgements about the probability of an
event, or a conscious attempt to put a number on the weight of one’s evidence,
or the intensity of some confidence phenomenology when contemplating a pos-
sibility. Others will, like myself, think of degrees of belief as implicit attitudes –
attitudes that may be present and playing a role in your cognitive economy even
if you’re not consciously aware of their doing so, and even if they’re not readily
accessible to conscious introspection. But there’s a substantial variety of per-
spectives, too, on how these attitudes are to be understood. If I say that Ramsey
believes p to degree 0.69, does that ‘0.69’ tell us something about p’s location
in Ramsey’s subjective confidence ordering over possibilities? Does it tell us
something about Ramsey’s willingness to bet on p? About the centrality of p
to Ramsey’s web of belief, or his dispositions to revise his opinions regarding
p in the face of new evidence? All of the above? None of the above?
An intimately related (butmore constrained) question concerns what’smean-

ingful in a numerical representation of belief. What, in other words, does it take
for numerically distinct representations to nevertheless represent the same sys-
tem of beliefs? Most are happy to suppose there’s no uniquely correct way to
represent degrees of belief within a numerical framework, just as there’s clearly
no uniquely correct way to numerically represent lengths, or temperatures, or
desirabilities. As Builes et al. (2022) recently put it,

there’s nothing ‘0.69-ish’ aboutmy degree of confidence in p, beyond the fact
that 0.69 can serve as an adequate representation of my degree of confidence
within a particular representational system. But 69, for example, or 732.6 for
that matter, would work just as well, provided the system was structured in
the right way. (p. 7)
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2 Decision Theory and Philosophy

But what it is for the representational system to be ‘structured in the right way’
is about as clear as mud. Here, as before, we find plentiful variation and dis-
agreement. The most common numerical representations of belief make use
of credence functions – mappings from propositions to real values between 0
and 1. It usually goes without saying that the relation induced over the pro-
positions by their numerical ordering in a credence function is intended to
correspond to relative strengths of belief regarding those propositions. But is
that the extent of the meaningful information captured in a credence function?
That is, if two credence functions are ordinally equivalent, does it follow that
they are therefore equivalent in meaning? If so, then we’d probably better get
started on revising the many theories of rational belief and decision making
that presuppose meaningful differences between ordinally equivalent credence
functions! On the other hand, if there’s more to the meaning than just the
numerical orderings, then exactly what additional structure is relevant – and
why?
These are questions about the measurement of belief, which is the subject

of this Element. In summary: what do our numerical representations of belief
actually represent, how exactly do they represent it, and under what conditions
are such representations meaningful?1

Broadly speaking, there are two main approaches to the measurement of
belief. According to what I’ll be calling the epistemic approach, a system of
beliefs admits of numerical representation just in case that system has a cer-
tain kind of internal structure that can be mirrored in an appropriate numerical
framework. A rather different tack – the decision-theoretic approach – focuses
not so much on the internal structure of the belief system but instead on the
relationship between beliefs, desires, and preferences in the context of decision
making. Both the epistemic approach and the decision-theoretic approach can
be spelled out in many different ways, but very roughly the difference between
them amounts to whether the numerical representability of a system of beliefs
is (a) a matter of those beliefs having a certain kind of internal coherence, or (b)
a matter of those beliefs relating to preferences and desires in a coherent way.
These approaches can have very different implications regarding what should
and should not be considered meaningful in our numerical representations of

1 The reader will note that these are not questions about the empirical process of measuring
beliefs – for example, via observations of betting behaviour or survey responses. We’re talking
about measurement in the abstract sense of assigning numbers to represent quantities. The
ambiguity is unfortunate, but at this point well entrenched in the literature. I’ll have more to say
about this in Section 3. For now, just think of the topic as relating primarily to meaningfulness
in numerical representations of belief.
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The Measurement of Subjective Probability 3

belief, and they can likewise diverge significantly when it comes to what an
agent must be like in order for their beliefs to admit of such representations in
the first place.
Cards on the table: I prefer the decision-theoretic approach. More cautiously,

I would say that the decision-theoretic approach generally supplies us with the
best way to interpret numerical representations of belief in the Bayesian trad-
ition, especially in decision-theoretic contexts but also in the context of much
(if not most) traditional Bayesian epistemology.2 The basic reason for this is
that standard Bayesian theories and models, and many arguments in that trad-
ition, routinely make assumptions about meaningfulness that are hard to make
sense of given the most common epistemic approaches. Further, while there are
some less common epistemic approaches that can in principle support richer
claims about meaningfulness (e.g., the multiprimitive structures discussed in
Section 5.3), these are still very underdeveloped and ultimately strike me as
comparatively unmotivated.
But I’ll not spend a great deal of time arguing in favour of my own approach,

nor arguing against the competitors. I mean – I’ll do a little of that here and
there, and my biases will surely be apparent in parts of the discussion, but
the main purpose of this work is expositional rather than argumentative. So
I’ll focus much more on explaining what the epistemic and decision-theoretic
approaches are, highlighting some of the possible variation within those two
approaches, and the implications they have regarding what kinds of numer-
ical representations are possible, when they’re possible, and what ought to be
considered meaningful in those representations.
The remainder of the discussion proceeds as follows. Section 2 introduces

some key concepts from the representational theory of measurement, while
Section 3 provides some clarifications and general assumptions regarding a
theory of belief measurement. We then turn to the epistemic approaches: Sec-
tion 4 covers the simplest version of the epistemic approach, built around binary
comparative confidence relations, while Section 5 gives an overview of sev-
eral alternatives. Finally, Section 6 gives an overview of the decision-theoretic
approach, discusses one particular version (due to Frank Ramsey) in some
detail, and addresses some common misunderstandings and objections.

2 The claim here is about the majority of contexts in which numerical representations of belief
actually appear, historically and today. I’m not asserting that the decision-theoretic approach
is always or necessarily the correct approach. It would be implausible to presume that there’s
only one proper way to understand the numerical representation of belief for all theoretical
contexts, and no doubt there will be many applications for which one or another epistemic
approach would be perfectly apt (cf. Section 2.4, on conventionality in measurement).
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4 Decision Theory and Philosophy

2 Representation and Measurement
We find it abundantly useful to express many physical facts using numbers and
numerical relations. There’s no great mystery to this, even for the mathemat-
ical Platonist who thinks that numbers and numerical relations are abstracta
and not present in the physical world in the same manner as electrons or chairs
or gravitational attraction. When I say I’ve gained at least 2 pounds thanks
to all the nice food at a recent conference, which is more than twice as much
as what I gained at the last conference, I’m using those numbers and numer-
ical relations to refer to and reason about my ever-increasing weight. These
claims aren’t made true by virtue of any little numbers attached somewhere to
my body, slowly and inevitably going up over time. Rather, the numbers and
numerical relations serve as abstract stand-ins for physical properties and phys-
ical relations, and they do this by virtue of some structural similarity between
them.
What we call quantities are determinable properties whose determinates

have a certain salient relational structure that renders them ripe for numerical
representation. Length, for instance, is a determinable attribute, with determi-
nates – the specific lengths – sharing higher-order relations between them that
can be usefully represented within a numerical framework. For any two phys-
ical objects o and o′ and a fixed orientation for each, either (a) o will be at least
as long as o′, or (b) o′ will be at least as long as o, or (c) both (i.e., they’ll be as
long as each other). Here, the at least as long relation holds between physical
objects, but we can also understand it as a second-order relation between the
length attributes directly. Say that any two objects have the same length, L, if
each is at least as long as the other. Say next that L is at least as long as L′ just
in case any object with property L is at least as long as any object with property
L′. We can then associate the lengths L and L′ with numbers x and y in such a
manner that L is at least as long as L′ just in case x ≥ y.
In this example, the lengths L,L′ and the at least as long relation between

them are said to be qualitative, whereas the numbers x,y and the ≥ relation
between them serve as their numerical representations. Think of a qualitative
property or relation as one that can be characterised without explicit reference
to numbers or numerical relations. So ‘qualitative’ here contrasts with ‘numer-
ical’, not with ‘quantitative’ – the idea being that quantities can be characterised
either in qualitative terms or in numerical terms, with the latter being possible
precisely because the abstract numerical stuff shares a structure in common
with the real-world qualitative stuff it represents.3

3 This usage of ‘qualitative’ is common in the literature. Some will say that a numerical system
is defined by its structure, and hence anything with the same structure instantiates that system
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The Measurement of Subjective Probability 5

The purpose of this section is to expand on that initial idea and make it more
precise. More generally, the goal is to introduce some key concepts for discuss-
ing the numerical representation of quantities. I start with the fundamentals of
the Representational Theory of Measurement (RTM).4

2.1 Preliminary Concepts
I presume familiarity with predicate logic, and with the elementary concepts
and notation of set theory. Much of what follows will revolve around properties
of binary relations and operations, though, so the following are worth stating:

Definition 1. An n-ary relation on a set X is a subset of Xn. Where R ⊆ X×X,
by convention, xRy if and only if (x,y) ∈ R and x6Ry if and only if (x,y) < R. We
say that R is

• transitive if and only if xRy and yRz implies xRz, for all x,y, z ∈ X,
• complete if and only if xRy or yRx for all x,y ∈ X,
• reflexive if and only if xRx, for all x ∈ X,
• symmetric if and only if xRy implies yRx, for all x,y ∈ X,
• asymmetric if and only if xRy implies not yRx, for all x,y ∈ X,
• antisymmetric if and only if xRy and yRx implies x = y, for all x,y ∈ X,
• a preorder if and only if R is transitive and reflexive,
• a weak order if and only if R is a complete preorder,
• a total order if and only if R is an antisymmetric weak order, and
• an equivalence relation if and only if R is transitive, reflexive, and
symmetric.

Furthermore, where ≿ is defined on a set X, then x is said to be

• minimal (in ≿) if and only if y ≿ x for all y ∈ X, and
• maximal (in ≿) if and only if x ≿ y for all y ∈ X.

Preorders – especially weak orders – will be important. Throughout, I’ll use
≿ to represent a number of qualitative preorder relations, and I’ll use∼ and� for
the symmetric and asymmetric parts of ≿ respectively. That is, I’ll henceforth
take it as read that

and should also be considered ‘numerical’ (e.g., Michell 2021). That may be right. But what
I have to say won’t hinge on whether ‘qualitative’ systems instantiate ‘numerical’ systems or
are represented by them, and either way the terminological distinction is useful.

4 The locus classicus for the RTM is Krantz et al. (1971); see also Suppes and Zinnes (1963),
Pfanzagl (1968), Narens (1985), and Roberts (1985).
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6 Decision Theory and Philosophy

• x ∼ y if and only if x ≿ y and y ≿ x, and
• x � y if and only if x ≿ y and y � x.

Definition 2. An n-ary operation on a set X is a (total or partial) function from
Xn into X. Suppose • is a binary operation on X. By convention, x • y = z
if and only if •(x,y) = z, and x • y is defined if and only if •(x,y) is defined.
Furthermore, we say that • is

• total if and only if x • y is defined for all x,y ∈ X, otherwise partial,
• commutative if and only if • is total and for all x,y ∈ X, x • y = y • x, and
• associative if and only if • is total and for all x,y ∈ X, x• (y• z) = (x•y) • z.

Note that properties are just the special case of n-ary relations where n = 1,
and every n-ary operation can be recast as an (n+1)-ary relation. For example,
addition is a total binary operation on the set of real numbers R, since it maps
R×R back into R; it is also the ternary relation R on R such that (x,y, z) ∈
R if and only if x + y = z. As such, for what follows I’ll usually just write
‘relations’ rather than ‘properties and relations’ or ‘relations and operations’ –
but wherever I intend to refer to operations in particular, this will be explicitly
marked.
Next we need the generic notion of a relational system. This is a system

comprising a set, one or more distinguished relations on that set, and zero or
more distinguished binary operations:

Definition 3. Let I (⊃ ∅) and J (⊇ ∅) be index sets. Then 〈X,Ri; •j〉 i∈I
j∈J is a

relational system if and only if X is a non-empty set, the Ri are relations on X,
and the •j are binary operations on X.

The relations and operations used to characterise a relational system are known
as the primitives of that system. Note the semi-colon, used to explicitly separate
the primitive relations from the primitive operations.5

An example of a simple relational system is 〈R,≥〉, comprising the set R and
the primitive at least as great relation ≥ on R. A richer relational system would
be 〈R,≥;+〉, which includes also the primitive binary operation +. These are
what we’ll call numerical systems – they’re comprised of a set of numbers and
one or more relations thereupon. More generally, we take a numerical system

5 I’ve followed Roberts (1985) rather than Krantz et al. (1971) for how I define relational
systems. Doing so allows for a distinction between weak and strong homomorphisms (Def-
inition 4), which helps avoid some minor issues arising in connection to the representation of
partial operations and non-antisymmetric preorders.
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The Measurement of Subjective Probability 7

Figure 1 L′′ is the end-to-end concatenation of L and L′ (i.e., L ◦ L′ = L′′).

to be any relational system constructed from numerical stuff. (There’s no need
to be very precise here – some relational systems have a numerical feel about
them, and that’ll suffice for referring to them as numerical systems.) In con-
trast are qualitative systems, or systems constructed from qualitative stuff. For
example, if L is the set of determinate length properties (as described at the
beginning of the section), and ≿ is the at least as long relation between them,
then 〈L,≿〉 will count as a qualitative system. Likewise, for any two lengths L
and L′, we let their end-to-end concatenation, L ◦ L′, be the length L′′ of any
object that’s as long as what you get when you take two disjoint rigid objects
of length L and L′ and attach them end-to-end. (See Figure 1.) Then ◦ will be
a binary operation on L, and 〈L,≿; ◦〉 will also be a qualitative system.
Henceforth, I’ll use N for numerical systems and Q for qualitative sys-

tems. We need then a way of expressing when a qualitative relational system
possesses a similar structure to that of some numerical system, such that the
latter might be exploited to represent the former. For this we make use of
structure-preserving mappings, or homomorphisms:

Definition 4. Let Q = 〈X,Ri; •j〉 and N = 〈Y,Si; ∗j〉, where i ∈ I and j ∈ J.
Then φ : X 7→ Y is a weak homomorphism from Q into N if and only if

1. Ri is an n-ary relation if and only if Si is an n-ary relation
2. (x1, . . . ,xn) ∈ Ri if and only if

(
φ(x1), . . . , φ(xn)

)
∈ Si

3. φ(x •j y) = φ(x) ∗j φ(y)

φ is a strong homomorphism from Q into N if, in addition,

4. x •j y = z if and only if φ(x) ∗j φ(y) = φ(z)

Corresponding to the distinction between weak homomorphisms and strong
homomorphisms, we can say that φ weakly maps • into ∗ whenever

x • y = z implies φ(x) ∗ φ(y) = φ(z).

and strongly maps • into ∗ whenever the converse also holds.
An example will help to make this clearer. Start first with the simple quali-

tative system 〈L,≿〉. A function φ : L 7→ R is a homomorphism from 〈L,≿〉
into 〈R,≥〉 when

L ≿ L′ if and only if φ(L) ≥ φ(L′).
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8 Decision Theory and Philosophy

Since there are no primitive operations in 〈L,≿〉, conditions 3 and 4 are trivi-
ally satisfied and so we don’t bother with the weak/strong distinction. Next,
consider the richer system 〈L,≿; ◦〉, this time endowed with a primitive con-
catenation operation. This time, then, a function φ : L 7→ R counts as a
weak homomorphism from 〈L,≿; ◦〉 into 〈R,≥;+〉 whenever, in addition to
the preceding, it weakly maps ◦ into +:

φ(L ◦ L′) = φ(L) + φ(L′).

And φ is a strong homomorphism if it strongly maps ◦ into +:

φ(L) + φ(L′) = φ(L′′) if and only if L ◦ L = L′′

If ◦ is a total operation and≿ is antisymmetric, then everyweak homomorphism
from 〈L,≿; ◦〉 into 〈R,≥;+〉 will be a strong homomorphism – but otherwise
this needn’t be the case.

2.2 Representation Theorems and Uniqueness
A homomorphism maps the primitive relations and operations of one rela-
tional system into the primitive relations and operations of another. When at
least a weak homomorphism from Q into N exists, we can say that N has –
or otherwise includes as a proper part – a structure similar to that of Q. A
strong homomorphism establishes a slightly stronger similarity of structure.
In either case, it is this similarity that justifies representing Q using (or ‘in’)
N . Because of this, the central theoretical objects of the RTM are results that
establish precise conditions for when an arbitrary qualitative system Q can
be represented in some specific numerical system N . These are known as
representation theorems.
Let Φ(Q,N) denote the set of all weak homomorphisms from Q into N .

Then, for a prespecified N , a representation theorem supplies (at least) suffi-
cient conditions on Q to guarantee that some such homomorphism exists. The
conditions are usually called the axioms of that theorem. Typically, the axioms
will be chosen such that (at least) most of them are individually necessary for
representability – that is, they’re direct consequences of the assumption that
Φ(Q,N) is non-empty. Axioms that are not necessary for representability are
usually known as structural axioms.6 For example:

6 Be careful: an axiom may be necessary for a representation theorem, but not necessary for
representability. This is because representation theorems often do more than simply assert
sufficient conditions for representability.
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The Measurement of Subjective Probability 9

Theorem 5 (Krantz et al. 1971, 15) Let X be a set and ≿ a binary relation on
X. Then there is at least one homomorphism from 〈X,≿〉 into 〈R,≥〉 if

1. X is finite (finitude)
2. ≿ is a weak order (weak order)

The weak order axiom is necessary: since ≥ is a weak order on R, if X is to
be mapped into R then ≿ must itself be a weak order if it’s to be mapped into
≥. The finitude axiom is structural – it’s possible to represent 〈X,≿〉 in 〈R,≥〉
even if X is infinite, though in that case additional axioms are needed to ensure
representability. (See Krantz et al. (1971), 40–1, for details.)
A representation theorem will also usually include or otherwise be associ-

ated with a uniqueness result. In the ideal case, the uniqueness result tells us
about the relationship between homomorphisms belonging to Φ(Q,N) for all
Q satisfying the axioms of the associated representation theorem. Continuing
the example, it’s plain to see that if φ is any homomorphism from 〈X,≿〉 into
〈R,≥〉, then so too is ψ : X 7→ R if and only if

ψ(x) ≥ ψ(y) if and only if φ(x) ≥ φ(y).

Any ψ satisfying this condition is related to φ by a strictly increasing (or order-
preserving) transformation. So the kind of uniqueness result we’d expect to
find attached to Theorem 5 would say that given weak order and finitude, the
homomorphisms in Φ

(
〈X,≿〉, 〈R,≥〉) are unique up to an order-preserving

transformation. The ‘unique up to’ phrasing is another way to say that the
homomorphism set is constrained by the specified transformation – hence it
designates a property shared by all and only the functions in the set.
Two points of caution. First: a uniqueness result applies to all systems satisfy-

ing the axioms of the associated representation theorem – not necessarily to all
systems that are representable in the specified numerical system simpliciter.
This is important if the representation theorem includes structural axioms,
which are sometimes used to strengthen the uniqueness result. As a rule of
thumb, the more structural constraints imposed on Q, the more restricted the
potential homomorphisms from Q into N , leading to a stronger uniqueness
result. Second: many uniqueness results apply only to a proper subset of the
possible homomorphisms inΦ(Q,N). For example, the uniqueness result may
assert that there is only one homomorphism from 〈X,≿〉 into 〈R,≥〉 which satis-
fies such-and-such properties (e.g., is a probability measure), even while there
are infinitely many homomorphisms inΦ(Q,N) that do not. For these reasons,
one must be careful when interpreting a uniqueness result – some results that
on first glance appear rather impressive may end up only really reflecting the
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10 Decision Theory and Philosophy

Table 1 Scale types and uniqueness conditions

Scale type Uniqueness condition Relations preserved

Ordinal Strictly increasing transformations Orderings
Interval Positive affine transformations Difference ratios
Ratio Positive similarity transformations Ratios
Absolute Identity Everything

strength of the structural conditions employed in the representation theorem
and/or arbitrary restrictions to a particular representational format.
Moving on – the final thing to do in this section is outline the major scale

types. (See Table 1.) In the preceding example, the φ inΦ(Q,N) are unique up
to order-preserving transformations. In that case, the set Φ(Q,N) is said to be
an ordinal scale of Q, and the φ in Φ(Q,N) are also called ordinal scales of
Q. (The ambiguity is unfortunate, but context usually suffices for disambigu-
ation.) Three other scale types are also important. The next is an interval scale:
Φ(Q,N) is an interval scale when the φ ∈ Φ(Q,N) are unique up to a positive
affine (or interval-preserving) transformation – that is, if φ ∈ Φ(Q,N) then so
is ψ, for any ψ defined such that for some real values r and s, with r > 0,

ψ(x) = rφ(x) + s.

Whereas order-preserving transformations merely preserve orderings, interval-
preserving transformations preserve ratios of differences (and thus also order-
ings). So, if φ and ψ are related by an interval-preserving transformation,
then

φ(x) − φ(y)
φ(z) − φ(w) =

ψ(x) − ψ(y)
ψ(z) − ψ(w) .

Next are ratio scales:Φ(Q,N) is a ratio scale when the φ ∈ Φ(Q,N) are unique
up to a positive similarity (or ratio-preserving) transformation – that is, if φ is
inΦ(Q,N), then so is ψ, for any ψ defined such that for some real value r > 0,

ψ(x) = rφ(x).

Ratio-preserving transformations preserve ratios (and thus also ratios of differ-
ences, and thus also orderings). So, if φ and ψ are related by a ratio-preserving
transformation, then

φ(x)
φ(y) =

ψ(x)
ψ(y) .

Finally, there are absolute scales. This is just the case whereΦ(Q,N) contains
exactly one homomorphism.
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The Measurement of Subjective Probability 11

The foregoing classification scheme originates with Stevens (1946). It’s the
most widely knownmeans of classifying scale types by a wide margin. It works
well formost purposes, and it’ll suffice for ours, though it’s not the only classifi-
cation scheme nor is it the most general. (Amore general classification scheme,
though also more complicated, can be found in Narens (1981).)

2.3 Extensive and Conjoint Measurement
Of special interest to the theory of measurement are ‘additive’ representations.
Roughly, these are representations that make use of addition in some important
way. It can be a little hard to define precisely, though, as what it takes for a
representation to count as ‘additive’ can vary across measurement structures.
The simplest case is that of extensive measurement. Here, we can say that a
homomorphism from Q into N is weakly additive when it weakly maps one
of Q’s primitives into addition; strong additivity can then be defined in the
obvious parallel way. The qualitative operation that gets mapped into addition
is usually referred to as a concatenation operation.
Let’s discuss one example of an extensive measurement structure in more

detail – a positive concatenation structure. Since it doesn’t make sense to speak
of lengths shorter than no length at all, we conventionally measure length using
additive homomorphisms from 〈L,≿; ◦〉 into 〈R≥0,≥;+〉, where R≥0 is the set
of real numbers not smaller than zero. The metre scale is one such homomor-
phism. Let Lm be themetre length, defined as the length of the path light travels
in a vacuum in 1/299,792,458 of a second. Then the metre scale, φm, corres-
ponds to the (unique) strong homomorphism from 〈L,≿; ◦〉 into 〈R≥0,≥;+〉
that assigns the unit value to Lm. In other words,

1. φm(L) ≥ 0 and φm(Lm) = 1
2. L ≥ L′ if and only if φm(L) ≥ φm(L′)
3. L ◦ L′ = L′′ if and only if φm(L) + φm(L′) = φm(L′′)

This method of measuring length is possible precisely because the behaviour
of ≿ and ◦ is mirrored by the behaviour of + and ≥ over the non-negative reals.
The most important conditions are as follows:

1. ≿ is a weak order (weak order)
2. L ◦ (L′ ◦ L′′) = (L ◦ L′) ◦ L′′ (associativity)
3. L ◦ L′ = L′ ◦ L (commutativity)
4. L ≿ L′ if and only if L ◦ L′′ ≿ L′ ◦ L′′ (monotonicity)
5. L ◦ L′ ≿ L (weak positivity)
6. L ◦ L′ ∼ L only if L′ is minimal in ≿ (identity element)
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12 Decision Theory and Philosophy

Figure 2 Conjoint measurement structure

Compare, for x,y, z ∈ R≥0:

1. ≥ is a weak order (weak order)
2. x + (y + z) = (x + y) + z (associativity)
3. x + y = y + x (commutativity)
4. x ≥ y if and only if x + z ≥ y + z (monotonicity)
5. x + y ≥ x (weak positivity)
6. x + y = x only if y = 0 (identity element)

Epistemic approaches to the measurement of belief focus on representing
the internal structure of the belief system, and typically posit systems that look
a great deal like positive concatenation structures. However, not all ‘additive’
representations follow the same model – they do not all require a primitive
concatenation operation that gets mapped into addition. An alternative way to
generate ‘additive’ representations employs conjoint measurement structures,
wherein multiple quantities are represented simultaneously and the additive
structure of the representation is derived from the nature of their lawlike
relationships. Since conjoint measurement is important for decision-theoretic
approaches to the measurement of belief, it’s worth considering an example in
a bit of detail. The procedure is more complicated than the case of extensive
measurement (see Figure 2).7

7 The example is chosen to highlight a few key ideas; it’s far from the only conjoint measure-
ment structure and it’s different in certain respects from some decision-theoretic structures. As
with extensive measurement, there’s a wide variety of conjoint measurement structures and a
correspondingly wide variety of numerical systems within which they might be represented.
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The Measurement of Subjective Probability 13

We start with a single weak ordering, ≿, defined for some quantity C that’s
determined by two independent factors A and B. For example, suppose C is
discomfort as determined by temperatureA and humidityB (Krantz et al. 1971,
17–18), momentum as determined by mass and velocity (Luce & Tukey 1964,
4–5), or overall value as determined by monetary and sentimental value.
In any case, we suppose ≿ on C is determined by these two factors A and B,

whatever they may all be. Formally we can represent this by reconstructing ≿
as an ordering not over C directly but instead over A×B. So, for example,

(A1,B1) ≿ (A2,B2)

is understood to mean that the level of C determined by the combination of A1

and B1 is at least as great as the level of C determined by A2 and B2, where the
A1,A2 and B1,B2 are levels of A and B respectively.
The next step is to extract from ≿ two extensive ‘subsystems’ for A and B

separately. We start by defining an ordering ≿a overA, by comparing the levels
ofC that result from varying theA factor while holding the B factor fixed. That
is,

A1 ≿a A2 iff (A1,Bi) ≿ (A2,Bi) for all Bi ∈ B.

So A1 is greater than A2 when A1 contributes more to C than A2 does, holding
the level of B fixed. Note, of course, that the definition alone doesn’t guarantee
≿a will be a weak order – for that we need to suppose that if changing from
A1 to A2 increases the level of C while holding the level of B fixed for any
particular level of B, then the same should hold for all levels of B. Essentially
this amounts to saying that the contributionAmakes toC is independent of the
contribution made by B. This is established by the independence axiom, which
will be explained in a later paragraph. An exactly parallel definition gets us an
ordering ≿b over B.
At this point we’ve got two very simple subsystems, 〈A,≿a〉 and 〈B,≿b〉. But

we should like to construct extensive structures so as to enable a richer numer-
ical representation. Thus we will need to define a concatenation operation as
well. Assume that A and B combine in an intuitively ‘additive’ fashion. (This
will be qualitatively expressed by means of the independence and double can-
cellation axioms.) Then, it will be possible to draw meaningful correlations in
size between intervals in ≿a and in ≿b by comparing the effects on the level of
C that result from varying one factor while holding the other fixed. For suppose
there are A1,A2,B1,B2 such that

(A1,B2) ∼ (A2,B1) � (A1,B1).
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14 Decision Theory and Philosophy

We can read this as saying that changing from A1 to A2 (while holding the B-
level fixed) has the same effect on C as changing from B1 to B2 (while holding
the A-level fixed). If we let Ai→Aj designate the interval between Ai and Aj

as observed in the effect on C, and likewise for Bi→Bj mutatis mutandis, then
what we’ve said is that A1→A2 is equal to B1→B2, and thus we compare the
size of intervals in one factor to intervals in the other. Given that, if there also
are minimal levels A0 and B0 of A and B, then we can define concatenation
operations ⊕a and ⊕b for each of A and B. Starting with ⊕a, we say

A1 ⊕a A2 = A3

just in case the effect on C that results from increasing A0 to A3 while holding
the level of B fixed at B0 is equal to the effect on C that results from increasing
the level ofA from A0 to A1 and increasing the level of B from B0 to some level
Bx such that the result is equal in effect onC as observed from an increase from
A0 to A2. That is, if

(A3,B0) ∼ (A1,Bx),

then A0→A3 is equal to A0→A1 plus B0→Bx, where the latter is known to be
equal to A0→A2. Treating A0 and B0 as ‘zero’ points, then, the ‘size’ of the
interval A0→Ai gives the absolute ‘size’ of Ai alone, and so this essentially
amounts to saying that A3 equals A1 plus A2.
The upshot is that, with the appropriate axioms on ≿, we can extract exten-

sive subsystems 〈A,≿a; ⊕a〉 and 〈B,≿b; ⊕a〉 out of the initial system 〈A×B,≿〉,
which will admit of separate additive representations φa and φb. The final step
is to then show that there exists some numerical operation, f, that combines φa
and φb so as to represent ≿ on A×B; that is,

(A1,B1) ≿ (A2,B2) if and only if f
(
φa(A1), φb(B1)

)
≥ f

(
φa(A2), φb(B2)

)
.

The function f may take a wide variety of forms depending on the shape of ≿,
but one simple case is when φa and φb combine additively to determine a final
value that represents C:

(A1,B1) ≿ (A2,B2) if and only if φa(A1) + φa(B1) ≥ φa(A2) + φb(B2)

The result is a conjoint representation of all three quantities A, B, and C
simultaneously, achieved via a two-component vector homomorphism φ from
〈A×B,≿〉 into 〈R × R,≥〉 that ‘decomposes’ into φa and φb via f.
All of this obviously requires that ≿ will satisfy the axioms required for the

existence of such a representation. These axioms will together essentially assert
that ≿ behaves in the manner one would expect if levels of C were determined
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The Measurement of Subjective Probability 15

by the sum of two independent factorsA and B. For instance, the following are
very typical necessary axioms for additive conjoint measurement structures:

1. For all Ai,Aj,Ak,Al ∈ A and Bi,Bj,Bk,Bl ∈ B, (Ai,Bk) ≿ (Aj,Bk) if and only
if (Ai,Bl) ≿ (Aj,Bl), and (Ak,Bi) ≿ (Ak,Bj) if and only if (Al,Bi) ≿ (Al,Bj)

(independence)
2. For all Ai,Aj,Ak ∈ A and Bi,Bj,Bk ∈ B, (Ai,Bj) ≿ (Aj,Bk) and (Aj,Bi) ≿

(Ak,Bj) implies (Ai,Bi) ≿ (Ak,Bk) (double cancellation)

Again, it’s helpful to compare the qualitative axiomwith the intended numerical
representation. The independence axiom is straightforward:

x + z ≥ y + z for some z
↓

x + z ≥ y + z for all z

The double cancellation axiom is a little less obvious; it concerns cases in
which the common terms of two inequalities cancel out to determine a third:

x + m ≥ y + o
y + n ≥ z + m

↓
x + n ≥ z + o

Let’s sum up. In the example of a conjoint measurement structure I’ve just
outlined, the numerical representations of A, B, and C are a package deal.
Or, more accurately, they’re three parts of a single representational system
comprising several functions and an operation that ties them together. Note
in particular – and this will be important – that the two constructed subsys-
tems are defined such that they only make sense as parts of the larger system.
The primitives of 〈A,≿a; ⊕a〉, for instance, are characterised in terms of how
A relates to B in the determination of C. Likewise, the operation ⊕a needn’t
correspond to any ‘natural’ concatenation operation that can be readily defined
in terms of A alone, without reference to how A interacts with B and C. To the
extent that A is represented as having an ‘additive’ structure in this manner,
then, that structure is manifest in its relationship with B and C. This is all to
say that the meaning of the representation φa in this context can only be fully
grasped by reference to its relation to φb as specified by the rule f by which
they combine to represent C. The three numerical representations are, in that
sense, inseparable.
Contrast this with the extensive measurement of 〈L,≿; ◦〉, where the primi-

tives of that system can be characterised without any direct reference to other
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16 Decision Theory and Philosophy

quantities. One can appreciate what it is for the system of lengths to have an
‘additive’ structure just by considering how determinate length attributes relate
to other determinate length attributes. One needn’t embed the system of lengths
into a larger relational structure involving multiple quantities in order to com-
prehend what it is for one length to be twice as long as another, for example,
since one can just see it directly by placing the lengths alongside one another.
An intuitive way to characterise the difference between the two kinds of meas-
urement structure, then, is to say extensive measurement is geared towards
representing the internal relational structure of a single determinable attribute,
whereas the conjoint measurement is geared more towards representing the
relationships between several attributes.

2.4 Conventionality
One of the more important lessons of the RTM concerns the extent to which
our use of numbers to represent the world is grounded in convention. (By ‘con-
ventional’, I mean unforced from a purely mathematical point of view, and so
setting aside pragmatic considerations.) It’s useful to divide it up into three
distinct grades of conventionality.
Most will be plenty familiar already with conventionality of the first grade,

choice of scale – that is, in the choice of homomorphism from Φ(Q,N), for a
fixed choice of Q andN . This arises, for instance, when we are free to choose
between metres, inches, light-years, or beard-seconds (the amount a typical
beard grows in one second) as our units for measuring length.
A rather deeper and not as widely appreciated form of conventionality arises

in the choice of numerical system. A very simple example is the choice to use
≥ to represent a weak order ≿, rather than ≤. Either would obviously work just
as well as the other – and just as well as any other weak order on the reals.
But a more complicated example is also worth mentioning. As I noted in the
previous section, conventional measures of length are almost always additive
homomorphisms from 〈L,≿; ◦〉 to 〈R,≥;+〉. On any such measure, the value
assigned to L◦L will always be twice the value assigned to L. Our overwhelm-
ing familiarity with these additive measures can lead to the sense that there’s
something uniquely correct about this representation – that the qualitative rela-
tion holding between L and L ◦ L is an essentially twice-ish relation. As Brian
Ellis (1968, 83) put it, there’s a common sense that the ‘twice’ in ‘twice as long’
has a significance independent of the conventions of measurement. (‘Clearly, 2
meters is twice as long as long as 1 meter – that is the natural and obvious way
to describe their relation!’) However, the axioms that justify the additive meas-
urement of length – associativity, commutativity, monotonicity, and so on – are
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The Measurement of Subjective Probability 17

consistent with a multitude of non-additive representations whereby L◦L need
not be assigned a value twice that which is assigned to L.
Consider multiplicative measures, which map 〈L,≿; ◦〉 not into 〈R≥0,≥;+〉

but into 〈R≥1,≥;×〉 instead (see Hölder 1901; Krantz et al. 1971, 11–12, 99ff;
Narens 1985, 27–31). Let the multiplicative (base 2) version of the metre scale
be called the schmetre scale; it corresponds to a homomorphism φsch that maps
〈L,≿; ◦〉 onto 〈R≥1,≥;×〉 such that

1. φsch(L) ≥ 1 and φsch(Lm) = 2
2. L ≥ L′ if and only if φsch(L) ≥ φsch(L′)
3. L ◦ L′ = L′′ if and only if φsch(L) × φsch(L′) = φsch(L′′)

On the schmetre scale, the value assigned to L ◦ L will always be equal to the
square of the value assigned to L. Since 1 metre is 2 schmetres, then, 2 metres is
4 schmetres and 4 metres is 16 schmetres. Hence, if 4 metres is twice as long as
2 metres, it follows that 16 schmetres is twice as long as 4 schmetres. The point
is not that there’s some sort of contradiction here – there isn’t. Rather, it’s that
the qualitative relation between L ◦L and L is no more a twice-ish relation than
it is a square-ish relation. Our use of ‘twice as long’ to refer to and describe the
relation between L◦L and L reflects only a conventional preference for additive
representations over an infinite variety of alternative representational formats
that are, from a mathematical point of view, equally adequate to the task.
But the conventionality runs deeper still, for it arises also in the choice of

qualitative system. Again, length supplies a useful example. Earlier I character-
ised ◦ onL in terms of laying objects end-to-end. However, there are other ways
of concatenating lengths that we might have employed as primitives instead.
One alternative (also discussed by Ellis 1968, 80–1) is right-angled concaten-
ation. Say that L � L′ = L′′ just when L′′ is the length of the hypotenuse of the
right-angled triangle with catheti of lengths L and L′. (See Figure 3; I did have
to look that word up.) Right-angled concatenation has all the same key prop-
erties as end-to-end concatenation which permit additive measurement. In an
alternative history, then, we might have chosen to measure length by mapping
〈L,≿; �〉 into 〈R≥0,≥;+〉. (Or 〈R≥1,≥;×〉, or 〈R,≥; ∗〉, or…) This would have
simplified how we express the relationships between sides of a right-angled tri-
angle, though it would also have made calculating end-to-end concatenations
of distances slightly more difficult.
With that said, I don’t want to give the impression that anything goes. Amin-

imal constraint on the choice of qualitative system is that the primitives must
be natural. Without some such constraint, we trivialise the whole endeavour.
For instance, assuming no more than that L can be mapped into R, we know

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
40

13
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009401319


18 Decision Theory and Philosophy

Figure 3 L′′ is the right-angled concatenation of L and L′ (i.e., L � L′ = L′′).

already that there exists a binary relation R on L that maps into ≥, in the sense
that

(L,L′) ∈ R if and only if φ(L) ≥ φ(L′).

Likewise, supposing only that 〈L,≿〉 maps into 〈R,≥〉, we know already that
there will exist at least one ternary relation R such that

(L,L′,L′′) ∈ R if and only if φ(L) + φ(L′) = φ(L′′).

So the fact that we can then find some relations onL corresponding to ≥ and+ is
thoroughly uninteresting. We can derive such relations from anymapping of L
into R, so long as we’re permissive enough about what counts as a relation. It’s
a matter of convention what we take the primitive relations in our qualitative
systems to be, that is true, but measurement is only interesting when those
relations are natural.

2.5 Meaningfulness
A focus of the discussion to follow involves differentiating what is mean-
ingful from what is not in the measurement of belief. The most common
strategy for drawing such distinctions goes via invariance. Essentially, the
idea is that a numerical property or relation is meaningful only if it’s invari-
ant across alternative numerical representations; otherwise, it’s a mere artefact
of convention.
Compare the case of temperature. When represented in °C, water freezes at 0

and boils at 100, the hottest temperature recorded in Australia is almost exactly
half way between these values (50.7) andmore than double the hottest tempera-
ture recorded in Antarctica (19.8). But not all of the numerical properties and
relations just mentioned are meaningful. Measured in °F, water freezes at 32
and boils at 212, the hottest recorded temperature in Australia (123) is less than
twice the hottest temperature in Antarctica (68), though it’ll still be just over
halfway between the freezing and boiling points of water. Celsius and Fahr-
enheit are equally legitimate interval scale measures of temperature – they’re
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numerically distinct but they’re not meaningfully distinct. The particular val-
ues associated with each temperature and the ratios between those values vary
between alternative scales, and they are therefore not meaningful. Ratios of
differences are invariant, on the other hand, and so we call them meaningful.
So far, so good. But consider again the additive measures of 〈L,≿; ◦〉. If φ

and ψ are any two additive measures of that system, then

φ(L) = 2φ(L′) if and only if ψ(L) = 2ψ(L′).

But this, too, is an artefact of conventions – in the choice of numerical system.
As we’ve just discussed, the qualitative relation that holds between L and L′

whenever L′ is twice as long as L isn’t itself a ratio relation in any deep sense,
and if θ is a multiplicative measure of length, then

φ(L) = 2φ(L′) if and only if θ(L) = θ(L′)2.

In that broader sense, almost all the information in any numerical representation
of 〈L,≿; ◦〉 is an artefact of convention. There’s approximately nothing that’s
invariant across all numerical representations of a qualitative system, and what
is preserved is far too little to be of much interest.
The upshot is that meaningfulness needs to be understood relative to a fixed

choice of numerical system. A more precise account of meaningfulness, and
one that incorporates this lesson, originates with Pfanzagl (1968). I present it
here in lightly modified form:

Definition 6. Suppose that Φ(Q,N) is non-empty, where Q = 〈X,Ri; •j〉 and
N = 〈Y,Si; ∗j〉. For any φ ∈ Φ(Q,N) and any n-ary relation S on Y, R(S, φ) is
the relation induced on X by S and φ if and only if

(x1, . . . ,xn) ∈ R(S, φ) if and only if
(
φ(x1), . . . , φ(xn)

)
∈ S.

S is Q-meaningful relative to N when R(S, φ) doesn’t depend on the choice of
φ in Φ(Q,N).

Where the Q andN are obvious given context, we simply say that S is mean-
ingful. Note one: if S is among the primitive relations Si ofN , thenR(S, φ) is just
the corresponding primitive relation Ri in Q and thus R(S, φ) is automatically
Q-meaningful relative to N . So we’re only interested in the case where S isn’t
among the primitives relations ofN . Note two: if S is one of the primitive oper-
ations of N , then it doesn’t automatically follow that S is meaningful, except
in the special case where every homomorphism in Φ(Q,N) is a strong homo-
morphism. So being a primitive relation in N suffices for being meaningful,
being a primitive operation doesn’t.
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To get a grip on Definition 6, it’s helpful to compare cases where a numerical
relation isn’t meaningful. Observe first of all that every numerical property or
relation S induces a corresponding property or relationR(S, φ) on the qualitative
system relative to each φ ∈ Φ(Q,N). So, if some ordinal scale φ maps Q =
〈L,≿〉 into N = 〈R,≥〉, the 2:1 ratio relation induces a corresponding relation
on L that holds for L,L′ whenever φ(L) = 2φ(L′). But that relation isn’t Q-
meaningful relative to N , precisely because R(2:1, φ) needn’t equal R(2:1,ψ)
for every other ψ inΦ(Q,N). By contrast, the 2:1 ratio ismeaningful relative to
the additive measures of 〈L,≿; ◦〉, since R(2:1, φ) equals R(2:1,ψ) for any two
additive measures φ and ψ. (Why does that matter? Because if the 2:1 ratio is
meaningful with respect to the additive measurement of length, then we can
draw generalisations and formulate laws involving that ratio without worrying
that it all depends on an arbitrary choice of scale.)
In general, the idea is that a numerical relation is meaningful inasmuch as it

always corresponds to the same qualitative relation regardless of what homo-
morphism we care to use, given a fixed choice of numerical system. That’s just
what ‘meaningful’means in this context: always picks out the same thing inde-
pendent of the choice of scale. So to make some headway on the matter of what
should be considered meaningful in our numerical representations of belief, we
need to say more about the kinds of qualitative structures these representations
are supposed to be representations of.

3 Clarifications and Desiderata
The central questions to be addressed by an account of the measurement of
belief are, in relation to a given purported numerical representation of belief:
(i) what is the qualitative system being represented, (ii) what is the numerical
system in which it’s represented, and (iii) under what conditions are such rep-
resentations possible? Answer these, and you’ll have a complete theory of the
measurement of belief; don’t answer them, and all you’ll have are numbers.
An epistemic approach, I said, is one that explains the measurement of belief

by appeal to the internal structure of the belief system. Better: an epistemic
approach is one according to which the qualitative system being represented
can be characterised fully in terms of doxastic states and the relations between
them, where a doxastic state is any type of mental state with a belief-ish flavour.
This might include states of all-or-nothing belief, levels of confidence, judge-
ments of comparative probability, judgements of when one thing is evidence
for another thing or when they are independent, and so on. In sum, doxastic
states are the sorts of mental states that have a mind-to-world direction of fit,
broadly construed; or the sorts of things that reflect our opinions regarding what
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the world is like and what it might be like, and that ought to be responsive to
evidence independent of our preferences. Epistemic approaches are covered in
Section 4 and Section 5.
Decision-theoretic approaches appeal instead to relations between doxastic

states and conative states (read: states with a desire-ish flavour) to explain what
the numbers mean. Roughly, a paradigmatic decision-theoretic approach is one
where the qualitative system is comprised of a conjoint system of beliefs and
basic desires (as opposed to derivative or instrumental desires), related via their
joint determination of a preference ordering over a space of actions according
to some decision rule; the numerical representation of the preference relation is
then constructed to capture the systematic relations holding between the three.
Decision-theoretic approaches are covered in Section 6.
But before we delve into the details, this section provides some back-

ground clarifications on what a theory of belief measurement is and what it
is not (section 3.1 and section 3.2), followed by some simplifying assumptions
(section 3.3) and general desiderata (section 3.4) that will be relevant to the
discussion throughout.

3.1 Quantitation, Not Elicitation
In the classic presentations of the RTM, qualitative systems are understood to
be empirical relational systems. These systems are built around primitives that
are directly and publicly observable in the context of some experimental pro-
cedure. For example, rather than characterising the length system 〈L,≿; ◦〉 as a
set of attributes and higher-order relations between them, if I were doing things
in the classical manner, then I’d have characterised it as a set of rigid physical
objects, the observable at least as long relation between them, and a concaten-
ation operation interpreted as the physical process of taking two rigid objects
and joining them to form a new composite object. Essentially, empirical rela-
tional systems are systems in which nothing is hidden from view – the relations
should be open to observation, the relata should be things we can touch and see
and poke and prod, and the operations are physical procedures on or processes
observed in the entities being measured.
There are some obvious problems that arise when measurement is under-

stood this way. (These problems were not unknown to the founders of the
representational theory; cf. Krantz et al. 1971, 27–31.) In violation of ubi-
quitous transitivity axioms, for example, one might have a series of objects
each longer than the preceding by an imperceptible amount, such that adja-
cent objects will be observed to be of the same length even while the last is
much longer than the first. Similar problems arise for all empirical relational
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systems, and will be familiar from the history of operationalism. They all point
to the same basic issue: quantities cannot be perfectly characterised in terms
of the experimental procedures by which they’re measured, since no such pro-
cedure is ever perfect. Instead, measurement procedures are developed on the
basis of what our best theories imply about the conditions under which observ-
able experimental outcomes will reliably (albeit imperfectly) correlate with
variations in some limited range of magnitudes of the quantity we desire to
measure.8

But it would be a mistake to dismiss the classical RTM focus on empirical
relational systems as mere offshoots of some outdated operationalism. Much
more illuminating to say that the mathematical framework of the theory was
built to play two separable explanatory roles. On the one hand, it’s there to
explain how we might use numerical properties and relations to represent and
reason about bits of the world that aren’t themselves numerical in nature. That
explanation appeals to structure-preserving mappings between qualitative and
numerical systems, and matters of observability are irrelevant here. On the
other hand, the very same formalisms were supposed to help guide the design of
actual measurement procedures. The empirical relational system for the meas-
urement of length, for instance, was supposed to be formulated in such a way
that it might feasibly be implemented in some empirical procedure for meas-
uring lengths – hence the pervasiveness of error in all realistic measurement
practices was taken to present a serious problem for the RTM (cf. Krantz et al.
1971, 1–9, 25, 27–31).
We can – and should – keep these roles separate. The RTM is great for the

first, not so great for the second.9 As Kyburg (1984) once said, the ‘theory
of measurement is difficult enough without bringing in the theory of mak-
ing measurements’ (p. 7). Unfortunately, ambiguity in how we use the term
‘measurement’ can obscure this point. Compare the ‘measurement of mass’
qua abstract pairing of determinatemass attributes with numbers, such that rela-
tions between the latter usefully mirror relations between the former; versus the
‘measurement of mass’ qua empirical procedure for determining the mass of
particular objects by means of an equal-armed pan balance. The original inten-
tion was that the RTMwill be a theory of both – and the sad result has been that
it’s routinely criticised for being of little relevance to the actual measurement

8 See Mari et al. (2017) for relevant discussion, plus a detailed account of the theory-based
construction of one such procedure for the measurement of the mass of stars.

9 This opinion is neither new nor uncommon; similar can be found expressed in Roberts (1985),
Mundy (1987; 1994), Swoyer (1991), Narens and Luce (1993), Decoene et al. (1995), Mari
et al. (2017), and Baccelli (2020). See also Michell (2021) for a useful overview of the history
of thinking on this matter.
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practices of working scientists (e.g., Borsboom 2005; Mari 2005; Reiss 2016).
Such criticisms lack bite when we recognise that the RTM was always better
understood as a framework for understanding meaning and meaningfulness in
our numerical representations of systems of determinable attributes as posited
by a scientific theory.
In light this, let me emphasise firmly that a theory of belief measurement

as presently understood is not in the business of explaining how we might
gather empirical evidence as to the strength of an agent’s beliefs through the
observation of their behaviour, nor how we might elicit their beliefs by any
other means. Mario Bunge (1973) once recommended avoiding the ambiguity
of ‘measurement’ by referring to the abstract sense as quantitation. The ter-
minological suggestion never much caught on, but in those terms our topic is
the quantitation of beliefs rather than their elicitation.
Consequently, I also suggest wemake no presumptions regarding the observ-

ability of the qualitative primitives posited within a theory of belief meas-
urement. These systems posit psychological relations – things like is more
confident than, is more desirable than, is indifferent between – and it would
be an error to presume that such relations will be directly observable in behav-
iour.10 It would be a deeper error still to assume that these relations must be
observable, if we’re to justify theses about the structure of the qualitative sys-
tems involving them. Quantities are posits of our scientific theories, and like
any other posits they need not be directly observable. The justification for the
hypothesis that a qualitative system has a certain formal structure that per-
mits a certain format of numerical representation need not derive from any
direct observations of that structure, but can instead derive indirectly from the
broader empirical and theoretical virtues of the theories that presuppose a sys-
tem of quantities endowed with that structure. In this respect the measurement
of belief is no different in kind than the measurement of any other quantity.

3.2 Measurement, Not Metaphysics
This is an work on measurement, not metaphysics. Experience teaches that
these can be hard to keep separate, but separate them we should – lest we end
up rejecting perfectly reasonable approaches to the measurement of belief by
mixing them up with hideously implausible views on the metaphysics of belief.

10 Perhaps, under special circumstances, I’d agree that a limited part of a person’s overall prefer-
ence ordering might be ‘directly revealed’ through their choice behaviour alone. Many people
have thought so. But even given all the hedging, I’m still doubtful. At best, there’s a defeasible
evidential relationship between choice and preference, and the connection between them is too
loose to say that preferences are ever directly observable via choices.
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The core questions dealt with by a theory of belief measurement con-
cern the specific matter of quantitation: in relation to a purported numerical
representation of some doxastic state or set of such states,

1. what is the qualitative system Q being represented,
2. what is the numerical system N in which it’s represented, and
3. under what conditions are such representations possible?

By contrast, a metaphysics of belief is concerned with much broader questions
about the kinds of ontological and/or conceptual dependence relations that hold
between doxastic states of different kinds, and between doxastic states and the
wider world.11 The core task of such a metaphysics is, in short, to explain what
kinds of doxastic state-types there are, and where they ought to be situated
relative to one another and relative to the rest of the world within some general
conceptual framework and/or global ontology of the universe.
One major division in the metaphysics of belief is between realist and anti-

realist views. Broadly speaking, the former says that the correct attribution
of a doxastic state to an agent depends on objective facts about the agent,
and the latter says that correct attribution depends somehow on who’s doing
the attributing. Some versions of interpretivism fall into the anti-realist camp;
such will typically say that an agent’s beliefs are just those an interpreter can
usefully employ to explain the agent’s behaviour. Among realists, a major
division is between representational and non-representational theories. The
former explains what it is to have a doxastic state with such-and-such con-
tent by hypothesising the existence of some internal mental representation of
that content. Non-representational theories link doxastic states instead to not-
necessarily-representational states of the agent that are systematically related
to the contents thereof. Among non-representational views are behaviourist
theories, which analyse doxastic states as patterns of behaviour; disposition-
alist theories, which analyse doxastic states via a suite of associated (and
not-necessarily-behavioural) dispositions; and functionalist theories, which
analyse doxastic states by reference to a functional role that typically revolves
around relations between beliefs over time given evidence and between beliefs,
desires and behaviour.

11 It’s not easy to say precisely what dependence relations are, and any characterisation I give will
be subject to debate. Roughly, a conceptC is conceptuallymore fundamental than another con-
cept C′ when C′ can be analysed in terms of C but not vice versa; and a property (or state-type)
P is ontologically more fundamental than another P′ when the instantiation of P′ necessarily
depends on the instantiation of P but not vice versa. Another way to distinguish the two is
via their explanatory roles: ontological dependence explains necessary connections between
properties, while conceptual dependence explains a priori connections between propositions.
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While there are some connections between measurement and metaphys-
ics – some ways of approaching the former will fit more or less naturally with
different ways of approaching the latter – in general, one cannot read meta-
physics off of measurement. Every epistemic and decision-theoretic approach
to the measurement of belief that’s considered in the following sections
is compatible with a wide range of views on the metaphysics of belief –
including all of those just mentioned. There’s nothing intrinsically realist or
anti-realist, or representationalist or non-representationalist, or behaviourist
or dispositionalist or functionalist (and so on) about any of these measurement
theories.
This point is especially worth emphasising in the case of decision-theoretic

accounts of belief measurement. Historically there has been a close connec-
tion between the decision-theoretic representation theorems that underlie those
accounts, and behaviourist (or behaviourist-lite) metaphysical theories which
propose to reduce beliefs to preferences as revealed by choices. Since this
kind of behaviourism is nowadays treated like a bad smell, decision-theoretic
approaches to the measurement of belief seem to have been tainted by associ-
ation and are thereby often dismissed without much consideration. So I want to
consider that case in a bit more detail, as on reflection there’s not much reason
to link the decision-theoretic approaches specifically to behaviourism.
A typical decision-theoretic representation theorem establishes sufficient

conditions for the conjoint measurement of beliefs, desires, and preferences.
The general idea is that an agent’s preference ordering will be determined by
their beliefs and desires via some decision rule (e.g., expected utility maxi-
misation), and so we want to construct a numerical representation of those
preferences which ‘decomposes’ into independent representations of belief and
desire via that decision rule. (Compare the example in section 2.3, with the
representation of C ‘decomposing’ into representations of its determinants A
and B via some rule f.) These theorems don’t tell us anything about the meta-
physical relationship between beliefs, desires, and preferences. Consider: if I
describe a structure for the conjoint measurement of momentum as determined
bymass and velocity, then no one leaps to the conclusion that mass and velocity
are ontologically dependent on momentum. Likewise, if I describe a structure
for the conjoint measurement of discomfort as determined by temperature and
humidity, no one infers that the concepts of temperature and humidity ought
to be analysed in terms of discomfort. Such inferences would be obviously fal-
lacious – so why would we draw parallel inferences from decision-theoretic
representation theorems?
According to the decision-theoretic approach, the conjoint representation

is supposed to capture a systematic relation or relations between beliefs,
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desires, and preferences that is explanatorily relevant to the quantitation of
belief. Nothing about this implies that beliefs depend conceptually or onto-
logically on preferences. Moreover, the explanatorily relevant relations may
not be dependence relations at all. For example, the approach would be con-
sistent with a functionalist metaphysics according to which beliefs, desires
and preferences are interrelated posits in a psychological theory such that
none are reducible to the others, and such that their statistically or biologic-
ally normal causal interactions can be systematically represented within a
decision-theoretic framework.
Observe, also, that such a functionalist might say the relation between beliefs

and preferences is critical for explaining the quantitation of belief, even while
saying that the characteristic functional role of belief isn’t exhausted by those
relations. One might suppose that an important part of the functional role of
belief concerns the connection between beliefs and sensory evidence – a state
cannot rightly be said to ‘play the belief-role’ if it isn’t appropriately sensitive
to perceived changes in the environment. Such relationships will be crucial
when providing a functionalist analysis of what beliefs are, but that doesn’t
imply they need also be mentioned in an explanation of why it makes sense to
represent a system of beliefs within a certain numerical framework. These are
related issues, to be sure, but nevertheless clearly distinct.
Compare the case of mass. Our concept of mass can be plausibly analysed

in terms of its theoretical role: mass is the property that best satisfies the total
role associated with ‘mass’ within contemporary physics. But mass does many
things. The mass of an object is proportionate to its resistance to acceleration
as measured by an observer at rest with respect to it. It’s also proportionate to
the strength of the gravitational field the object exerts on others, and its total
rest energy. Mass is tied to momentum and velocity, density and volume, and
to how fast a transverse wave travels through a string attached to a fixed point
at each end. Mass also plays a role in stellar evolution; for instance, a white
dwarf with mass exceeding about 1.4 solar masses will succumb to electron
degeneracy pressure and collapse into either a neutron star or a black hole. So
if you want to analysemass by reference to its total theoretical role, then there’s
a lot you need to mention – but if you just want to give an explanation of why
it makes sense to measure mass on a ratio scale, then not all of that is going to
be necessary or relevant. In sum: the relations we use to analyse the concept of
a quantity can come apart from the typically narrower class of relations we use
to explain the quantitation of that quantity.
An account of the measurement of belief just isn’t in the business of explain-

ing ontological or conceptual dependence relations that hold between different
kinds of doxastic states, nor between doxastic states and non-doxastic states. It
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would be wise, then, to be very careful when drawingmetaphysical conclusions
from measurement-theoretic premises.

3.3 Simplifying Assumptions
Having said some things about the sorts of things we shouldn’t be assuming, let
me now talk about the things I will be assuming. There are three assumptions in
total; the first two are simplifying assumptions about how we model contents:

Assumption 1 Degrees of belief have propositional contents, where proposi-
tions can be modelled as subsets of some non-empty space of possible
worlds (henceforth denoted Ω).

Assumption 2 For each agent and all propositions p, there exists an algebra
of propositions A on Ω such that the agent has some degree of belief
towards p if and only if p belongs to A.

By ‘possible’, I mean at least consistent with classical logic. An algebra of
propositions is defined like so:

Definition 7. A is an algebra of propositions on Ω if and only if it is a non-
empty set of subsets of Ω, and for all p,q ⊆ Ω,

1. If p is in A, then Ω \ p (henceforth ¬p) is in A
2. If p and q are in A, then p ∪ q is in A

Furthermore, an element a ∈ A is an atom of the algebra if and only if a , ∅
and for every p ∈ A, either a ∩ p = a or a ∩ p = ∅.

These are substantive assumptions indeed, and I’m not super confident they’re
true – but they’re also both very standard assumptions in the present context,
and each does a great deal to help simplify many matters.12

Still, I should say a bit more about these two assumptions, since they’ll play
an important role at some points of the discussion. An immediate consequence
of Assumption 1 is that the contents of belief are coarse-grained: if p and
q are logically equivalent, then p = q. But I did not call it a ‘simplifying’
assumption due to this fact – there’s a lot to be said in favour of coarse-grained
content! (e.g., Stalnaker 1984; Lewis 1986; Chalmers 2011.) Rather, I con-
sider Assumption 1 to be a simplifying assumption because it (in effect) has

12 Also for the sake of simplicity, I will mostly focus on measurement structures involving finite
algebras. This is not because I think that agents can have degrees of belief towards only finitely
many propositions, but just because trying to cover both the finite and infinite cases would add
significant complexity with comparatively little by way of philosophical pay-off.
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us ignore so-called de se content and certain common strategies for the repre-
sentation thereof that require going a little ways beyond the standard possible
worlds framework (e.g., Lewis 1979).
Opponents of coarse-grained content often suppose we can model more fine-

grained contents using impossible worlds. Roughly, the idea is that wherever
we want to differentiate between logically equivalent contents p and q, we can
include in our space of worlds Ω one or more impossible worlds where one of
these holds but the other doesn’t; hence the set of p-worlds will come apart from
the set of q-worlds. But matters are not quite so easy. One cannot simply throw
a bunch of impossible worlds into Ω without potentially breaking something
elsewhere, especially in the presence of Assumption 2.
To explain why, it’ll help to have a specific account of what impossible

worlds are and how they’re used to model contents. For the purposes of the
discussion I’ll adopt the modal ersatz approach found in Nolan (1997), though
essentially the same points can be made for other popular accounts of impos-
sible worlds (e.g., linguistic ersatzism or extended modal realism, see Elliott
2019b for discussion). Following Nolan’s preferred terminology, take proposi-
tions – the potential objects of our beliefs and the meanings of our declarative
sentences, whatever they may be – to be ontological primitives. Given that, we
let a world ω be any set of propositions, and we say that p is true at a world ω
just in case p ∈ ω. There is, of course, a one-to-one correspondence between
each primitive proposition p and the set of worlds containing p (the p-worlds).
We say a world is possible just in case it’s complete (contains either p or its
negation, for every proposition p) and consistent (has no logically inconsistent
subsets); otherwise, it’s impossible. If Ω contains only possible worlds, then if
p logically implies q then every p-world in Ω will be a q-world. But if Ω isn’t
restricted to possible worlds, then it may be that p implies q even while there are
some impossible p-worlds in Ω that aren’t q-worlds. Much therefore depends
on what kinds of worlds get to go into Ω; the richer the space of worlds, the
more distinctions we can draw between logically-equivalent contents modelled
as sets of worlds.
Impossible worlds theorists will often assume a very rich space of worlds

characterised by an unrestricted comprehension principle: for any complete set
of primitive propositions P = {p,q, . . .}, there is a world ω ∈ Ω such that ω =
P. Roughly, for any possibility or impossibility, there’s a world that verifies it;
and the principle thereby ensures there are always some p-worlds that aren’t q-
worlds even when p logically implies q. However, unrestricted comprehension
also has the consequence that many subsets of Ω are meaningless. These are
sets of worlds that correspond to no primitive proposition whatever, and so are
not fit (by hypothesis) to serve as the objects of belief. There is nothing that’s
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true at all and only the worlds in a meaningless set – they are just artefacts of the
construction of contents as sets of sets of primitive propositions. For example,
and as Nolan (1997, 563) points out, any set containing only possible worlds
will be meaningless in this sense given unrestricted comprehension. For any set
of possible worlds {ω1,ω2, . . .} there will be some propositions they all have in
common. Given that, letωi be a world such that everything true at all the worlds
in {ω1,ω2, . . .} is also true atωi, but the negation of one or more of those things
is also true at ωi. It follows that ωi is an impossible world. So, there is nothing
true at all and only a set of possible worlds – such sets are meaningless.
The existence of meaningless subsets of Ω isn’t intrinsically problematic.

However, it does not play nicely with Assumption 2. An algebra of pro-
positions is closed under relative complements and binary unions, and in the
presence of unrestricted comprehension two facts follow. First, the relative
complement of any meaningful proposition is meaningless: for any p and q
there will be impossible worlds where both p and q hold, hence there’s no q
such that the set of p-worlds doesn’t intersect with the set of q-worlds. Second,
the union of any two meaningful propositions is meaningless: for any p and q
there can be no r such that the set of r-worlds is the union of the p-worlds and
the q-worlds, since then every p-world would be an r-world but for any p and
r there will be some p-worlds that aren’t r-worlds. In short, then: any algebra
of propositions defined on a sufficiently rich space of possible and impossible
worlds will consist mostly of meaningless sets – and we shouldn’t want to rep-
resent agents as having beliefs towards entities that correspond to no proper
object of belief.
Youmight think there’s an easy response: the main premises of the foregoing

reasoning are unrestricted comprehension andAssumption 2, so we can simply
deny one or both of those and avoid the problem – right? Again, though, matters
aren’t so simple. For one thing, unrestricted comprehension or something in
the nearby vicinity is required for the most attractive results that impossible
worlds are advertised to have in relation to fine-grained content and logical
omniscience (see Nolan 2013 for an overview). But moreover, it’s a mistake
to suppose that unrestricted comprehension is necessary for the conclusion –
as if the problem would simply disappear were we to adopt a more restricted
principle. As shown in Elliott (2019b), the real problem is that Assumption
2 imposes a Boolean algebraic structure over meaningful subsets of Ω, which
forces the worlds in Ω to conform to a Boolean logic. Under quite minimal
richness conditions on what kinds of possibleworlds go intoΩ, either (a) every
algebra of sets on Ω will contain meaningless sets of worlds or (b) the worlds
in Ω will be closed under the {¬,∧}-fragment of Boolean logic (or something
to the same effect).
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Nor is it easy to deny Assumption 2 since – as we’ll see – many theories
for the measurement of belief make important use of that assumption. This
includes all of the epistemic approaches that I will discuss in what follows,
and a large number of decision-theoretic approaches too. The reason why the
assumption is important ultimately boils down to the fact that representation of
any quantity on anything stronger than an ordinal scale requires a qualitative
structure richer than what can be provided by a single weak ordering over the
magnitudes thereof – basically, some additional relation will be required for the
extra-ordinal structure of the numerical representation to grock on to. Thus, in
the measurement of length we require not only the at least as long relation,
but also a concatenation operation that can be mapped into addition. Likewise
for conjoint measurement, where the additional structure is supplied by recon-
structing ≿ on the single quantity C as a quarternary relation over A×B and
then using induced relations between the factors A and B to supply the add-
itional structure for the representation. For theories of belief measurement, the
additional structure that allows for the possibility of more-than-merely-ordinal
measurement is often characterised by set-theoretic relations between contents
(qua sets of worlds) in such a way that presupposes the algebraic structure
guaranteed by Assumption 2.
The point here is not that there’s no hope for impossible worlds, or that we

shouldn’t make use of them. Rather, the point is that incorporating impossible
worlds into contemporary theories of belief measurement will require careful
consideration about the nature of content and likely some further adjustments to
our formal models and their interpretation. The common thought among many
philosophers is that impossible worlds present an easy fix to the problems of
coarse-grained content – just throw some impossible worlds into Ω and you’re
done. But it is not so easy. In that sense, then, the conjunction of Assumption
1 and Assumption 2 can be considered a simplifying assumption as well.
One more simplifying assumption:

Assumption 3 Degrees of belief are precise.

I don’t think this assumption is realistic. Imagine, for instance, that a down-
trodden magician has just rolled into town. He has a coin, which you happen
to know is biased but you know not in what direction the bias lies nor to what
degree. He also has an old deck of cards with some unspecified number of
cards missing. The magician tosses the coin and pulls out a single card from
the deck. Let p be the proposition that the coin lands heads, and q that the card
is red. If degrees of belief are precise (represented by real values), and you have
some positive degree of confidence in each of p and q, then there must be some
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precise value n such that you’re exactly n times as confident in p as you are in
q. Plausibly, though, there is no such n, or at least there needn’t be.
Over the past few decades, something of a consensus has emerged regard-

ing the representation of ‘imprecise’ degrees of belief (see, e.g., Walley 1991;
Kaplan 2010; Joyce 2010). Instead of the real-valued functions employed in
classical models of graded belief, we use a set of real-valued functions – a
credal set, or as it’s often known in philosophy, a representor. The rough idea
is that what a representor represents is what’s true according to all functions
in the set. Thus, for example, we say the subject has at least as much confi-
dence in p as she does in q just when every function in her representor assigns
a value to p that’s at least as great as the value assigned to q. Moreover, a
general strategy exists for the construction of these ‘representor’ represen-
tations that can be applied to the different epistemic and decision-theoretic
approaches discussed in what follows (e.g., Evren & Ok 2011; Alon & Lehrer
2014; Alon & Schmeidler 2014; Augustin et al. 2014; Hawthorne 2016). The
main move is to replace the common weak order axiom that’s used to construct
a precise real-valued representation with a strictly weaker preorder axiom,
thus allowing for incompleteness in the primitive psychological relations
being represented. The ‘imprecise’ representation is then constructed from
the many precise representations of the various possible completions of that
preorder.
Since this is a general strategy that works more or less the same way across

epistemic and decision-theoretic approaches, I’ve neglected to include details.
Instead, I’ll take it as read that the real-valued measures of belief considered
in what follows are idealisations – and relatively harmless idealisations, in that
we have a good sense of how to do away with them. (See also section 6.4 for a
little more discussion on this.)

3.4 Desiderata
The remainder of this section will outline four desiderata for a theory of
belief measurement. To be clear: I will not be explicitly evaluating the theor-
ies of belief measurement by reference to these desiderata. Evaluation is left
to the reader, and you may take issue with some (or all) of what I take to
be theoretically desirable. Rather, the desiderata are here offered by way of
explanation for why I’ve chosen to focus on certain topics in the chapters that
follow – namely the meaningfulness of extra-ordinal information, probabilistic
and non-probabilistic representations, and logical omniscience.
Again I’ll need to start with some terminology.We take a probabilitymeasure

to be defined as follows:
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Definition 8. Where A is an algebra of propositions on Ω, µ : A 7→ R is a
probability measure if and only if, for all p,q ∈ A,

1. µ(p) ≥ 0 (non-negativity)
2. µ(Ω) = 1 (normalisation)
3. If p ∩ q = ∅, then µ(p ∪ q) = µ(p) + µ(q) (t-additivity)

According to probabilism, ideally rational agents are those whose beliefs can
be accurately represented by some probability measure. Now, exactly what it is
for a system of beliefs to be represented by a probability measure is a question
to be settled by an account of the measurement of belief – so probabilism is a
thesis that only makes sense against the backdrop of somemeasurement theory.
But set that aside. A weaker version of the thesis, what Kaplan (2010) calls
modest probabilism, requires that an ideally rational system of beliefs can be
represented by a non-empty set of probability measures.
I want something even weaker: at least some rational systems of belief are

represented by (sets of) probability measures. Call it really modest probabil-
ism. While there are occasional arguments against (modest) probabilism, these
usually highlight surprising exceptions to the thesis that ideally rational agents
must always be represented by (sets of) probability measures. So I take it that
really modest probabilism will be generally uncontroversial, and as such we
should desire a theory of belief measurement that’s in a position to make sense
of it:

Desideratum 1 A theory of the measurement of belief should be consistent
really modest probabilism.

That is, the theory should be able to explain how a system of beliefs might be
accurately represented by some probability measure (or a set thereof).13

For the next, let’s say that a measure of belief is cardinal (as opposed to
merely ordinal) if it’s unique up to something stronger than an order-preserving
transformation. So, for example, interval-scale and ratio-scale measures will
count as cardinal measures in this sense. Given that,

Desideratum 2 Probabilistic representations of belief are (at least in some
theoretical contexts) cardinal measures of those beliefs.

13 Given this is what the vast majority of epistemic and decision-theoretic approaches in fact do, I
don’t expect much resistance on this front. Still,Desideratum 1 plays a non-trivial role in con-
straining what counts as a desirable theory of belief measurement, especially when combined
with the remaining desiderata. This will be more apparent in Section 4.2.
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One reason to accept this desideratum is intuition. Most will be happy to say
that a rational agent ought to have about 50 per cent confidence that a fair coin
will land heads on a single toss, which should be half as much confidence as
they have regarding it landing either heads or tails, and twice as much confi-
dence as they ought to have regarding it landing heads twice in a row. Or, more
straightforwardly, it’s clearly sensible to say that a person can have much more
confidence in one thing than in another. Such claims makes sense only if beliefs
are measurable on something stronger than an ordinal scale.
I’m inclined to take these intuitions seriously, as indicative of how we pre-

theoretically (and post-theoretically) tend to think about confidence. But I
wouldn’t want to rest my case on such intuitions alone. A stronger reason to
acceptDesideratum2 arises from the fact that more-than-merely-ordinal infor-
mation has a theoretical role to play in our standard (and non-standard) theories
of rational decision-making. Consider the following example. We imagine first
that Ramsey has to choose between two gambles:

α: receive $1 if p is true, nothing otherwise
β: receive $2 if p is false, nothing otherwise

Suppose also that Ramsey considers p less probable than Ω but more prob-
able than ¬p. Without loss of generality, let the algebra A be {Ω,p,¬p,∅}. A
probability measure will be a merely ordinal representation of Ramsey’s con-
fidences just in case it assigns a value to p that’s strictly between 1 and 1

2 . As
such, there’s at least two ordinally equivalent probability measures, µ1 and µ2,
such that

1 > µ1(p) >
2
3
,

2
3
> µ2(p) >

1
2
.

If confidence is measured on nothing stronger than an ordinal scale, then there
should be no difference in meaning between µ1 and µ2. But according to
expected utility theory, there is a difference: Ramsey should prefer α if and
only if his confidence in p is more than twice his confidence in ¬p. At that
point, the higher probability of winning with α outweighs the promise of a lar-
ger prize with β. So expected utility theory is inconsistent with the thesis that
confidence is measured on a merely ordinal scale. (I’ll say more about this in
Section 6.3.)
The same holds for most alternatives to expected utility theory, including

normative theories (for representing ideally rational agents) and descriptive
theories (for representing realistic agents). And we needn’t rest the case on
decision-theoretic examples either. Much the same holds in contemporary
epistemology, where a great deal of theory and argument presumes the more-
than-merely-ordinal measurement of belief. Two brief examples; I’m sure if
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you start looking you’ll find more. First, the relation of probabilistic independ-
ence is crucially important for Bayesian theories of evidence and learning,
but independence relations can vary between ordinally equivalent numerical
representations (see Section 5.3). Second, epistemic utility theory appeals to
numerical properties that differentiate ordinally equivalent probability meas-
ures (see Mayo-Wilson & Wheeler 2019, p. 19). In sum: if our numerical
representations of belief are to play the roles that they are in fact gener-
ally taken to play in contemporary theories of rational belief and rational
decision-making, then they cannot be mere ordinal-scale measures. That’s not
a conclusive reason for accepting Desideratum 2, of course, but it is a reason,
and a potent one.
Together, Desideratum 1 and Desideratum 2 imply that at least some pos-

sible agents have beliefs that are representable by a probability measure, where
that probability measure isn’t merely an ordinal scale. But for all that’s said, it
may be that cardinal measurement is only possible in the special case of ideally
rational agents – everyone else is stuck with mere ordinal measures. The next
desideratum is aimed at denying this. Say that an agent is logically omniscient
just in case, if p logically entails q, then the agent has no more confidence in p
than they do in q. In other words, their confidences are ordered coherently with
respect to logical implication. Then:

Desideratum 3 Logical omniscience is not a prerequisite for the cardinal
measurement of belief.

The argument I’ll provide for Desideratum 3 is just based on intuition. I’m
not ideally rational, and neither are you. We are less-than-ideally rational, and
one likely manifestation of this fact is that we aren’t logically omniscient. But
this doesn’t prevent us from believing one propositionmuch more than another,
or about half as much as another, and so on. (If there are any Moorean facts in
the theory of belief measurement, this ought to be one of them.) Furthermore,
given Assumption 1, any probabilistic representation of beliefs will automat-
ically determine a logically omniscient confidence ordering. So, consequence:
probabilistic representation is not a prerequisite for cardinal representation
either.
The joint effect of the three desiderata so far will be that we shouldwant a the-

ory of how beliefs can bemeasured on something stronger than an ordinal scale,
which is consistent with really modest probabilism but isn’t limited to repre-
senting the beliefs of the logically omniscient. We want a theory of cardinal
belief measurement for ideal and non-ideal agents. The final desideratum is an
anti-disjunctiveness condition:
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Desideratum 4 A theory of belief measurement should not be fundamentally
different for ideal versus non-ideal agents.

If we’re going to say that both ideally rational and non-ideally rational agents
can have degrees of belief that are measured on something stronger than an
ordinal scale, then we should also want an explanation that makes sense in
both cases – a unifying theory is a better theory. There doesn’t appear to be any
difference in meaning when we say (e.g.) that Jules is much more confident in
one proposition over another, depending on whether Jules is ideally rational or
non-ideal like us. If that’s right, then fundamentally the same explanation of
quantitatability should apply in either case.
I intend for Desideratum 4 to be compatible with the idea that there might

be more than one adequate approach to the measurement of belief. It might be,
for example, that a decision-theoretic approach is apt for the purposes of deci-
sion theory, and that an epistemic approach is apt for certain other theoretical
contexts, with no fact of the matter as to which is the correct way of doing
things. It’s not unusual that there might be complementary ways of explaining
the quantitation of a given quantity. For example, the ratio-scale measurement
ofmass can be explained as an instance of fundamental extensivemeasurement,
or conjoint measurement, or (given an appropriate choice of base quantities)
derived measurement – there is no fact of the matter as to which is the right
way to do it. But the key term there is complementary. The various ways to
explain the quantitation of mass are not disjunctive in the sense of giving one
explanation for howmass is measured that applies to a certain subset of masses,
and a fundamentally distinct explanation for other magnitudes. That’s the kind
of disjunctiveness we should avoid.

4 Epistemic Approaches: Comparative Confidence
Themost straightforward and best-known of the epistemic approaches involves
the probabilistic representation of (complete) binary comparative confidence
relations. For ease of reference, I’ll call this the standard epistemic approach.
This section begins with an overview of the standard epistemic approach
(Section 4.1), after which we consider the problem of logical omniscience
and non-probabilistic generalisations (Section 4.2). Several further varieties of
epistemic approach are discussed in the next section.
For the present section, we take ≿ be interpreted relative to some agent α,

and we read p ≿ q as saying that α has at least as much confidence in p as she
has in q. Supposing that ≿ is a weak order, it’s then natural to interpret � as
more confidence, and ∼ as equal confidence. Where p ∼ q, I’ll sometimes say
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that p and q are equiprobable; this shouldn’t be understood to presuppose that
≿ has a probabilistic representation.

4.1 Probabilistic Representations
The main results in this area concern the conditions under which a system
comprised of an algebra of propositions and a comparative confidence rela-
tion, 〈A,≿〉, can be represented in the numerical system 〈R≥0,≥〉 by means
of some probability measure. Savage (1954) established sufficient conditions,
based on earlier work from de Finetti (1931). Kraft, Pratt, and Seidenberg
(1959) were the first to provide necessary and sufficient conditions for the case
of finite algebras, which were presented then in simpler form by Dana Scott
(1964).
For the following definition, we take pi to be the indicator function of p.

The indicator function of a proposition simply distinguishes those worlds that
belong to the proposition from those that don’t, by assigning 1 to the former
and 0 to the latter; namely, pi is a function on Ω such that

pi(ω) =
1 if ω ∈ p

0 otherwise
.

Definition 9. LetA be an algebra of propositions onΩ, and≿ a binary relation
on A. Then 〈A,≿〉 is a finite system of qualitative probability if and only if

1. A is finite (finitude)
2. ≿ is complete (completeness)
3. p ≿ ∅ (∅-minimality)
4. Ω � ∅ (non-triviality)
5. If p1, . . . ,pn and q1, . . . ,qn are two sequences of propositions inA, then, for

1 ≤ j < n, if
i) pj ≿ qj, and
ii)

∑n
i=1 pii(ω) =

∑n
i=1 qii(ω) for all ω ∈ Ω,

then qn ≿ pn (Scott’s axiom)

Theorem 10 (Scott 1964) 〈A,≿〉 is a finite system of qualitative probability if
and only if at least one probability measure µ is a homomorphism from 〈A,≿〉
into 〈R≥0,≥〉.

Much of the work is done by Scott’s axiom, but what that axiom says isn’t
transparent. Roughly, it tells us that if two collections of propositions p1, . . . ,pn
and q1, . . . ,qn contain the same number of truths as amatter of logical necessity,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
40

13
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009401319


The Measurement of Subjective Probability 37

then if the agent is more confident of n − 1 propositions in the first collection
than they are of the corresponding propositions in the second, there must be an
nth proposition in the second collection of which they have more confidence
than the corresponding proposition in the first collection – they must balance
out. (Compare: for real values, if x1 + x2 + x3 = y1 + y2 + y3, and x1 ≥ y1,
x2 ≥ y2, then y3 ≥ x3.) But we needn’t worry about what Scott’s axiom says
exactly; more illuminating for present purposes is to consider what the axiom
implies in the context of the others.14

If we use t henceforth to represent the union of disjoint sets – that is, the
restriction of set-theoretic union ∪ to those pairs of sets with no elements in
common – then for any finite system of qualitative probability,

1. ≿ is a weak order (weak order)
2. p t (q t r) = (p t q) t r (associativity)
3. p t q = q t p (commutativity)
4. p ≿ q if and only if, if r ∩ (p ∪ q) = ∅ then p t r ≿ q t r (t-monotonicity)
5. p t q ≿ p (weak positivity)
6. p ≿ p t q only if q ∼ ∅ (minimal identity)

These should remind you of the properties that permit the additive measure-
ment of length (Section 2.3), with t playing something similar to role played
by end-to-end concatenation in a positive concatenation structure. The weak
order axiom is, as discussed earlier, necessary for ≿ to be mapped into ≥.
The associativity and commutativity axioms fall out of the associativity and
commutativity of ∪. Finally, weak positivity and minimal identity correspond
to the non-negativity condition in Definition 8 (the definition of a probability
measure), while t-monotonicity corresponds to the t-additivity condition.
Indeed, we can make the analogy with the measurement of length more

explicit by restating Theorem 10 thus:

Theorem 10 ′ 〈A,≿〉 is a finite system of qualitative probability if and only if
there is at least one probability measure µ that is also a weak homomorphism
from 〈A,≿;t〉 into 〈R≥0,≥;+〉.

This way of stating Scott’s result better captures the point of the probabilistic
representation of comparative confidence. After all, if the goal was to show
how a system 〈A,≿〉 might be represented in 〈R≥0,≥〉, then the finitude and
weak order axioms would have sufficed – everything beyond that just serves
to restrict the kinds of qualitative systems under consideration without making

14 For extended exposition on Scott’s axiom, see Titelbaum (2022, 491ff).
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any difference to their representability in 〈R≥0,≥〉. What makes it worthwhile
to represent comparative confidence using a probability measure is that the
characteristic properties of such measures (namely: t-additivity) are reflected
in the ‘additive’ behaviour of ≿ in relation to t, thus giving rise to meaning
beyond just the ordering information. If not for this, then there’s no apparent
reason to care about probabilistic representations of ≿ over any number of non-
probabilistic but ordinally equivalent representations.
With that said, there’s a couple important disanalogies with the case of length

that should be noted. First, additive measures of 〈L,≿; ◦〉 are 1-point unique –
that is, fixing the numerical value of any non-minimal length L will uniquely
determine the remainder of the scale. The same needn’t always be true for prob-
abilistic measures of 〈A,≿;t〉. Consider a finite algebra with atoms a1,a2,a3,
where

a1 � (a2 ∪ a3) � a2 � a3.

A probability measure µ will represent 〈A,≿;t〉 just in case

1 > µ(a1) >
1
2
> µ(a2 ∪ a3) > µ(a2) > µ(a3) > 0.

Obviously, choosing a measure µ such that µ(a1) = 2
3 , for instance, won’t yet

determine the values for a2 and a3 – it only determines that they’ll take distinct
positive values summing to 1

3 . So the measure isn’t 1-point unique. Essentially
similar examples can be constructed to show that there will be systems of finite
probability such that the additive measures of 〈A,≿;t〉 are not n-point unique
for arbitrarily large n.
Second,+ ismeaningful relative to the additive measures of 〈L,≿; ◦〉, but the

same needn’t be true for probabilistic measures of 〈A,≿;t〉. In other words,
where µ and µ′ are distinct probabilistic representations of the same system
〈A,≿;t〉, the relation R(+, µ) induced onA by + relative to µ need not be the
relation R(+, µ′) induced on A by + relative to µ′. (Recall from Definition 6
that (p,q, r) ∈ R(+, µ) if and only if µ(p) + µ(q) = µ(r).) Consider again the
previous example, where µ(a1) = 2

3 , and so

µ(a2 ∪ a3) + µ(a2 ∪ a3) = µ(a1).

Now suppose that µ′ is such that µ′(a1) = 3
4 ; hence

µ′(a2 ∪ a3) + µ′(a2 ∪ a3) , µ′(a1).

Though both µ and µ′ are weakly additive measures of 〈A,≿;t〉, the qualita-
tive relation corresponding to+ under µ isn’t identical to the qualitative relation
corresponding to + under µ′. So addition isn’t 〈A,≿;t〉-meaningful relative to
〈R≥0,≥;+〉.
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Both disanalogies are a result of the fact that probabilistic representations of
a system of qualitative probability need not be unique. This situation can be
remedied if we add more axioms, such as

• p ≿ q only if p ∼ q ∪ r for some r ∈ A. (solvability)

Supposing that 〈A,≿〉 is a finite system of qualitative probability satisfying
solvability, then the analogy with the additive measurement of length is consid-
erably stronger. In that case, the set of weakly additive measures of 〈A,≿;t〉
will include all and only those φ that are related to µ by a positive similar-
ity transformation, and hence they will be 1-point unique (Suppes 1969, 6–7).
Furthermore, R(+, µ) = R(+, φ) for any φ related to µ by a positive similar-
ity transformation, and so + will be meaningful relative to any set of weakly
additive measures of 〈A,≿;t〉.
Another way to make that analogy clear is to generalise t slightly, and then

show that this generalised relation can be (strongly) mapped into +. Start with
the following:

Definition 11. Where ∼ is an equivalence relation and • is a binary operation,
•\∼ is the relation induced by • and ∼ if and only if (p,q, r) ∈ •\∼ whenever
p′ • q′ ∼ r for some p′ and q′ such that p ∼ p′ and q ∼ q′.

In the special case where ∼ is antisymmetric, there’s no difference between •
and •\∼. For example, +\= is just the same as +. But since the equiprobability
of p and q need not imply the identity of p and q, in many cases it will be
impossible to construct a system 〈A,≿; •〉 that admits of an additive measure
in the stronger sense. For suppose p • q = r, but there also exists some s , r
such that r ∼ s. Then, if φ maps ≿ into ≥, then • will strongly map into + only
if φ(p) + φ(q) = φ(s) implies p • q = s, which by hypothesis is false. But this
isn’t a deep problem – we dissolve it entirely by mapping the very slightly more
general ternary relation •\∼ into + instead (where the latter is construed this
time as a ternary relation). Thus,

Theorem 12 Suppose that 〈A,≿〉 is a finite system of qualitative probability
satisfying solvability. Then there exists a homomorphism φ from 〈A,≿,t\∼〉
into 〈R≥0,≥,+〉. Furthermore, the set of all homomorphisms from 〈A,≿,t\∼〉
into 〈R≥0,≥,+〉 is unique up to positive similarity transformations, and exactly
one of them is a probability measure.

Proof. Suppose that µ is the unique probability representation of 〈A,≿〉, guar-
anteed by the hypothesis of the theorem. The relation R(+, µ) always maps into
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40 Decision Theory and Philosophy

+ by definition, so for the existence result we need only establish R(+, µ) =
t\∼. To that end, note (p,q, r) ∈ R(+, µ) if and only if there exist p′,q′, r ∈ A
such that p′ ∼ p, q′ ∼ q, p′ ∩ q′ = ∅, and p′ ∪ q′ ∼ r. The right-to-left of
that biconditional is trivial, given that ≥ represents ≿ and that µ satisfies t-
additivity. For the left-to-right, suppose µ(p) + µ(q) = µ(r). Where p ∩ q = ∅,
let p = p′, q = q′ and r = p ∪ q. Where p ∩ q , ∅, let s be a proposition such
that s∩ (p∪ q) = ∅ and s ∼ p∩ q. Using solvability it can be shown some such
s exists. Now let p′ = p, q′ = (q ∪ s) − p, and r = p ∪ q′ = p t q′. The proof of
the uniqueness result is straightforward and omitted.

Note, though, that solvability isn’t necessary for unique probabilistic rep-
resentation. This is a good thing, since the axiom is very restrictive – in the
context of the other axioms, it requires every atom ofA that’s non-minimal in≿
to be equiprobable with every other such atom. In other words, it forces all non-
minimal atoms into a single ∼-equivalence class (Suppes 1969, 6–7). A more
general condition that also suffices for unique probabilistic representability can
be formulated in terms of scalability.

Definition 13. Suppose r1, . . . , rn is any sequence of pairwise disjoint and
equiprobable propositions where (r1 t . . . t rn) ∼ q. Then,

1. If p ∼ ri, for i = 1, . . . ,n, then p is directly scaled by q
2. If p is directly scaled by q, then p is scaled by q
3. If p is scaled by q, and q is scaled by r, then p is scaled by r

In other words, the scaling relation is the ancestral of the direct scaling relation.
The more general axiom can now be stated with ease:

• For any non-minimal atom a ∈ A, a is scaled by Ω. (scalability)

The difference between solvability and scalability is represented in Figure 4.
We assume in each case that 〈A,≿〉 is a finite system of qualitative probability,
with the ≿-ordering over the atoms ofA represented by the relative size of the

Figure 4 Solvability (a) versus scalability (b)
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corresponding areas inside the box. On the left, case (a), solvability is satisfied,
and hence also scalability. There are four equiprobable non-minimal atoms, a1
to a4, all directly scaled by Ω. Since µ(Ω) = 1, each atom must be assigned 1

4
by any probability measure µ. Case (b) violates solvability, since

(a1 ∪ a2 ∪ a3) ≿ (a3 ∪ a4),

but there’s no p such that

(a1 ∪ a2 ∪ a3) ∼ (a3 ∪ a4 ∪ p).

However, case (b) still satisfies scalability, and has a unique probabilistic rep-
resentation. There are four atoms. The largest, a1, is directly scaled byΩ, since
a1 and (a2 ∪ a3 ∪ a4) are disjoint, equiprobable, and their union is identical to
and thus equiprobable with Ω. So µ(a1) = 1

2 . The second largest atom a2 is
then directly scaled by a1:

1
2
· 1
2
=

1
4
.

Finally, a3 and a4 are both directly scaled by a2 and thus assigned

1
4
· 1
2
=

1
8
.

As with solvability, scalability isn’t necessary for unique probabilistic rep-
resentability either. It turns out that necessary and sufficient conditions for
unique probabilistic representations here are not easy to express (for reasons
explained in Narens 1980), and we’ll need to wait until we’ve introduced
extended indicator functions in Section 5.2.

4.2 The Problem of Logical Omniscience
Aprobability measure on an algebra of setsA will always represent a compara-
tive confidence ordering that extends the superset relation over the propositions
in A, in the sense that p ⊇ q implies p ≿ q. Given Assumption 1, Ω includes
only logically possible worlds. The combination of these facts presents a prob-
lem, since if Ω is restricted to possible worlds then p ⊆ q if and only if p
implies q. In other words, in the presence of Assumption 1, a probability
measure can represent only logically omniscient agents – agents whose com-
parative confidence orderings invariably respect the logical relations between
propositions.
Given the desiderata discussed in Section 3.4, it’s therefore worth consider-

ing whether and how the standard epistemic approach might be generalised –
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42 Decision Theory and Philosophy

or better, de-idealised – so as to apply also to agents who aren’t logically ideal.
The generalisation I have in mind involves a tweak to how we understand the
‘concatenation’ operation. Basically, what we need to do is replace t with a
strictly more general operation that still allows for the same kind of additivity
results that make the standard probabilistic approach interesting, while not also
forcing logical omniscience.
Let me start by noting two important constraints. First, the concatenation

operation ought to be natural. As explained in Section 2.4, without natural-
ness in the choice of qualitative primitives, the very idea of measurement is
trivialised. Second, to avoid disjunctiveness (Desideratum 4), we are looking
for a generalisation of the standard epistemic approach – specifically in the
sense that we want a qualitative system 〈A,≿,R〉 that can be represented in
〈R≥0,≥,+〉, which includes qualitative probability structures as a special case,
but which also allows for the non-probabilistic representation of structures that
are not probabilistically representable. So we need a natural relation R that’s an
extension of t in those cases (or at least some of those cases) where 〈A,≿;t〉
does admit probabilistic representation.
These are not trivial constraints. It’s not easy to find a natural relation that has

the aforementioned properties, and which doesn’t lead us right back in to the
problem of logical omniscience. To appreciate the difficulty here, consider what
happens when R = t\∼. In this case, R is guaranteed to be an extension of t, as
desired. However, mappingt\∼ into + leads inevitably to logical omniscience.
Since p and∅ are always disjoint, pt∅ is always defined; moreover,∅will be
the identity element with respect tot (i.e., for all p, pt∅ = p). Consequently, if
φ is any additive measure of 〈A,≿,t\∼〉, then pt∅ = p implies φ(p)+φ(∅) =
φ(p) implies φ(∅) = 0. In other words, the identity element of t will need to
be mapped to the identity element of +, which is zero. Furthermore, for any
p,q ∈ A, if q ⊆ p then there will exist some r ∈ A such that q t r = p, hence
φ(q) + φ(r) = φ(p) and so φ(p) ≥ φ(q) and so p ≿ q. The result: p ⊇ q implies
p ≿ q; logical omniscience.
If we’re to avoid logical omniscience, then t cannot be what ‘plays the con-

catenation role’. We do better if we consider instead the union of subjectively
incompatible propositions. Henceforth, let ] designate this operation, defined
relative to ≿ as the restriction of ∪ to those pairs of propositions p,q such that
p ∩ q is minimal in ≿. Intuitively, p and q are subjectively incompatible when-
ever the subject has at least as much confidence in any proposition whatsoever
as they do in the conjunction of p and q. Then, ] is an extension of t when-
ever 〈A,≿;t〉 can be represented probabilistically, as required. In other cases,
though, pt q = r needn’t imply p] q = r. Hence, it’s possible to have an addi-
tivemapping from 〈A,≿,]\∼〉 into 〈R≥0,≥,+〉 that needn’t satisfyt-additivity
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in all cases, but which is also guaranteed to satisfy t-additivity in those cases
where a probabilistic representation of 〈A,≿,]\∼〉 exists.15
I’ll start with a simple example, chosen to demonstrate that none of ∅-

minimality, non-triviality, or Scott’s axiom are required for the desired homo-
morphisms to exist. (As such, this is intended to be an extreme example, not
a realistic one.) We suppose that A contains exactly four atoms, a1 through
a4. We then label the non-atomic propositions via the indices of the atomic
propositions from which they’re constructed; so, for instance,

p〈234〉 = a2 ∪ a3 ∪ a4.

Given that, consider the following non-omniscient confidence ranking:

[
Ω

∅

]
�



a1
a2
a4

p〈134〉
p〈234〉


�



p〈12〉
p〈14〉
p〈24〉
p〈34〉
p〈123〉


�


p〈13〉
p〈23〉
p〈124〉

 � a3.

We want to show there’s at least one φ : A 7→ R≥0 such that for all p,q ∈ A,

i. p ≿ q if and only if φ(p) ≥ φ(q), and
ii. (p,q, r) ∈ ]\∼ if and only if φ(p) + φ(q) = φ(r).

It’s clear the following assignment would satisfy property i:

φ(Ω) = 1, φ(a1) =
3
4
, φ(p〈12〉) =

1
2
, φ(p〈13〉) =

1
4
, φ(a3) = 0.

So we just need to show that this assignment also satisfies property ii. To that
end, note that p and q are subjectively incompatible only if they both include
the minimal proposition a3; for all the other propositions, it matters not where
they sit in the ≿ ordering (so long as they don’t sit at the bottom). Hence, we
need only consider the ordering of the concatenable propositions:

Ω �
[
p〈134〉
p〈234〉

]
�

[
p〈34〉
p〈123〉

]
�

[
p〈13〉
p〈23〉

]
� a3.

It’s then easy to check that φ(p]q) = φ(p)+φ(q); and whenever φ(p)+φ(q) =
φ(r), then (p,q, r) ∈ ]\∼. Thus, it’s possible to have a weakly additive (but
not t-additive) measure of 〈A,≿;]〉. More generally, it’s possible to have a

15 Every homomorphic mapping from 〈A,≿, ]\∼〉 into 〈R≥0, ≥, +〉 is a weakly additive meas-
ure of 〈A,≿;]〉. For the reasons discussed earlier, strongly additive measures of 〈A,≿;]〉
will often be impossible inasmuch as ≿ needn’t be antisymmetric.
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(strong) homomorphism from 〈A,≿,]\∼〉 into 〈R≥0,≥,+〉, even while ≿ is
not logically omniscient.
The construction makes use of the same general notion of scaling from the

previous section, though this time understood in terms of pairwise subject-
ively incompatible propositions rather than pairwise disjoint propositions. For
example, p〈34〉 and p〈123〉 are equiprobable and subjectively incompatible, and
their union is Ω; hence, they’re directly scaled by Ω:

φ(p〈34〉) = φ(p〈123〉) =
1
2
φ(Ω).

Then, p〈13〉 and p〈23〉 are equiprobable and subjectively incompatible, and their
union is p〈123〉; hence, they’re scaled by p〈123〉 and derivatively scaled by Ω:

φ(p〈13〉) = φ(p〈123〉) =
1
4
φ(Ω).

The value for p〈134〉 can then be determined by summing the values for the
subjectively incompatible propositions p〈13〉 and p〈34〉; that is,

1
4
φ(Ω) + 1

2
φ(Ω) = 3

4
φ(Ω).

Similar applies to p〈234〉 . And, finally, the value for every other proposition is
determined via equiprobability with some proposition whose value has already
been fixed via scaling relative to Ω. So what makes the avoidance of logical
omniscience possible here is that subjective incompatability needn’t coincide
with logical incompatibility. Theywill coincide whenever 〈A,≿;t〉 can be rep-
resented probabilistically, but not always. Thus we can generalise the case of
probabilistic representations by swapping out t as the concatenation operation
for the more general ] operation.
Sufficient conditions for the existence of such representations are established

in the following definition and associated theorem. There are three structural
conditions – finitude, richness, and weak solvability – all of which are satisfied
in the foregoing example.

Definition 14. Let A be an algebra of propositions on Ω, and ≿ a binary rela-
tion on A. Then 〈A,≿〉 is a finite system of additive confidence if and only if
A is finite and for all p,q, r, s ∈ A,

1. ≿ is a weak order (weak order)
2. If p ] q is defined, p ≿ r and q ≿ s, then there are r′ and s′ such that r′ ] s′

is defined, r ∼ r′, and s ∼ s′ (richness)
3. If p � q, then there are q′ and r such that q′ ] r is defined, q′ ∼ q and

p ≿ q′ ∪ r (weak solvability)
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4. If p] r and q] r are defined and p ≿ q, then p∪ r ≿ q∪ r (]-monotonicity)
5. If p ] q is defined, then p ∪ q ≿ p, with p ≿ p ∪ q only if q is minimal

(]-positivity)

Theorem 15 If 〈A,≿〉 is a finite system of additive confidence, then there exists
a homomorphism from 〈A,≿,]\∼〉 into 〈R≥0,≥,+〉; furthermore, the set of all
such homomorphisms is unique up to positive similarity transformations.

Proof. The finer details of the proof are not especially illuminating, so I provide
a summary. The strategy is to reconstruct 〈A,≿,]\∼〉 as a system for which
strongly additive measures are known to exist. First we let A = {p,q, . . .} be
the set of ∼-equivalence classes in A, with the minimal elements excised; that
is, p = {q ∈ A | q ∼ p}, with p ∈ A only if p � ∅. We then let ≿ be the total
order induced on A by ≿; that is, p≿q whenever p ≿ q. C is to be interpreted
as the set of concatenable pairs in A, so (p,q) ∈ C just when p′ ] q′ is defined
for some p′ ∈ p and q′ ∈ q, or (same thing) when (p,q, r) ∈ ]\∼ for some r.
Finally, ◦ is an operation on A such that p ◦ q = r if and only if (p,q, r) ∈ ]\∼,
and so a function fromC intoA.We thenwant to show that 〈A,≿,C; ◦〉 satisfies:

A. ≿ is a total order.
B. If (p,q) ∈ C, p≿r, and q≿s, then (r, s) ∈ C.
C. If (r,p) ∈ C, then if p≿q, r ◦ p≿r ◦ q.
D. If (p,r) ∈ C, then if p≿q, p ◦ r≿q ◦ r.
E. (p,q), (p ◦ q,r) ∈ C if and only if (q,r), (p,q ◦ r) ∈ C, and when both hold

then (p ◦ q) ◦ r = p ◦ (q ◦ r)
F. If (p,q) ∈ C, then p ◦ q�p.
G. If p�q, then there exists an r ∈ A such that (q,r) ∈ C and p≿q ◦ r.

Condition A follows from weak order, and B from richness. Given B, condi-
tions C and D follow from ]-monotonicity and the commutativity of ∩ and ∪.
The first conjunct of E falls out of how ◦ has been defined, and the second
conjunct follows from the associativity of ∩ and ∪. Condition F is fixed by
]-positivity, and G by weak solvability. From these seven conditions plus fini-
tude, it follows that the system 〈A,≿,C; ◦〉 is a Archimedean, regular, positive,
ordered local semigroup (Krantz et al. 1971, 44–5). This suffices for the exist-
ence of a homomorphism ψ from 〈A,≿; ◦〉 into 〈R>0,≥;+〉, and the set of such
homomorphisms is unique up to positive similarity transformations. (This is a
corollary of Krantz et al. 1971, 44–6, theorem 4 and theorem 4′.) We then let
φ be defined on A such that φ(p) = ψ(p) for all non-minimal p, and φ(p) = 0
otherwise, which gives us a homomorphism from 〈A,≿,]\∼〉 into 〈R≥0,≥,+〉,
and inherits the uniqueness properties mentioned earlier.
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If 〈A,≿;t〉 is a finite system of qualitative probability that also satis-
fies solvability, then it will be a finite system of additive confidence. In that
case, the unique representation φ of 〈A,≿,]\∼〉 in 〈R≥0,≥,+〉 that satis-
fies normalisation just is the unique probability representation of 〈A,≿;t〉.
From the perspective of the desiderata in Section 3.4, these are all good
things.
However, it’s not all happy news. While Theorem 15 offers a step forward in

dealing with logical omniscience, it’s no great leap. We’ve managed to avoid
the strictest form of logical omniscience – that is, where p ⊇ q always implies
p ≿ q – but the additive representation of 〈A,≿,]\∼〉 is perhaps not as flexible
as one might like. For one thing, note that Ω will always be maximal in ≿.
To see why, suppose it isn’t. A proposition p is concatenable just in case it’s
a superset of q for some q that’s minimal in ≿. The concatenable propositions
are those that can stand in relations of subjective incompatibility, and in a finite
system of additive confidence, every proposition must be equiprobable with a
concatenable proposition. So, if Ω isn’t maximal in ≿, then at least one other
concatenable proposition must be. Let pmax be that proposition, or one of them,
and let pmin be any minimal proposition that implies pmax. Now suppose q is
(Ω \ pmax) ∪ pmin. So q and pmax are subjectively incompatible, and we should
have φ(p) + φ(q) = φ(p ∪ q); but p ∪ q = Ω, so φ(Ω) ≥ φ(p), contradicting the
hypothesis that pmax � Ω.
More generally, in any finite system of additive confidence, q ⊆ p will

always entail p ≿ q with respect to pairs of concatenable propositions p and
q. So while we’ve shown that it’s possible to maintain the analogy with the
measurement of length while avoiding logical omniscience, the results here
are still quite limited. What we really have in the end is not non-omniscience
but a restricted form of omniscience. Moreover, this means that any time
∅ is minimal, then the stricter form of logical omniscience follows imme-
diately – since in that case every proposition in the algebra is automatically
concatenable.
Other generalisations of the standard epistemic approach might be possible,

though the relevant work has yet to be done. The difficulty, as I said, is locat-
ing an appropriately natural operation to ‘play the concatenation role’, which
generalises the probabilistic case but doesn’t force logical omniscience (or
something near as bad). Not an easy thing to find, when the most natural oper-
ations in the vicinity seem to be set-theoretic relations between contents that,
given Assumption 1, correspond directly to their logical relationships. Maybe
that’s a good reason to revisit Assumption 1. But if it is, then it’s also a good
reason to consider alternative measurement structures that don’t rely so much
on set-theoretic relations between belief contents.
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5 Epistemic Approaches: Alternatives
Epistemic approaches to the measurement of belief aren’t limited to those
involving a single binary confidence relation. In this section, I briefly look at
several other epistemic approaches. The first involves quarternary (or condi-
tional) confidence relations (Section 5.2); then qualitative expectation relations
(Section 5.1); then structures involving multiple primitive doxastic relations
(Section 5.3).

5.1 Conditional Confidence
A theory of belief measurement that makes use of a binary confidence relation
will be well-suited for representations that assign a single numerical value to
each proposition, where this is intended to represent the agent’s unconditional
confidence regarding that proposition. However, it’s sometimes thought that
the more fundamental concept in epistemology is not unconditional confidence
but rather conditional confidence – the level of confidence one has in p given
some hypothesis q (e.g., Hájek 2003). A common motivation for this thought is
that, while it’s standard to define conditional probabilities out of unconditional
probabilities like so,

µ(p|q) = µ(p ∩ q)
µ(q) ,

that definition only makes sense when µ(q) > 0; yet there appear to be cases
where it makes sense to speak of the probability of p conditional on q even
while the unconditional probability of q is zero.
There is an epistemic approach to the measurement of belief that fits nicely

with this perspective. It involves replacing the binary confidence relation of
the standard epistemic approach with a quarternary relation – or, same thing, a
binary relation ≿ on A×A, interpreted

(p,q) ≿ (r, s) if and only if α is at least as confident in p given q as she is in r
given s.

To make things a little easier, let’s write p|q ≿ r|s instead. The goal, then, is to
lay down axioms on this quarternary ≿ that will suffice for the ‘probabilistic’
representation thereof. Much of the work done on this matter is owing to Koop-
man – see especially his (1940a) and (1940b); see also (Luce 1968). For this
section, however, I will briefly summarise a more recent (but closely related)
result in Hawthorne (2016).16

16 Hawthorne interprets ≿ as a relation of comparative evidential support between premises
and conclusions. As he notes, though, the formalism can be interpreted in many ways.
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Since we are treating conditional probabilities as basic, the numerical rep-
resentation cannot consist in probability measures strictly so-called (i.e., as
per Definition 8). Instead, we employ Popper functions, which generalise the
classic definition of a probability measure:

Definition 16. π : A×A 7→ R is a Popper function if and only if

1. For some p,q, r, s ∈ A, π(p|q) , π(r|s)
2. For all p,q, r ∈ A, π(p|p) ≥ π(q|r)
3. If q ⊆ p, then π(p|r) ≥ π(q|r)
4. π(p|q) + π(¬p|q) = π(q|q) unless π(r|q) = π(q|q) for all r ∈ A
5. π(p ∩ q|r) = π(p|q ∩ r) × π(q|r)

Relative to a fixed condition, a Popper function behaves essentially like a
probability measure. For instance, fixing the condition to Ω, the definition
implies:

• π(p|Ω) ∈ [0,1],
• π(Ω|Ω) = 1, and
• if p ∩ q = ∅, then π(p ∪ q|Ω) = π(p|Ω) + π(q|Ω).

Moreover, if µ is the probability measure corresponding to π(·|Ω), then for any
p such that π(p|Ω) > 0, π(q|p) will behave just like µ(q|p). The difference,
though, is that π(q|p) can still be defined even when π(p|Ω) = 0. In this case,
π(·|p) also behaves just like a probability measure µ′, different from µ, in the
same way that π(·|Ω) behaves like µ. And likewise, there may be some r such
that π(r|p) = 0, and π(·|r) might behave in turn like yet another probability
measure different again from µ′ and µ. Thus the Popper function π can act like
an ordered hierarchy of probability measures. As Hawthorne helpfully puts it,

a Popper function may consist of a ranked hierarchy of classical probabil-
ity functions, where conditionalization on a probability 0 sentence induces a
transition from one classical probability function to another classical func-
tion at a lower rank. The idea is that probability 0 need not mean ‘absolutely
impossible’. Rather, it means something like, ‘not a viable possibility unless
(and until) the more plausible alternatives are refuted.’ (2016, 281)

See also van Fraassen (1976), Spohn (1986), Halpern (2001), and Brickhill and
Horsten (2018) for detailed discussion on the close relationship between Popper
functions, lexicographic probability measures (lexically ordered sequences of

See DiBella (2018) for a quarternary ≿ explicitly interpreted as comparative conditional
confidence.
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probabilities), and non-Archimedean probability measures (probabilities that
can take infinitesimal numerical values).
As one might naturally expect, the additional complexity of the numerical

representation – with Definition 16 including both an additive component in
condition 4, and a multiplicative component in condition 5 – corresponds to
significant increased complexity in the required axioms on ≿:

Definition 17. Let A be an algebra of propositions on Ω, and ≿ a binary rela-
tion on A×A. We say that 〈A×A,≿〉 is a system of qualitative conditional
probability if and only if the following are satisfied:

1. ≿ is a weak order (weak order)
2. For some p,q, r, s ∈ A, p|q � r|s (non-triviality)
3. For all p,q ∈ A, p|p ≿ q|p (maximality)
4. For all p,q, r ∈ A, if p ⊆ q, then q|r ≿ p|r (implication)
5. For all p,q, r, s ∈ A, if p|q ≿ r|s and q , ∅, then ¬r|s ≿ ¬p|q

(negation-symmetry)
6. For all p1,q1, r1,p2,q2, r2 ∈ A, if

i) p1 |(q1 ∩ r1) ≿ p2 |(q2 ∩ r2) and q1 |r1 ≿ q2 |r2, or
ii) p1 |(q1 ∩ r1) ≿ q2 |r2 and q1 |r1 ≿ p2 |(q2 ∩ r2),

then (p1 ∩ q1)|r1 ≿ (p2 ∩ q2)|r2 (composition)
7. For all p1,q1, r1,p2,q2, r2 ∈ A, if (p1 ∩ q1)|r1 ≿ (p2 ∩ q2)|r2 and r2 ⊈ ¬q2,

and
i) if q2 |r2 ≿ q1 |r1, then p1 |(q1 ∩ r1) ≿ p2 |(q2 ∩ r2)
ii) if q2 |r2 ≿ p1 |(q1 ∩ r1), then q1 |r1 ≿ p2 |(q2 ∩ r2) (decomposition-a)

8. For all p1,q1, r1,p2,q2, r2 ∈ A, if (p1 ∩ q1)|r1 ≿ (p2 ∩ q2)|r2 and (q2 ∩ r2) ⊈
¬p2, then

i) if p2 |(q2 ∩ r2) ≿ p1 |(q1 ∩ r1), then q1 |r1 ≿ q2 |r2
ii) if p2 |(q2 ∩ r2) ≿ q1 |r1, then p1 |(q1 ∩ r1) ≿ q2 |r2 (decomposition-b)

9. For all p,q, r, s ∈A, if p|q� r|s, then for some n ≥ 2 there exist t1, . . . , tn,
u ∈ A such that

i) u|u � ¬t1 |u,
ii) for distinct i, j = 1, . . . ,n, ti |u ∼ tj |u and ¬(ti ∩ tj)|u ≿ u|u,
iii) (t1 ∪ . . . ∪ tn)|u ≿ u|u,
iv) for some m ≤ n, p|q � (t1 ∪ . . . ∪ tm)|u � r|s (Archimedean)

Theorem 18 Hawthorne (2016) If 〈A×A,≿〉 is a system of qualitative condi-
tional probability, there exists a homomorphism from 〈A×A,≿〉 into 〈R≥0,≥〉,
and exactly one such homomorphism is a Popper function.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
40

13
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009401319


50 Decision Theory and Philosophy

The non-triviality, maximality, and implication axioms directly correspond
to conditions 1, 2, and 3 of Definition 16. The negation-symmetry axiom is
the main axiom corresponding to the additivity condition 4, while the com-
position and decomposition axioms correspond to the multiplicative condition.
The Archimedean axiom says that whenever p|q � r|s, there is a finite number
of mutually exclusive and equiprobable propositions such that the conditional
probability of their union (relative to some condition) is strictly between that
of p|q and r|s. In terms of the representation: if p|q � r|s, then the difference
between π(p|q) and π(r|s) is not infinitesimal, ensuring ≿ can be represented
in R.

5.2 Qualitative Expectations
A rather different epistemic approach – originating with Suppes and Zanotti
(1976), see also Clark (2000) and Suppes and Pederson (2016) – takes the
primitive ordering relation ≿ to be defined not over an algebra of propositions,
but instead over an algebra of extended indicator functions.
Extended indicator functions are a generalisation of indicator functions. In

the broadest terms, an extended indicator function is a certain kind of random
variable – an integer-valued function f defined onΩ such that for some positive
integer n, propositions p1, . . . ,pn, and non-negative integers k1, . . . ,kn,

f(ω) =
n∑
j=1

kj · pij(ω).

But that’s unlikely to be intuitive, so it’ll help to consider how extended indica-
tor functions can be built up via the pointwise summation of ordinary indicator
functions. Start with the indicator function of p, or pi, which in Section 4 was
defined as the function that takes each world ω in Ω and returns the value 1 if
ω belongs to p, and 0 otherwise. Now consider its nth iteration, npi, defined:

npi(ω) =

n times︷                  ︸︸                  ︷
pi(ω) + · · · + pi(ω) =

n if ω ∈ p

0 otherwise

For any integer n ≥ 1, the nth iteration of any indicator function will count
as an extended indicator function. Clearly, where n = 1, then 1pi = pi; and
where n > 1, then npi can be expressed as the pointwise sum of mpi and kpi

(or mpi∔ kpi) for m + k = n. More generally, the pointwise sum of any two
extended indicator functions will also count as an extended indicator function.
So, for example, npi∔mqi is an extended indicator function:
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npi(ω)∔mqi(ω) = npi(ω) + mqi(ω) =


n + m if ω ∈ p and ω ∈ q

n if ω ∈ p and ω < q

m if ω < p and ω ∈ q

0 otherwise

In the same fashion, (npi∔mqi)∔ kri is an extended indicator function, and so
on. Hence we can construct a space of extended indicator functions by starting
with a set of propositions, taking the set of indicator functions corresponding
to those propositions, and closing it under pointwise summation:

Definition 19. Ai is the algebra of extended indicator functions generated by
A iff

1. For all p ∈ A, pi ∈ Ai

2. If f,g ∈ Ai, then f∔ g ∈ Ai

3. Nothing else is inAi

This algebra of extended indicator functions will comprise the domain of the
primitive binary relation≿ – a so-called qualitative expectations relation – with
the goal being to represent ≿ via an expectation function:

Definition 20. Where Ai is the algebra of extended indicator functions gen-
erated by A, a function ϵ : Ai 7→ R≥0 is an expectation function if and only if
for all x,y ∈ Ai,

1. ϵ(Ωi) > ϵ(∅∅i) = 0
2. ϵ(x∔ y) = ϵ(x) + ϵ(y)

So we’re mapping∔ into +, in other words. Sufficient conditions for the exist-
ence of such representations are provided by the following theorem. Given
the additive structure of the representation, these axioms should come as no
surprise:

Definition 21. Let A be an algebra of propositions on Ω, and ≿ a binary rela-
tion on the algebra Ai of extended indicator functions generated by A. Then
〈Ai,≿〉 is a system of qualitative expectations if and only if it satisfies the
following, for all x,y, z ∈ Ai,

1. ≿ is a weak order (weak order)
2. x ≿ ∅∅i (∅∅i-minimality)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
40

13
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009401319


52 Decision Theory and Philosophy

3. Ωi � ∅∅i (non-triviality)
4. x ≿ y if and only if x∔ z ≿ y∔ z (∔-monotonicity)
5. If x � y, then there are k,n ≥ 1 with nx � kΩi � ny (Archimedean)

Theorem 22 Suppes (2016) If 〈Ai,≿〉 is a system of qualitative expectations,
then there is an expectation function that maps 〈Ai,≿〉 into 〈R≥0,≥〉; fur-
thermore, the set of homomorphisms from 〈Ai,≿〉 into 〈R≥0,≥〉 that are also
expectation functions is unique up to positive similarity transformations.

Note that any expectation function which maps 〈Ai,≿〉 into 〈R≥0,≥〉 is ipso
facto a weakly additive representation of 〈Ai,≿;∔〉 in 〈R≥0,≥;+〉, and vice
versa. Indeed, similar to the reformulation Theorem 10 as Theorem 10′ earlier,
it would be straightforward to re-write Theorem 22 so as to make the connec-
tion with extensive measurement more transparent. Essentially: if 〈Ai,≿;∔〉
satisfies the stated axioms, then there is a weak homomorphism, unique up to
a positive similarity transformation, from 〈Ai,≿;∔〉 into 〈R≥0,≥;+〉.
There is a direct connection between expectation representations of qualita-

tive expectation relations and the probabilistic representation of comparative
confidence relations. Note that any expectation function ϵ is related by a posi-
tive similarity transformation to exactly one normalised expectation function
ϵ ′, with ϵ ′(Ωi) = 1. This ϵ ′ describes a probability measure µ if, for all p ∈ A,
we let µ(p) = ϵ ′(pi). In other words, the weakly additivemeasures of 〈Ai,≿;∔〉
correspond to a unique probability measure on A. Indeed, Suppes and Zan-
otti (1976, 435–7) were able to establish that 〈A,≿〉 has a unique probabilistic
representation if and only if there exists a system of qualitative expectations
〈Ai,≿〉 such that ≿ on A is the weak order induced by ≿ on Ai, defined like
so:

p ≿ q iff pi ≿ qi

So, a (complete) binary confidence relation is uniquely probabilistically rep-
resentable just when it can be extended to a qualitative expectations relation
which satisfies Suppes and Zanotti’s five axioms.
So much for the formalities, now for the hard part: the interpretation of ≿

overAi isn’t entirely transparent, and I suspect this is main reason why there’s
been comparatively little work done on this approach. In the usual case, random
variables are functions from the outcomes of an experiment-type to numerical
values of those outcomes. For instance, if we say the experiment is tossing two
six-sided die, there are 36 possible outcomes corresponding to the different
combinations, and 11 possible numerical values from 2 to 12 they might sum
to. Letting r be the corresponding random variable, the expected value ϵ of r is
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the probability-weighted average value of the outcomes (under the supposition
the experiment is run), and the sum of the expected value of rwith itself n times
can be interpreted as the expected total value of n independent runs of the same
experiment under the same conditions. If the die are fair, then ϵ(r) = 7, and

ϵ(r∔r) = ϵ(r) + ϵ(r) = 14.

For this to make sense, though, it should be possible for those 36 outcomes to
recur across independent instances of the same experiment. It is much less clear
how tomake sense of the iterated variables where the ‘outcomes’ aremaximally
specific possible worlds and the ‘experiment’, as such, can only be run once.
Suppose p is the proposition there are dogs, and q the proposition most roses
are red. Presumably we should be able to find both propositions in A, given
the intended interpretation of that set. Each corresponds to a random variable
over Ω, namely pi and qi, and there’s no difficulty in interpreting pi ≿ qi as an
expectation relation in this case. But the interpretations of 3pi and 5qi are not
similarly transparent, and still less the interpretation of 3pi∔5qi.
In connection to this, it’s noteworthy that Suppes (2014, 53) later flagged

interpretive difficulties as a distinctive cost for the approach, particularly vis-
à-vis the mixed indicator functions pij ∔ qij. Suppes and Zanotti (1982) explain
one possible way to interpret their mixed non-iterated functions pi∔qi thus:

Suppose Smith is considering two locations to fly to for a weekend vacation.
Let pj be the event of sunny weather at location j and qj be the event of warm
weather at location j. The qualitative comparison Smith is interested in is the
expected value of pi1 ∔ qi1 versus the expected value of p

i
2 ∔ qi2. It’s natural

to insist that the utility of the outcomes has been too simplified by the sums
pij ∔ qij. The proper response is that the expected values of the two functions
are being compared as a matter of belief, not value or utility. Thus it would
seem quite natural to bet that the expected value of pi1 ∔ qi1 will be greater
than that of pi2 ∔ qi2, no matter how one feels about the relative desirability
of sunny versus warm weather. (p. 433)

And in regards to the non-mixed iterated indicator functions, npi where n > 1,
Suppes (2014) offers the following interpretation:

From an intuitive estimation or gambling standpoint, it’s much easier to
reflect on the subjective probability of npi than of npi∔mqi. For example,
if pi(ω) = 1 means ‘heads’ in a toss of a coin with unknown bias, then 5pi is
just the estimate of 5 such tosses being ‘heads’. (p. 53)

The ‘heads’ example is selectively chosen. Supposing Ω is a set of possible
worlds, pi(ω) = 1 in general means that the proposition p is true at the world
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ω. It is not clear to me how something along the lines of Suppes’ suggested
reading will make intuitive sense when p is there are dogs or most roses are
red.

5.3 Multiprimitive Structures
Suppose we identify an agent’s unconditional probabilities with their probabil-
ities conditional on the necessary proposition Ω. Given that, we can usefully
see the two epistemic accounts just discussed as alternative ways of enriching
the relatively simple systems of unconditional comparative confidence 〈A,≿〉
that were characterised by Definition 9. The account in Section 5.1 extends the
domain of the confidence relation toA×A, such that the agent’s unconditional
confidence ordering falls out as a special case. The qualitative expectations
account in Section 5.2 instead extends the domain from A to Ai, again with
the unconditional confidence ordering being a special part of the richer rela-
tion. The following alternative also enriches the simple 〈A,≿〉 systems, though
in a different way again: by adding more psychological primitives to the
system.
Of course, there is an absurd variety of ways this might go, depending on

what primitives we choose to add and the structures we take them to have. One
might conceivably add a primitive unary property corresponding to certainty,
for example. Definitions of ‘certainty’ in terms of comparative confidence
will usually equate it with maximal confidence, but one might imagine that
being certain that p can sometimes come apart from being at least as confident
that p as any other proposition – and so an independent primitive for qualita-
tive certainty would be useful. Similarly, if one supposes that all-or-nothing
belief is related but not reducible to comparative confidence, and therefore
seeks to represent all-or-nothing beliefs alongside degrees of belief within a
single numerical framework, then one might try adding a primitive all-or-
nothing believes relation by which to do so. There’s all sorts of things onemight
conceivably do.
Probably the most commonly suggested additional primitive, however, is an

independence relation (e.g., Domotor 1970; Fine 1973; Kaplan & Fine 1977;
Luce 1978; Luce & Narens 1978; Joyce 2010). Per usual, we say p and q are
independent relative to a probability measure µ whenever

µ(p ∩ q) = µ(p) · µ(q).

In cases where a comparative confidence relation can be represented by more
than one probability measure, which propositions will count as probabilis-
tically independent of one another can sometimes vary depending on which
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measures are chosen. An example: supposeA contains four atoms, a1–a4, and
the probability measures µ and µ′ are defined like so:

µ(a1) = 0.02, µ(a2) = 0.08, µ(a3) = 0.18, µ(a4) = 0.72

µ′(a1) = 0.03, µ′(a2) = 0.08, µ′(a3) = 0.18, µ′(a4) = 0.71

The resulting measures correspond to the same overall confidence ordering, as
represented in the following table:

µ µ′ µ µ′

Ω 1 1 p〈123〉 0.28 0.29
p〈234〉 0.98 0.97 p〈23〉 0.26 0.26
p〈134〉 0.92 0.92 p〈13〉 0.20 0.21
p〈34〉 0.90 0.89 a3 0.18 0.18
p〈124〉 0.82 0.82 p〈12〉 0.10 0.11
p〈24〉 0.80 0.79 a2 0.08 0.08
p〈14〉 0.74 0.74 a1 0.02 0.03
a4 0.72 0.71 ∅ 0 0

Observe that p〈24〉 and p〈34〉 are independent relative to µ, not relative to µ′:

µ(a4) = µ(p〈24〉) · µ(p〈34〉), µ′(a4) , µ′(p〈24〉) · µ′(p〈34〉)

So probabilistic independence is not, in general, meaningful relative to the
probabilistic measurement of comparative confidence.
Since independence is one of the more central concepts in probability theory,

and does important theoretical work, we should want to rectify this situation.
One might suppose we can simply solve the problem by imposing further
axioms on ≿, thus ensuring a unique probabilistic representation. But this
response is inadequate. For one thing, it doesn’t solve the problem. Even sup-
posing that 〈A,≿;t〉 has a unique probabilistic representation in 〈R,≥;+〉,
there will still be many non-probabilistic representations of that system in
〈R,≥;+〉 whereby φ(Ω) needn’t equal 1 – so independence will not be mean-
ingful relative to the natural class of additive homomorphisms into 〈R,≥;+〉.17
Moreover, there will still be ordinally equivalent probability measures that

17 See Luce et al. (1990, 277–8) for useful discussion on this point. As they note, one shouldn’t
infer meaningfulness from an arbitrary restriction on the additive homomorphisms (e.g., to the
special case where φ(Ω) = 1). If that sort of thing were admissible, we could quickly trivialise
the notion of meaningfulness for any measure that’s 1-point unique.
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plausibly represent distinct systems of belief – as evidenced by their differ-
entiable roles in epistemology and decision theory – and we should like to be
able to account for them too.
The better response is to find a system of primitives that will guarantee

meaningfulness for independence. Most obviously, we can include a primi-
tive qualitative independence relation alongside comparative confidence. Let
⊥ designate a binary relation on A. The goal is then to supply conditions on
an enriched system 〈A,≿,⊥〉 sufficient for the existence of a measure φ such
that

i. p ≿ q if and only if φ(p) ≥ φ(q)
ii. If p ∩ q = ∅, then φ(p ∪ q) = φ(p) + φ(q)
iii. p⊥ q if and only if φ(p ∩ q) = φ(p) · φ(q)

IfA is finite, then such a measure will exist only if ≿ satisfies the axioms from
Definition 9. Necessary axioms for ⊥ on this interpretation are provided by
Suppes (2014); each directly corresponds to basic properties of probabilistic
independence:

1. p⊥Ω
2. If p⊥ p, then p ∼ Ω or p ∼ ∅
3. If p⊥ q, then q⊥ p
4. If p⊥ q, then p⊥¬q
5. If q ∩ r = ∅, and p⊥ q, p⊥ r, then p⊥ q ∪ r

Including a primitive independence relation with these constraints into a sys-
tem of qualitative probability will in some cases be enough to let us meaning-
fully differentiate between ordinally equivalent probability measures. It does
for the preceding example, for instance, depending on whether p〈12〉 ⊥ p〈23〉
or not. But it’s not always enough. Consider again the case that was earlier
discussed in Section 3.4, where A = {Ω,p,¬p,∅} and

Ω � p � ¬p � ∅.

Suppose that the A and ≿ in 〈A,≿,⊥〉 have this structure. Then 〈A,≿,⊥〉 can
be represented by numerous measures satisfying properties i and ii, provided

φ(Ω) > φ(p) =
(
φ(Ω) − φ(¬p)

)
> φ(∅) = 0.

The addition of property iii forces those measures to satisfy normalisation, and
hence forces them all to be probability measures. However, it does nothing to
sort between the many ordinally equivalent probability measures that fit with
those comparative confidences.
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It is possible to add yet further primitives that will help to guarantee unique
probabilistic representability even where the conditions on ≿ and ⊥ alone are
not enough. Suppes (2014, 49–50) shows that if one adds a primitive entropic
uncertainty relation ≿u (defined over partitions of Ω) alongside appropriate
axioms relating ≿, ⊥, and ≿u, then one can guarantee a unique (absolute scale)
representation of the resulting system that also happens to be a probability
measure. No doubt there are many other primitives that one could try including
alongside ≿ and ⊥ that might work too. The matter has so far only undergone
the most cursory exploration.

6 Decision-Theoretic Approaches
A decision-theoretic representation is a kind of conjoint representation, typic-
ally of a single binary preference relation that decomposes into a representation
of beliefs and a representation of (basic) desires that pairwise determine those
preferences according to a pre-specified decision rule.
Decision-theoretic representations can differ along several dimensions,

depending on the primitives used to construct the qualitative system, the desired
constraints on the numerical representations of belief and desire, or the details
of the decision rule. By far the most well-known theorems in this space are
those for subjective expected utility theory; here we find the seminal works
of Ramsey (1931), Savage (1954), and Jeffrey (1965). But there are dozens
of variations on these theorems, and many more indeed for the huge num-
ber of non-expected utility theories that have been proposed as descriptive or
normative rivals to the orthodox expected utility theory.
I won’t attempt to cover all the variety in this section. Instead, I’ll start with a

brief overview of the main frameworks in which decision-theoretic representa-
tions tend to be constructed (Section 6.1), after which I’ll go into more detail on
(a version of) Ramsey’s theorem (Section 6.2). Then I discuss meaningfulness
in the conjoint measurement of belief and desire (Section 6.3), and finally rebut
some common objections and concerns about the decision-theoretic approach
(Section 6.4).

6.1 The Objects of Preference
Before we can build a conjoint representation of preferences as determined by
beliefs and desires, we require an appropriate means of formalising the objects
over which the preference relation is to be defined. These objects are variably
referred to as gambles, bets, prospects, options, acts, decisions, choices, and
more, depending on the intended interpretation of the theorem and the personal
inclinations of its authors. But, broadly speaking, there are three main ways
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to formalise the objects of preference. These can be roughly ordered by the
degree of internal structure they represent those objects as having – that is,
from those that posit very richly structured objects of preference to those that
define preferences over unstructured sets.
At the ‘richly structured’ end of the spectrum will be theorems that, like

Savage’s (1954), employ more or less arbitrary associations between states of
nature and consequences. In this context, preferences are usually understood as
a relation over actions the agent might perform, or perhaps intentions to per-
form those actions, with the idea being that actions can be represented by their
possible consequences relative to the states of the world under which the action
brings them about. Where S = {s1, s2, . . .} is a partition of Ω representing dif-
ferent states the world might be in, and C = {c1,c2, . . .} is a set of consequences
that some potential action could bring about depending on which state happens
to be true, we let each action be represented by a function from S to C. (So if f
is the function that pairs si with ci, then it represents the action such that were
it performed, then if s1 is the true state then c1 would result, and if s2 is the
true state then c2 would result, and so on.) The preference relation is defined
over a set of these functions, and a conjoint representation is constructed that
(typically, not always) decomposes into two measures – a function on the set of
consequences C (corresponding to the desirability of those consequences); and
a function on an algebra of propositions (usually called ‘events’) constructed
from the states in S (corresponding to the agent’s beliefs).
For example, suppose S is finite, and the set of events E = {e1,e2, . . .} is

the algebra of propositions with atoms given by S. Then, an ordinary expected
utility theorem provides axioms on a preference relation ≿ defined over the
space of actions CS sufficient for the existence of a probability measure β on
E (‘β’ for beliefs) and a real-valued function δ on C (‘δ’ for desires), such that
for any actions f and g,

f ≿ g if and only if
∑
s∈S

β(s)δ
(
f (s)

)
≥
∑
s∈S

β(s)δ
(
g(s)

)
.

Note that β and δ must here be defined on distinct sets – indeed, in Sav-
age’s original constructionS and C are disjoint. The reason is that a proposition
counts as an event just in case it’s logically equivalent to a disjunction of states;
hence any proposition that’s consistent with any state and its negation cannot
be an event. Given that, observe that consequences cannot in general be events,
if the functional representation of actions is to be coherent. We cannot say that
f is the action that brings consequence c1 at state s1, whereas g is the action
that brings some other consequence c2 at s1, if the state logically determines
that a particular consequence obtains. So consequences need to be logically
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independent of states. For a similar reason, states cannot in general determine
actions. Hence, the domain of the belief function cannot include propositions
that determine the actions under deliberation nor the consequences thereof.
For some this is seen as a good-making feature of Savage’s construction (e.g.,
Spohn 1977); for others, not so much (e.g., Hájek 2016; Elliott 2017a).
At the other end of the spectrum are theorems that, like Jeffrey’s (1965; 1978;

see also Bolker 1967 and Domotor 1978), define preferences over an algebra of
propositions (qua sets of worlds) that simultaneously serves as the domain of
both the belief and desire functions. For this reason they are sometimes called
‘monoset theorems’. Jeffrey’s theorem supplies axioms on a preference relation
≿ defined over an algebra of propositions A sufficient for the existence of a
probability measure β and a real-valued δ where p ≿ q if and only if δ(p) ≥
δ(q), and for p ∈ A, if {p1,p2, . . . ,pn} is any finite partition of p, then:

δ(p) =
n∑
i=1

β(pi | p)δ(pi)

It makes little sense to interpret the objects of Jeffrey’s preference relation as
actions. Some of the propositions inA may very well correspond to actions that
the agent may choose to perform – these Jeffrey (1968, 170) refers to as actual
propositions – but many more of the propositions over which ≿ is defined will
correspond to no plausible object of choice in any realistic decision context. So
≿ is much better seen in this case as a relative desirability relation:

To say that p is ranked higher than q [in the agent’s preference ordering]
means that the agent would welcome the news that p is true more than he
would the news that q is true: p would be better news than q. (Jeffrey 1990,
82)

Given this, the axioms of Jeffrey’s theorem constrain the agent’s relative
desirabilities for propositions in general, and decision-making is construed
as selecting between actual propositions on the basis of their desirabilities in
contexts where one is able to make one or another of them true.
The difference in how the objects of preference are represented is also

important from a measurement-theoretic perspective. For any numerical repre-
sentation of any weak order, if that representation is going to be more than just
an ordinal scale then one needs posit some additional structure when charac-
terising the qualitative system – else there will be nothing for the extra-ordinal
structure of the representation to be a representation of. In the Savage frame-
work, the additional structure can be found mostly in the objects of preference.
For example, Savage’s theorem requires:
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• If f (s) = c1 and g(s) = c2 for all s ∈ S, and f � g, then if f ′(s) = g′(s) for
all s ∈ X ⊂ S, and otherwise f ′(s) = f (s) and g′(s) = g(s), then f ′ � g′.

In other words, if two acts f ′ and g′ have identical consequences for a subset
of the states, and for all other states f ′ has better consequences, then f ′ should
be preferred to g′. In the Jeffrey framework, however, the relata of ≿ have no
internal structure; they are just sets of worlds. Hence, we need to appeal instead
to logical (or set-theoretic) relations between propositions to get an interesting
(more-than-merely-ordinal) representation. For example:

• If (p ∪ q) ∼ q for some q ∈ A such that p ∩ q = ∅ and either p � q or
q � p, then (p ∪ r) ∼ r for all r ∈ A.

In other words, if pmakes no contribution to the desirability of p∪q for disjoint
p and q of distinct desirabilities, then the agent must presumably have zero
confidence in p, and hence for consistency p should make no contribution to
the desirability of p ∪ r for any other r.
An interesting middle ground is provided by the third kind of framework,

originating with Ramsey (1931), where preferences are defined over a domain
of very simple prospects of the form ‘c1 if p, c2 otherwise’. These are typically
interpreted as conjunctions of conditionals, perhaps corresponding to poten-
tial choices or gambles the agent might take. They are typically formalised as
n-tuples of conditions and consequences – for example, (c1,p,c2). Most such
theorems focus on binary prospects like the one just described. In some cases
preferences are also defined for ternary prospects ‘c1 if p, c2 if q, c3 otherwise’,
or sometimes even quarternary prospects, but nothing so richly structured as
the (potentially infinitary) act-functions we find in the Savage-style frame-
works. (For examples of theorems in the Ramseyan framework, see Debreu
1959; Davidson & Suppes 1956; Davidson et al. 1957; Fishburn 1967; Elliott
2017b; 2017c.) The theorem discussed in the next section belongs to this third
class.
It’s worth noting that the Ramseyan approach is extremely limited as a frame-

work for formalising decision theory – especially in contrast to either of the
Savagean or Jeffreyan frameworks just discussed. Most decision situations
involve choices between options that cannot plausibly be reduced to simple
n-ary prospects, for very small n. Our decisions usually have more than two or
three possible consequences. Savage and Jeffrey sought to achieve a complete
and fully general axiomatisation of a decision theory in terms of preferences,
and from this perspective the Ramseyan framework is grossly inadequate.
But for a theory of measurement we needn’t ask so much. The goal here is to

isolate a qualitative conjoint psychological system with a relational structure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
40

13
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009401319


The Measurement of Subjective Probability 61

that suffices to explain the quantitation of belief. With that in mind, we needn’t
assume that the qualitative system should include all of the agent’s preferences
over all possible actions and/ propositions, nor that the decision rule should be
generally applicable to every conceivable decision situation.

6.2 Ramsey’s Theorem
Here’s the goal: from a single preference ordering over a space of binary pros-
pects (e.g, of the form ‘c1 if p, c2 otherwise’), we want to extract numerical
representations of belief and desire that conjointly represent those preferences
according to a version of the expected utility rule.
The first step is to be more precise about the form of the intended numer-

ical representation. We let ≿ be a preference relation defined over a set G of
prospects. Where A = {p,q, r, . . .} is an algebra of propositions and C =
{c1,c2,c3, . . .} is a set of consequences, we formalise prospects as 3-tuples
(c1,p,c2) in G ⊆ C×A×C.18 For simplicity, we will be assuming that both A
and C are finite. This just lets us ignore a complicated ‘Archimedean’ axiom
that’s trivially satisfied in finite contexts. Given that, we desire a function
φ : G 7→ R that represents ≿ in the sense that

(c1,p,c2) ≿ (c3,q,c4) if and only if φ
(
c1,p,c2

)
≥ φ

(
c3,q,c4

)
,

where φ itself decomposes into two functions β : A 7→ R (for beliefs) and
δ : C 7→ R (for desires) such that

φ
(
c1,p,c2

)
= δ(c1)β(p) + δ(c2)

(
1 − β(p)

)
.

Call this the simplified formula.
Note an immediate complication: the simplified formula is too simple!

It implies that the three factors contributing to the value of a prospect are
independent of one another. In particular, according to the simplified formula,

β(p) = β(q) if and only if φ
(
c1,p,c2

)
= φ

(
c1,q,c2

)
.

However, the desirability of c1 – as supposedly represented by δ(c1) –may vary
depending on whether it obtains in a context where p is true versus a context
where q is true, which could imply a difference in desirability between (c1,p,c2)
and (c1,q,c2). In general, the value of a prospect’s consequences ought to be

18 We don’t presume that A and C are disjoint sets, nor that the consequences are maximally
specific. In Ramsey’s essay, consequences are maximally specific worlds, or in some cases
almost-worlds that are maximally specific up to a single question about which the agent cares
not. With some minor adjustments, this ends up being unnecessary for the representation result
and for the decision theory underlying it.
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judged relative to the conditions under which those consequences obtain. Con-
sequently, the value of (c1,p,c2) isn’t always given by the simplified formula,
but by the slightly more complicated one:

φ
(
c1,p,c2

)
= δ(p ∧ c1)β(p) + δ(¬p ∧ c2)

(
1 − β(p)

)
The implication is that if ≿ is determined by this more complicated decision

rule, then either it cannot be represented in the desired manner, or ≿ cannot
be defined for all possible prospects in C×A×C. The resolution to this little
problem is to restrict G to those prospects (c1,p,c2) such that the agent is indif-
ferent between c1 and c1 ∧ p, and likewise between c2 and c2 ∧ ¬p, since in
these cases the complicated formula will just reduce to the simplified formula.
If propositions are coarsely individuated – if they are sets of logically possible
worlds, as per Assumption 1 – then one way to achieve this restriction is to
suppose that a prospect can be found in G only if its consequences entail the
conditions under which they obtain, so c1 = p ∧ c1 and c2 = ¬p ∧ c2. More
precisely:

1. (c1,p,c2) ∈ G only if c1 implies p∧ c1 and c2 implies ¬p∧ c2; and p∧ c1 is
inconsistent only if p is inconsistent, and ¬p ∧ c2 is inconsistent only if ¬p
is inconsistent (restricted prospects)

But this only tells us what kinds of prospects aren’t in G. We will also need
to ensure that the domain of ≿ is rich enough to ensure the existence of the
desired representation. There are five richness axioms in total, starting with:

2. For every c ∈ C, there is a prospect (c,p,c) ∈ G (trivial prospects)

The purpose of this axiom is to let us extend the preference ordering ≿ to the
set of consequences C, in the obvious way:

c1 ≿ c2 if and only if ∃(c1,p,c1), (c2,q,c2) ∈ G : (c1,p,c1) ≿ (c2,q,c2)

Axioms 7–10, presented later, will ensure that≿ on C is a weak order. This triv-
ial prospects axiom isn’t necessary if we treat preferences over consequences
as a primitive relation. That is what Ramsey did. However, letting preferences
be defined in the first instance only over gambles, rather than both gambles and
their consequences, makes some parts of the construction slightly more natural.
Before I state the four remaining richness axioms, some notation will prove

useful. First, let c designate the set of consequences c′ in C such that c ∼ c′.
In terms of the intended representation, c contains all and only those c′ such
that δ(c) = δ(c′). We then use (c1,p,c2) for a prospect conditional on p
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with consequences equal in desirability to c1 and c2. Next, suppose that, for
c1 � c2,

(c1,p,c2) ≿ (c1,q,c2).

Supposing ≿ is represented in the desired format, this can hold only if β(p) ≥
β(q). Consequently, if

(c1,p,c2) ≿ (c1,¬p,c2),

then β(p) = β(¬p). In this fashion we can isolate the half-probability pro-
positions in A. We use (c1, 12 ,c2) for a prospect with consequences equal in
desirability to c1 and c2 conditional on one or another of these half-probability
propositions. These prospects can be used to define halfway points between
the desirabilities of c1 and c2. Finally, we characterise a qualitative ordering
≿∆ over C×C like so:

(c1,c2) ≿∆ (c3,c4) if and only if (c1,
1
2
,c4) ≿ (c2,

1
2
,c3)

Defined as such, ≿∆ represents the relative size of intervals in desirability – in
the final representation, we will see

(c1,c2) ≿∆ (c3,c4) if and only if δ(c1) − δ(c2) ≥ δ(c3) − δ(c4).

We can now state the remaining richness axioms with comparative ease:

3. If c1 � c2, then there is some (c1, 12 ,c2) ∈ G (halfway prospects)
4. If (c1,c2) ≿∆ (c3,c4) ≿∆ (c1,c1), then there are c5,c6 ∈ C such that

(c1,c5) ∼∆ (c3,c4) ∼∆ (c6,c2) (∆-solvability)
5. For every (c1,p,c2) ∈ G, there’s some (c3,q,c3) ∈ G such that (c1,p,c2) ∼

(c3,q,c3), or some (c4, 12 ,c5) ∈ G such that (c1,p,c2) ∼ (c4, 12 ,c5)
(extendibility)

6. For every p ∈ A, there’s some (c1,p,c2) ∈ G such that c1 � c2 or c2 � c1
(non-trivial prospects)

The halfway prospects axiom ensures that we can always define halfway
points between the desirabilities of any two consequences. ∆-solvability is a
non-necessary condition used to guarantee that for any non-zero interval in
desirability between two consequences, there will be another interval of the
same size to which it can be ‘added’. This allows ratios of differences to be
defined, which is what ultimately allows the construction of an interval-scale
measure δ. The extendibility axiom is then used to extend δ on C to all ofG, and
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hence define φ. Finally, non-trivial prospects ensures there are enough pros-
pects around such that a degree of belief can be defined for every proposition
in A.

Definition 23. Where A is a finite algebra of propositions and C is a finite
set of propositions, 〈G,≿〉 is a finite Ramseyan structure if and only if G ⊆
C×A×C satisfying restricted prospects, trivial prospects, halfway prospects,
∆-solvability, extendability and non-trivial prospects.

What remains is to specify conditions on a finite Ramsey structure suffi-
cient for the existence of the desired representation. We proceed in three stages,
starting with the construction of the desirability function δ. This uses:

7. ≿ is a weak order (weak order)
8. ≿∆ is transitive (∆-transitivity)
9. For all c1,c2 ∈ C, (c1, 12 ,c2) ∼ (c2, 12 ,c1) (reversibility)
10. For all c1,c2 ∈ C, if c1 ≿ c2, then (c1,p,c1) ≿ (c1,q,c2) (averaging)

In overview, δ is derived as follows. (For details, see Elliott 2017c and Krantz
et al. 1971, 145–52.) First, we use weak order, ∆-transitivity and reversibility,
in conjunction with halfway prospects and ∆-solvability, to define a concat-
enation operation ⊕ over desirability intervals, such that 〈C×C,≿∆; ⊕〉 is an
additive extensive structure. This allows for a ratio-scale measure of desir-
ability intervals. Given averaging, we can define an interval-scale measure
δ : C 7→ R such that:

i. c1 ≿ c2 if and only if δ(c1) ≥ δ(c2)
ii. (c1,c2) ≿∆ (c3,c4) if and only if δ(c1) − δ(c2) ≥ δ(c3) − δ(c4)

Next, we define φ on G using δ, like so:

φ
(
c1,p,c2

)
=

δ(c3) if (c1,p,c2) ∼ (c3,q,c3)
1
2
(
δ(c3) − δ(c4)

)
if c3 �δ c4 and (c1,p,c2) ∼ (c3, 12 ,c4)

The extendibility axiom ensures the definition is adequate. Note, of course, that
δ(c) = φ

(
c,p,c

)
. Finally, we extract the belief function β out of φ. Where c1 �

c2, reorganising the simplified formula gets us β(p) as a ratio of differences in
desirability:

β(p) =
φ
(
c1,p,c2

)
− δ(c2)

δ(c1) − δ(c2)
This last step requires the non-trivial prospects axiom, plus one more axiom

which asserts that the contribution β(p)makes to the overall value of a prospect
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is independent of the desirabilities of its consequences. Expressed directly in
terms of preferences, this axiom is rather complicated and not at all intuitive.
The interested reader should refer to Davidson and Suppes’ (1956) axiom A10
and the associated definitions for how it goes. We can simplify matters greatly
by ‘cheating’ and expressing the axiom in terms of the intended representation:

11. For all p ∈ A, if δ(c1) , δ(c2), δ(c3) , δ(c4), and (c1,p,c2), (c3,p,c4) ∈ G,
then

φ
(
c1,p,c2

)
− δ(c2)

δ(c1) − δ(c2)
=
φ
(
c3,p,c4

)
− δ(c4)

δ(c3) − δ(c4)
(independence)

The upshot is that the foregoing definition of β(p)won’t depend on the particu-
lar choice of prospect. It is a consistency requirement, on how the agent values
different prospects conditional on the same proposition.
Putting that all together:

Theorem 24 Ramsey (1931); Elliott (2017c) If 〈G,≿〉 is a finite Ramseyan
structure satisfying weak order, ∆-transitivity, reversibility, averaging, and
independence, then there are functions φ : G 7→ R, δ : C 7→ R and β : A 7→ R,
such that

i. (c1,p,c2) ≿ (c3,q,c4) if and only if φ
(
c1,p,c2

)
≥ φ

(
c3,q,c4

)
ii. φ

(
c1,p,c2

)
= δ(c1)β(p) + δ(c2)

(
1 − β(p)

)
Furthermore, δ is unique up to a positive affine transformation, while β is
unique and for all p ∈ A,

iii. 1 ≥ β(p) = 1 − β(¬p) ≥ 0.

Note that β is unique simpliciter – an absolute scale. The uniqueness clause
applies to all representations satisfying properties i and ii. (Property iii, by con-
trast, is not an explicit stipulation on the form of the representation but is rather
derived as a consequence of the representation.) The uniqueness of β is a result
of how it was defined – as a dimensionless ratio of differences in desirability –
and the fact that δ is unique up to an interval-preserving transformation.

6.3 Uniqueness and Meaning
It’s a point often noted that the expected utility representations of a preference
ordering are not unique. Theorem 24 implies, for example, that if ≿ has an
expected utility representation involving the pair of belief and desire functions
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β and δ, then there will be another such representation involving β and δ⋆,
where

δ⋆(c) = 9δ(c) + 1.

Since it’s widely held that desirabilities can be measured on nothing stronger
than an interval scale (similar to temperatures as measured in Celsius or Fahr-
enheit), the usual response to this fact is that there is no meaningful difference
between δ and δ⋆.
Now consider the following example, from Zynda (2000). Where γ is an

n-ary prospect with consequences γ(pi) conditional on which element of a par-
tition p1, . . . ,pn happens to be true, then≿ has an expected utility representation
involving β and δ whenever γ ≿ γ′ if and only if

n∑
i=1

β(pi)δ
(
γ(pi)

)
≥

n∑
i=1

β(pi)δ
(
γ′(pi)

)
.

If any such representation exists, then there will be another representation of ≿
involving the functions β⋆ and δ, where

β⋆(p) = 9β(p) + 1.

In this case, though, the belief and desire functions will be combined by a dif-
ferent decision rule – the valuation maximisation rule. This rule tells us that
γ ≿ γ′ just in case

n∑
i=1

β⋆(pi)δ
(
γ(pi)

)
− δ

(
γ(pi)

)
≥

n∑
i=1

β⋆(pi)δ
(
γ′(pi)

)
− δ

(
γ′(pi)

)
.

It is straightforward to show that an expected utility representation of ≿
(with β and δ) exists if and only if a valuation maximisation representation
of ≿ (with β⋆ and δ) likewise exists. The key step is then just to note that the
transformation from β to β⋆ is bijective and so invertible:

β(p) = β⋆(p) − 1
9

.

So, substituting into the inequality for expected utility representations just
presented:

n∑
i=1

(
β⋆(pi) − 1

9

)
δ
(
γ(pi)

)
≥

n∑
i=1

(
β⋆(pi) − 1

9

)
δ
(
γ′(pi)

)
.
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Then dropping the constant factor:

n∑
i=1

(
β⋆(pi) − 1

)
δ
(
γ(pi)

)
≥

n∑
i=1

(
β⋆(pi) − 1

)
δ
(
γ′(pi)

)
,

which is just another way to write the valuation maximisation rule.
By analogy with desirabilities, one might imagine this tells us something

about meaningfulness in β and β⋆: that in just the same way as we wanted to
say that δ and δ⋆ are not meaningfully distinct, so too should we want to say
that β and β⋆ are not meaningfully distinct. As Zynda (2000) has suggested,

One might point out that β⋆ is simply a linear transformation of β, and argue
that in the case of probabilities (like utilities and temperatures) this is a dif-
ference that makes no difference. This approach commits [the theorist] to
taking as real properties of degrees of belief at most those properties that are
common to both (p. 64)

And a little further on, Zynda argues that β and β⋆ will share a common
ordering, and thus represent the same comparative confidences. Hence,

According to this solution, people really have properties that can properly
be called ‘degrees of belief’, though these are more abstract in nature than
subjective probabilities, being purely qualitative… the concept of degree of
belief on this strategy becomes a purely ordinal notion. (p. 65, emphasis
added)

However, while there is an important lesson about meaningfulness to be
gleaned from this example, this is not it.
First note that β and β⋆ will have more than just their orderings in common.

The linear transformation which relates β to β⋆ also preserves difference ratios,
and those ratios are not decision-theoretically superfluous. Again, the example
from Section 3.4 suffices to make this point. Where A = {Ω,p,¬p,∅}, we
imagine that Ramsey has a choice between:

α: receive $1 if p is true, nothing otherwise
β: receive $2 if p is false, nothing otherwise

According to expected utility theory, Ramsey should prefer α if and only if

β(Ω) − β(∅)
β(p) − β(∅) <

β(p) − β(∅)
β(¬p) − β(∅) .

As there are numerically distinct but ordinally equivalent probability measures
that differ with respect to this inequality, expected utility theory requires that
there aremeaningful differences between thosemeasures. The same is therefore
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true for the valuation maximisation rule, according to which Ramsey should
prefer α if and only if

β⋆(Ω) − β⋆(∅)
β⋆(p) − β⋆(∅) <

β⋆(p) − β⋆(∅)
β⋆(¬p) − β⋆(∅) .

Do not be tempted, though, to infer from these facts that difference ratios
are meaningful in β. (They are meaningful; the mistake is to think the reason
has anything to do with what’s common to β and β⋆.) For consider yet another
decision-theoretic representation. Define β† such that

β†(p) = β⋆(p)2.

Now ≿ has an expected utility representation involving β and δ if and only if
it also has an ‘equivalent’ schmaluation maximisation representation involving
β† and δ, where this time we say γ ≿ γ′ if and only if

n∑
i=1

(√
β†(pi) − 1

)
δ
(
γ(pi)

)
≥

n∑
i=1

(√
β†(pi) − 1

)
δ
(
γ′(pi)

)
.

However, difference ratios are not preserved in the transformation from β to
β†. So if earlier we were tempted to say that difference ratios are meaningful in
β only if they’re shared with β⋆, then by the same token they should be shared
with β† as well – but then difference ratios wouldn’t be meaningful after all.
The proof that a schmaluation maximisation representation exists just in case

an expected utility representation exists is near identical to that for the valuation
maximisation representations presented earlier, and relies mostly on the fact
that the transformation from β to β† is bijective and so invertible:

β(p) =
√
β†(p) − 1

9
.

And it generalises easily: if the transformation from β to β† is bijective, then
we’ll be able to construct a representation of ≿ which makes use of βx and δ,
where that representation exists if and only if an expected utility representation
with β and δ exists. This includes transformations that do not preserve ratios,
or difference ratios, or even orderings. In fact, there’s virtually nothing that’s
shared across all possible decision-theoretic representations of ≿. But it would
be a gross error to infer that almost all the information in β is meaningless.
Clearly, whether something is meaningful in β has nothing much to do

with what kind of information β shares or doesn’t share with β⋆ and β†. And
hopefully you can see the problem: the valuation and schmaluation maximisa-
tion representations are ‘equivalent’ to the expected utility representation in
the sense that they are equally legitimate ways to numerically represent a
system of preferences, but they are representations within distinct numerical
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systems – andmeaningfulness in the representation of any quantity is only sens-
ibly defined relative to a fixed choice of numerical format (§2.5). Indeed, for
any real-valued representation φ of any quantity, if φ and φ′ are related by an
invertible transformation on the reals, then φ′will also be a way of representing
that quantity in some numerical system or other. This includes transformations
that do not preserve ratios, or difference ratios, or even orderings.
What Zynda-style examples actually establish is that ratios in β are mean-

ingful relative to expected utility representations, precisely because any trans-
formation of β that doesn’t preserve ratios must therefore employ a different
combination rule. Since ratios are meaningful, therefore difference ratios and
orderings are alsomeaningful. But there is a deeper lesson here too: the conjoint
structure being represented isn’t any structure internal to the system of beliefs
itself, considered in isolation from anything else, but relates instead to the con-
nection between beliefs, desires, and preferences. The belief functions β, β⋆,
and β† do have something in common – they all play similar roles in the respec-
tive numericalmodels of decision-making that employ them. (Essentially: these
beliefs interact with those desires to produce such-and-such preferences.) That
is what’s invariant, and that is why we cannot transform the belief function
without making adjustments to the decision rule: because the meaning of β is
tied up with how it interacts with δ to produce preferences. Of course there
are many ways to represent that conjoint system – there are always many ways
to represent any system. But however we do so, the three components of the
representation – the belief function, the desire function, and the decision rule –
need to be interpreted together.
For an analogy, consider the relationship between force, mass, and acceler-

ation. If those quantities are represented in Newtons, kilograms, and metres per
second squared (respectively), then the connection between them can be neatly
captured with the usual formula:

F = ma.

But if we start playing around with the numerical representation of the differ-
ent components, then we can easily come up with many numerically distinct
but ‘equivalent’ representations of the very same relationship. Where mass is
measured in pounds, acceleration in schmetres per second squared,19 and force
in negative Newtons, then we get:

F =
−5m· log2(a)

11
.

19 Recall from Section 2.4 that the schmetre is a multiplicative variant of the metre, defined such
that n metres is 2n schmetres.
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The superficial form of the rule has changed, but not the underlying relational
system between the three quantities. What’s happening with the different ways
of expressing the connection between beliefs, desires, and preferences is no
different in kind than what’s happening with these different ways of expressing
the connection between force, mass, and acceleration.

6.4 An Apology
Theorem 24 describes a very flexible representation of belief – β must be such
that β(p) ∈ [0,1] and β(p) = 1− β(¬p), but otherwise there are few constraints
on the shape it must take. It’s possible to construct finite Ramseyan structures
such that β is logically non-omniscient, and it’s also possible to construct finite
Ramseyan structures such that β is a probability measure. Given the desiderata
of Section 3.4, I take it that this flexibility is a good-making feature. It allows for
a non-disjunctive theory of belief measurement that’s consistent with a range
of probabilistic and non-probabilistic representations, on a more-than-merely
ordinal scale, without forcing logical omniscience.
The reason for this flexibility is that the degree of belief assigned to p is

determined independently of almost any other proposition, aside from ¬p.
This contrasts with epistemic approaches (and Jeffrey-style decision-theoretic
approaches). The quantitation of belief on the Ramseyan approach requires
no particular appeal to relations between belief states or the contents thereof,
but instead depends primarily on systematic relationships between the agent’s
degree of belief in p and the value they attach to prospects conditional on p. As
Ramsey (1931) put it,

[The] degree of a belief is a causal property of it, which we can express
vaguely as the extent to which we are prepared to act on it. (p. 169)

A rough way to express the difference: on the epistemic approach, the strength
of Sally’s belief towards p is twice that of q when p is equiprobable with the
disjunction of two incompatible q′ and q′′ equiprobable with q; on the Ram-
seyan approach, if p is believed to twice the degree as q, then this will be
connected to the difference in desirability between (c1,p,c2) and c2 being twice
the difference between (c1,q,c2) and c2 (for c1 � c2).
It’s worth emphasising again that the connection between belief and pref-

erence needn’t be constitutive. Many have claimed to find in Ramsey’s essay
the thesis that beliefs are nothing over and above preferences as manifest in
choice dispositions. Ramsey himself never said that, and instead characterised
the relationship between them in causal terms. But in any case, nothing about
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Theorem 24 implies that beliefs are reducible to preferences. It’s true that in the
proof of the theorem we first characterise a desirability function that represents
preferences and from that go on to derive a belief function – but one cannot
infer any kind of ontological or conceptual dependence relations between quan-
tities just from the order in which their numerical representations happen to be
constructed in a conjoint representation thereof. That would be fallacious. The
numerical representation requires a qualitative interpretation involving some
systematic connection between beliefs and preferences, but that connection
may take many possible forms.
Recognising this fallacy helps in dealing with some common objections to

the decision-theoretic approach. An exemplar here is Eriksson and Hájek’s
(2007) Zen monk. A ‘Zen monk’ is an agent who is indifferent between all con-
sequences, and therefore indifferent between all prospects. The preferences of
such an agent would violate non-trivial prospects in such a way that the belief
function β cannot be derived from the agents’ desirabilities. Yet, presumably,
such an agent could still have determinate degrees of belief, and two Zenmonks
could have distinct degrees of belief between them. If such beings could exist,
then they are a counterexample to the thesis that an agent’s degrees of belief
are nothing over and above their preferences. But the Zen monk is much less
problematic if we take the strength of an agent’s belief to be ‘a causal property
of it’ which need not be manifest in all cases (Elliott 2019a). Even if a Zen
monk is actually indifferent among all consequences, she may still be in a state
of belief the typical causal role of which would only become apparent if she
were no longer universally indifferent. What it is to believe p to degree x, on
this picture, is to be in a state whose typical causal role in connection to pref-
erences and desire is reflected in the class of systems with representations such
that β(p) = x.
Another common objection is that Ramsey’s theorem (and the like) only

establishes conditions under which a preference relation behaves as if it’s
determined by such-and-such beliefs and desires combined according to the
expected utility rule – it doesn’t guarantee that the agent really has those
beliefs and desires (cf. Zynda 2000; Christensen 2001; Eriksson &Hájek 2007;
Meacham & Weisberg 2011). The observation is correct, of course, just as
it would also be correct to say that a representation theorem for the conjoint
measurement of momentum as determined by mass and velocity only supplies
conditions under which momentum behaves as if it’s determined by mass and
velocity. But so what? If the point of a decision-theoretic representation the-
orem were to show that an agent whose preferences satisfy the axioms must
therefore have the beliefs and desires they are represented as having, then it
would be safe to say that no such theorem has ever succeeded in that task. It’s
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not the sort of thing they can show. Lucky, then, that this isn’t the only way to
interpret Theorem 24!
A much more fruitful interpretation is in terms of measurement. The apt-

ness of the conjoint representation is presupposed as part of the theoretical
background on which the account of measurement is founded, not magically
derived from the representation theorem. Ramsey (1931) knew this:

I propose to take as a basis a general psychological theory, which…comes,
I think, fairly close to the truth in the sorts of cases with which we are most
concerned. I mean the theory that we act in the way we think most likely to
realize the objects of our desires, so that a person’s actions are completely
determined by his desires and opinions. (p. 173)

What Ramsey’s theorem supplies is an explanation of the quantitation of belief
and desire in the context of that model of decision-making. There’s nothing
unusual about this – the quantitation of any quantity is always explained against
a backdrop of theoretical models and presuppositions.
So we shouldn’t be worried about that objection. However, a natural fol-

lowup concern is that the expected utility model of decision making is unreal-
istic – and if that’s the case, then the qualitative systems these models represent
may fail to capture any explanatorily relevant relations at all. Addressing this
concern will take a little more work, since the response depends on where the
lack of realism originates. There are two main sources, which I’ll discuss in
turn.
The first is the extremely precise nature of the numerical representation –

it involves real-valued degrees of belief and desire, combined with perfect
consistency according to a precise decision rule. To achieve such a precise rep-
resentation, we require strong assumptions about the richness of the domain
over which the preferences are defined and about the structure of the prefer-
ences over that domain. That’s hardly surprising – infinite precision is a strong
property for a representation to have. For the same reason, I do not think we
should be too concerned with any lack of realism arising from this source. Such
is an inevitable consequence of trying to model a squishy psychological system
in a rigid numerical framework, and any feasible theory of belief measurement
needs to allow for some idealisations that make the topic tractable. It’s enough
if the systems we characterise are in the ballpark of realism. More importantly,
it’s usually possible to isolate and weaken or remove the axioms (or parts of the
axioms) that are required in fixing the precision of the representation, if we’re
willing to accept somewhat weaker uniqueness conditions as a result.
I said ‘somewhat weaker’ for a reason. Critics of decision-theoretic represen-

tation theorems tend to write as though failing to establish a unique real-valued
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belief function is the same as establishing no bounds on degrees of belief at
all – as if any lack-of-uniqueness implies radical non-uniqueness. More often,
though, one can weaken the very strong axioms required for unique real-valued
representation and while still establishing tight bounds on that representation.
Consider some examples. I’ve already talked about how the weak order axiom
can be replaced with a weaker preorder axiom so as to allow for incomplete-
ness, leading to a representation of ‘imprecise’ beliefs and desires (Section 3.3).
So consider instead the extendibility axiom. This (structural) axiom helps us to
pinpoint precise degrees of belief by fixing a precise φ-value for some appro-
priate prospect (c1,p,c2) conditional on p; it does so either by setting that value
equal to the desirability of a consequence or equal to the midway point between
two consequences. But where extendibility is violated and the required pros-
pects don’t exist, we can still characterise bounds on degrees of belief provided
there are c3,c4 such that

c1 ≿ c3 � (c1,p,c2) � c4 ≿ c2.

In this case, the value of β(p) will be bound like so:

δ(c1) − δ(c3)
δ(c1) − δ(c2)

> β(p) > δ(c1) − δ(c4)
δ(c1) − δ(c2)

More or less the same effect can be achieved if the independence axiom is
violated. That axiom requires perfect consistency across how every prospect
conditional on p is evaluated relative to its consequences, which is necessary
if β(p) is to be defined as a ratio of differences in real-valued desirabilities.
But it’s possible to weaken independence to allow for a bit of fuzziness in the
evaluation of prospects, with corresponding fuzziness in the characterisation
of β. Essentially, where the axiom is violated then for every p there’s still a
unique – and potentially very narrow – interval [x,y] such that every prospect
on p is valued as if β(p) ∈ [x,y].
In like fashion we can define bounds on the desirabilities of consequences

where any or all of trivial gambles, halfway prospects, and/or ∆-solvability
are violated. In general, the point here is that some of the axioms (or some
parts of some axioms) in a decision-theoretic representation theorem primarily
serve to ensure a precise numerical representation – and while they tend to be
quite unrealistic, it is not so hard to weaken them. The effect of doing so is
a little less precision in the numbers obtained, but nothing more substantially
affecting the basic explanatory structure being represented. I suspect Ramsey
(1931) understood this point well, and was expressing as much when he wrote:
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I have not worked out the mathematical logic of this in detail, because this
would, I think, be rather like working out to seven places of decimals a result
only valid to two. (p. 180)

That, I think, is the right attitude. It’s not realistic to suppose that degrees of
belief (and desire) have all the precision of the real numbers. However, we gain
some insight into their quantitation by pretending otherwise, and lose nothing
of great import in the fiction.
The second source of potential irrealism will be the more fundamental struc-

ture of the expected utility model itself – even after accounting for imprecision
in degrees of belief and desirability. Perhaps we do not simply evaluate pros-
pects by weighing the values of its consequences against our confidence that
those consequences will obtain, but instead also take risk into account in a
manner that cannot properly be captured by the expected utility rule (or any
‘equivalent’ decision rule). If so, then again there is a concern that the model
fails to capture any explanatorily relevant relations between beliefs and pref-
erences. We’re looking for those relations in the wrong place, because we’ve
been presupposing the wrong psychological picture.
We must be a little careful here. Suppose that ordinary decision-makers sys-

tematically violate the expected utility rule when evaluating prospects. Still,
that rule may serve as a rational ideal, and Theorem 24 may still prove use-
ful in explaining the quantitation of belief by reference to the role one’s beliefs
regarding p ought to play in connection to how they ought to evaluate prospects
conditional on p. I said earlier that we don’t have to interpret the systematic rela-
tionship between belief and preference that explains the conjoint quantitation
thereof as a constitutive relation; we don’t have to interpret it as a descriptive
relation either. Similarly, an analytic functionalist might say that the expected
utility rule captures the essence of folk psychology (a laLewis 1974), and hence
a theorem like Ramsey’s can help explain how beliefs are quantitated according
to folk psychology. Since it’s no commitment of analytic functionalism that folk
psychology provides a perfect descriptive account of decision-making, con-
cerns about the adequacy of expected utility theory are largely irrelevant to this
interpretation. The theory is uncontroversially close to the truth in either case,
and the analytic functionalist needs nothing stronger than this.
Still, one may be concerned that the expected utility rule is neither descrip-

tively nor normatively adequate, and may not be satisfied with the analytic
functionalist’s interpretation. In that case, we will need a theory of quantitation
formulated against the backdrop of some alternative to expected utility theory.
Not to worry, for there are many essentially similar theorems for a wide range
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of these alternatives. The details change, but in outline the general approach to
explaining the quantitation of belief remains more or less the same.
Representation theorems for the huge number of non-expected utility theor-

ies are too numerous to discuss in detail, but it’s worth looking at one example –
Kahneman and Tversky’s (1979) prospect theory.20 I’ll start by describing the
theory. We designate a special (non-)consequence the status quo; in the repre-
sentation, the desirability of the status quo will be fixed at zero, hence we’ll
label it ‘0’. We then focus in on ternary prospects of the form ‘c1 if p, c2 if
q, and 0 otherwise’, where p and q are mutually exclusive. We assume that
degrees of belief are values between zero and one that sum to one for sets of
mutually exclusive and jointly exhaustive propositions. Fixing the desirability
of the status quo at zero, according to the expected utility rule:

φ
(
c1,p,c2,q,0

)
= β(p)δ(c1) + β(q)δ(c2).

In other words, the part of the prospect corresponding to the status quo makes
no contribution to the value of the prospect, which is a weighted average of
the desirabilities of the remaining consequences. According to prospect the-
ory, however, the weights aren’t given by the agent’s degrees of belief directly.
Instead they’re given by a decision weight corresponding to the agent’s beliefs
in combination with their attitudes towards risk, where the latter modify the
impact the agent’s degrees of belief have on the overall value of a gamble.
Where π : [0,1] 7→ [0,1] and π(0) = 0 and π(1) = 1,

φ
(
c1,p,c2,0

)
= π

(
β(p)

)
δ(c1) + π

(
β(q)

)
δ(c2).

For example, suppose β(p) = β(q) = 1
2 , δ(c1) > δ(c2), and that δ(c3) is halfway

between δ(c1) and δ(c2). According to expected utility theory, the desirabil-
ity of (c1,p,c2,q,0) should be halfway between the desirabilities of c1 and c2,
so equal to the desirability of c3. However, if π( 12 ) <

1
2 , then according to

prospect theory the desirability of (c1,p,c2,q,0) will be less than that of c3. In
this case, the decision weight reflects a ‘risk averse’ attitude whereby the agent
would prefer a guaranteed c3 to a risky prospect with an expected value equal
to c3.
For our purposes, the thing to note is the close similarity between the

expected utility formula for evaluating (c1,p,c2) and prospect theory’s formula

20 I highlight this example because (i) it’s simple, (ii) prospect theory is well-known among
descriptive theories, and (iii) it’s formally similar to expected utility theory’s main contem-
porary normative contender: risk-weighted utility theory (Buchak 2013).
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for evaluating (c1,p,c2,q,0). Suppose q = ¬p; then in both cases we’re looking
for a pair of functions, θ and δ, such that the value of the prospect is given
by

θ(p)δ(c1) + θ(¬p)δ(c2).

The difference between them is that, for expected utility theory, θ is interpreted
as the agent’s degrees of belief ; whereas for prospect theory θ is interpreted as
a decision weight that reflects the agent’s degrees of belief and their attitudes
towards risk.21 Thus is it possible, as Kahneman and Tversky observe (1979,
280), to infer decision weights from preferences over simple prospects in a
manner that’s not dissimilar from howwe go about inferring degrees of belief in
the original Ramseyan approach.Moreover, and with the appropriate additional
axioms on preference, those decision weights can in turn be decomposed into
a belief function and a risk function (e.g., Wakker 2004).
The end result is only a light modification on the Ramseyan theme: the

degree of a belief is not quite a measure of the extent to which we are pre-
pared to act on it, but instead a measure of the extent we’re prepared to act
on it given our attitudes towards risk. Either way, the meaning of the numer-
ical representation of belief is manifest in the role that representation plays in
a decision-theoretic context, and such representations tend to play very much
the same kind of role regardless of the precise details of the decision theory in
question. Expected utility theory may be unrealistic in some ways, or it may
not be, but that doesn’t mean the theory of quantitation we get out of it isn’t
fundamentally on the right track.

21 I’m simplifying, but only a little bit. Another difference between expected utility theory and
prospect theory is that decision weights needn’t sum to one, so we need slightly more general
axioms to represent prospect theory.
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