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ON THE ESSENTIALLY-ALGEBRAIC THEORY
GENERATED BY A SKETCH

G.M. KELLY

By a sketch we here mean a small category 5 together with a

small set $ of protective cones in S , each cone (J> € $ being

indexed by a small category L, . A model of S in any category

8 is a functor G : S -*• 8 such that each G<j> is a limit-cone.

Let F be any small set of small categories containing all the

L, . A small category T admitting all F-limits (that is, an

F-complete small T ) is called an F-theory; it is considered

as a sketch in which the distinguished cones are all the

F-limit-cones. It is an important result of modern universal

algebra, due originally to Ehresmann, that each sketch

S = (S, $) with every L, € F determines an F-theory T , with

a generic model M : S -*• T of S , such that composition with M

induces an equivalence M* between the category of T-models in

B and that of S-models in B , whenever 8 is F-complete. We

give a simple proof of this result - one which generalizes

directly to the case of enriched categories and indexed limits;

and we make the new observation that the inverse to M* is given

by (pointwise) right Kan extension along M .

1. Introduction

A category is said to be small if the set of isomorphism-classes of
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46 G.M. Kelly

its objects is small. More generally, a set of objects in a category is

loosely said to be small when it involves only a small set of isomorphism-

classes. A projective cone <j> : bA •* P in a category S , where

P : L •+ S and where A4 : L -*• S is the functor constant at A , is said

to have indexing category L .

By a sketch we here mean a small category 5 together with a small

set $ of projective cones in S , each <t> € $ having a small indexing

category L, . A functor G : S •*• 8 is called a model in B of the

sketch (S, <t>) if G<f> is a limit-cone in B for each $ € $ ; these

models determine a ?ull subcategory $-Mbd[S, B] of the functor-category

[S, 8] . It is well known (see [/], [4], and [S]) that purely algebraic

objects of some kind in £> , such as groups in B , are the models in B

of a suitable sketch; and that the same is true for certain non-purely-

algebraic objects, such as categories in B , which may be called

"essentially algebraic".

Let F be a small set of small categories. We call the sketch

{S, $) an f-sketch if each indexing category L is in F . An T-limit

is one indexed by a category in F ; a category T is V-complete if it

admits all F-limits, and then a functor H : T •* B is F-continuous if it

preserves these limits. A small F-complete category T is called an

F-theory. We identify such a theory with the sketch given by T and all

the F-limit-cones in T ; so that a model of T in B is just an

F-continuous H : T •* B . These models form the subcategory

Mod[T, B] = F-Cts[T, B] of [T, B] .

The following result on the existence of a "generic model" of a

sketch is - except for the observation about Kan extensions - given in

Bastiani and Ehresmann [I]:

THEOREM 1. Given an T-sketch (S, $) , we can find an f-theory T

and a model M : £ -»• T of (S, 0) in T s with the following universal

property: the functor M* : F-Cts[7~, B] -»• $-Mod[S, B] , given by

composition with M , is an equivalence of categories for every f-complete

B . Moreover the equivalence-inverse of M* is given by (pointwise) right

Kan extension along M .

The proof in [J] is a long one, carried out in several stages, each
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requiring an argument by transfinite induction; and does not yield much

insight into the nature of T . Our aim in the present article is to give

a simple proof using the notions of Kan extension and of density; and one

moreover which extends directly to the case of enriched categories (with

limits replaced by indexed limits). The enriched case will be dealt with

in the final chapter of the author's forthcoming book [6]; what we give

here is a streamlined proof in the classical case above, using only basic

categorical ideas.

In the special case where F is finite categories, a different proof

is given in the thesis [2] of Coste, who starts from an axiomatic system in

place of a sketch, and constructs T syntactically in terms of formulas

and provably-functional relations. It seems to the author that semantic

arguments, such as are used in the present proof, are inherently simpler

and more conceptual.

In the still more special case where F is finite categories and S

is a Lawvere theory (with <t> being finite products), a very simple

semantic proof is given by Kock and Reyes in [8]. In this case it is

further observed by Kock in Appendix A of [7] that the inverse of M is

given by right Kan extension (but not that the extension is pointwise).

The result that the inverse is so given in all cases seems to be new.

To avoid backing and filling between left and right Kan extensions,

and between density and codensity, it turns out to be simpler to prove

Theorem 1 in its dual form. The sketch (S, <t>) will be taken as

(A P, <J>) below, with A of course small. A functor G : A -*• B is a

$-comodel if each <?<{> is a colimit-cone in 8 ; and these comodels form a

full subcategory $-Com[A, 8] of [A, 8] . The F-theory T will appear

as V for a certain F-cocomplete small V to be constructed, and the

generic model M : S -*• T will be Z " , where Z is a generic comodel

Z : A -»• V . Theorem 1 then asserts that, for an F-cocomplete 8 , the

functor Z* : F-Cocts[P, B] •* $-Com[A, 8] is an equivalence with inverse

, the (pointwise) left Kan extension along Z .

2. Kan extensions and density

We recall some elementary properties of these notions; many of them
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can be found in Mac Lane [9]. All the categories we consider are locally

small: that is, their hom-sets are objects of the category Set of small

sets. If G : A •* B is any functor, we write G : 8 -»• [AOp, Set] for the

functor given by GB = B(G-, B) .

Given functors X : A -»• C , S : C + B , and G : A -*• 8 , there is, by

two applications of the Yoneda lemma, a bisection between natural

transformations a : G •* SK and transformations

aCB : B(5C, B) - [A°
P, Set](«7, GB)

that are natural in both C and B . We say that S is the left Kan

ft
extension l>a.nn of G along K , with unit o , if a is an

isomorphism. The extension exists precisely when [A°P, Set](XC, G-) is

representable as B(SC, -) for each C ; and the extension is then unique

to within isomorphism, since this representation is so. The extension

certainly exists whenever A is small and 8 is cocomplete, for then we

get the desired representation by setting SC equal to the coend

(A
C(KA, C) • GA , where the integrand denotes the coproduct of C(KA, C)

copies of GA . The term "extension" is somewhat misleading, since the

unit a need not be an isomorphism; it is easy however to see that a is

an isomorphism if K is fully faithful.

When Lan n exists, we have for any functor R : Q ->• g an

isomorphism

(1) [C, B^Lan^G, R) S [A, B1(G, RK)

sending 3 : Lan G -*• R to &K-a ; for to give the components
K.

3 : (LanJ3)C •* RC is, by our definition of the Kan extension, to give

maps g : KC •*• GRC natural in C , or equivalently maps

&AC : C{KA, C) -S- B(Gi4, RC) natural in A and C ; which by Yoneda is to

give y : GA ->• RKA , or y : G -*• RK .

The universal property (l) is taken by many authors as the definition

of left Kan extension, but is in fact strictly weaker than our definition.
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Mac Lane [9] calls our stronger notion the pointwise left Kan extension;

we prefer our present terminology because "non-pointwise" Kan extensions

seem to be totally useless in mathematics.

If Lan./? exists with unit a , and if Q : B -»• V has a right

adjoint P , then Q ha.nvG , with unit Qcx , is La.nv(QG) ; this follows
A A

easily from our definition, when we observe that {QG)~D = GPD .

We call a functor K : A •* C dense if K : C + [Aop, Set] is fully

faithful. Since this is the assertion that K gives an isomorphism

C(C, D) -* [Aop, Set] (AT, KD) , it is equivalent to the assertion that

La.nJi = 1- , with the identity as unit.
A L

Such a dense K gives an equivalence between C and the full

subcategory C of [A , Set] formed by the objects isomorphic to some

KC . The Yoneda isomorphism

[Aop, Set] (A(-, A), KC) •=£ (ic)A = C(KA, C) = C'{KXA, KC)

exhibits the object KKA of C as the reflexion into C of the

representable A(-, A) of QAop,' Set] ; and the unit of this reflexion is

the map K_A : A(-, A) -»• C(K-, KA) = KKA . Hence C contains the

representables if and only if this unit is an isomorphism for each A :

which is exactly to say that K is fully faithful.

PROPOSITION 2 (c/. Diers [3]). Let the dense K : A •*• C be the

composite of Z : A •*• V and J : 5 + C , where J is fully faithful.

Then we have Z =s KJ ; both Z and J are dense; if some Lan C exists

with unit a , then Lan G = (Lan^?)/ .. again with unit a ; and in

particular La.nJi = J with the identity as unit.

Proof. We have

KJD = CU-, JD) = C(JZ-, JD) ̂  C(Z-, D) = ZD ,

giving KJ :=: Z . Since K and J are fully faithful, so is Z ; hence

Z is dense. For any G : A •* B such that Lan G exists, we have
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[Aop, Set](ZD, GB) = [Aop, Set](KJD, GB) '=* B( [han^JD, B) ,

so that Lan^G = [ha.n jf)J . Since LanJf = !„ this gives Lan~K = J .

From this we get

JC = C((LanzX)-, C) '=S [A
op, Set](Z-, KC) .

To give a map 3 : JC' + JC with components

6D : C(JD, C) •+ (JC)D^ [Aop, Set](ZO, KC)

is therefore to give components

B M : C(«H7, C") ->• Set(0(2,4, 0), C(K4, C))

natural in both D and A ; or equivalently components

, D) ̂ Set(C(c/D, C), C(KA, C))

natural in D and A , which by Yoneda is to give maps

YA : C(JZA, C) •* C{KA, C) natural in A . Since K = JZ is dense, such

a Y is C{KA, f) for a unique f -. C + C . It follows that 3 is Jf

for a unique f , so that J is fully faithful and J is dense. D

3. The category of $-algebras

From now on (A , $) is a given F-sketch. By an (A , $)-algebra,

or a ^-algebra for short, we mean a model of (A , $) in Set . We

write C for the category <J>-Alg = $-Mod[Aop, Set] c [Aop, Set] , and

J : C -»• [A p, Set] for the full inclusion. Using a simple argument by

transfinite induction, Gabriel and Ulmer ([4], Satz 8.5) show that I has

a left adjoint Ft . This result is the kernel of our proof of Theorem 1;
#

for all we use apart from it are elementary categorical considerations.

(The same is true in the enriched case [6]; but there the existence of the

left adjoint R uses the more subtle transfinite-induction arguments of

[53.) It follows that the category C of ^-algebras is complete and

coeomplete.
We write K : A ->• C for the composite of the reflexion
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R : [AOp, Set] -*- C and the Yoneda embedding Y : A ->- [Aop, Set] . Then

we have

KC = C(K-, C) = C(RY-, C) = [Aop, S e t ] ( 7 - , IC) S IC ;

so that K is (to within isomorphism) the full inclusion I , and K is

therefore dense.

The condition for G : A -*• B to be a comodel can be expressed

directly in terms of K . For &J> is a colimit-cone in B exactly when

6(G<i>, B) = (GB)cJ) is a limit-cone in Set for each B € B ; that is, when

GB is a $-algebra for each B . Thus:

PROPOSITION 3. G : A + B is an (Aop, <S>)-comodel exactly when

C : 8 + [Aop, Set] faotorizes through the fully-faithful

K : C ->• [Aop, Set] as G '^KT . In particular K -. A -• C is itself a

comodel. •

As we saw in Section 2, # is fully faithful precisely when the

representables A(-, A) are 4>-algebras; which in turn is exactly to say

that each cone <j> is a colimit-cone in A , or a limit-cone in A . In

this case, of course, K is just the Yoneda embedding Y seen as landing

in C , and we have KK = Y . This applies in particular when A is a

small F-cocomplete category, and we take for $ all the F-colimits in

A , so that (AOp, *) is the F-theory Ao p . Since the category of

algebras is now F-Cts[A p, Set] , since the comodel K preserves

F-colimits, and since K is fully faithful, we have:

PROPOSITION 4. For a small f-cocomplete A _, the full inclusion

K : A •* F-CtsfA p, Set] preserves and reflects F-colimits. D

We now return to a general sketch (A°P, $) as before, with

C = $-Alg and K : A -*• C the canonical comodel in C . For any B , we write

Ladj[C, B] for the full subcategory of [C, B] given by those S : C •*• B

which are left adjoints. Since such an 5 preserves all colimits and

since K is a $-comodel, so is SK . Hence composition with K induces

a functor K* : LadjfC, 8] •* $-Com[A, B] .
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PROPOSITION 5. For any S € Ladj[C, 8] we have Lan^SX) = 5 , with

unit the identity. A $-comodel G : A -»• 8 is isomorphia to some SK

with S € Ladj[C, 8] if and only if Lan-X? exists. Thus K* gives an

equivalence between Ladj[C, 8] and the full subcategory $-Com[A, B]'

given by such oomodels; and the inverse of this equivalence is given by

left Kan extension along K .

Proof. Since K is dense, we have LanJi = lp with the unit as

identity; therefore, as we saw in Section 2, for a left adjoint 5 we

have haxiASK) = S with unit the identity. Now let G be any $-comodel

for which LanJJ exists. We are to show that S = Lan^G is left adjoint

and that SK = G . Since G is a $-comodel we have G = KI for some T

by Proposition 3. By the definition of Kan extension we have

B(5C, B) '=* [Aop, Set]UC, GB) •=* [Aop, Set] (XC, KTB) ;

and this is isomorphic to C(C, TB) since K is fully faithful. Hence

S —i T . Moreover we have

B(SKA, B) '=S C(KA, TB) = (KTB)A -s (GB)A = B(GA, B) ,

whence we have SK = G . •

We in fact use this below only when 8 is cocomplete. In that case

Lan^C exists for every G , and the left-adjoint functors 5 : C -*• 8 are

exactly the cocontinuous ones (since C has a small dense subcategory -

see, for example, [6], Theorem 5-33). So K* and Lan^ provide an

equivalence between Cocts[C, 8] and $-Com[A, 8] ; which is (in dual

form) the analogue of Theorem 1 when F is replaced by "all small

categories".

4. The theory P o p and the equivalence t/'P-Aig c**-A1g

We define V to be the closure under F-colimits, in the cocomplete

category C = $-Alg , of the full subcategory V given by the objects KA

with A € A . We can construct P by transfinite induction: with V as

given, we set ^ a + 1 equal to the full subcategory given by all F-colimits
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of diagrams in V , and set V = U Va at a limit-ordinal a . Since

F is small and A is small, each V is small. The sequence (P ) is

clearly stationary from P on, where Y is a regular cardinal exceeding

the number of objects in each L € F . Thus V = V is itself small.

Clearly it is the smallest replete full subcategory of C containing all

the KA and closed under F-colimits; moreover it does admit all

F-colimits since C is cocomplete, and the full inclusion J : V •* C

preserves and reflects these. We write K = JZ for the factorization of

K : A -»• C through J . Since K is a $-comodel by Proposition 3, so is

Z by the remarks above about J . By Proposition 2, both Z and J are

dense.

PROPOSITION 6. Tne replete image of the fully-faithful

J •. C -»• [Pop, Set] is the full subcategory F-Cts[]Pop, Set] given by the

algebras for the ^--theory V°^ .

Proof. Since J preserves F-colimits, each JC = C(J-, C) sends

them to limits in Set , as required. For the converse, let

P : V -*• Set be F-continuous; we are to show that P is isomorphic to

some JC . Since Z : A •*• V is a $-comodel and POp : V •+ Set°P is

F-cocontinuous, P Z : A -»• Set M s a $-comodel. Since Set P is

cocomplete, Lan^(P°Pz) exists; and if this is S : C -»• Set°P , then, by

Proposition 5, 5 is left adjoint, and the unit a : PopZ -*• SK of

Lan^(P°PZ) is an isomorphism. By Proposition 2 we have Lan™(P°PZ) = SJ

with unit the isomorphism a . By (l) the identity 1 : POpZ •+ P°VZ is

ez.a for some & : SJ •* P°p . We claim that & is an isomorphism. To

see this, let V be {D € V \ 3^ is an isomorphism} . Then V contains

each ZA since 3Z is the isomorphism a~ • and V is closed in V

under F-colimits, since both SJ and P°P are F-cocontinuous: so that

V is all of V . Thus P°P '=£ SJ . Since a left adjoint 5 : C •* Setop

is necessarily given by S°p s C(-, C) for some C € C , we have
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P •=* C(J-, C) = JC , as required. •

This last proposition is in effect the case 8 = Set of Theorem 1.

We now pass to the general case.

5. Proof of the theorem

For any F-cocomplete 8 and any F-cocontinuous H : V -*• 8 , the

composite HZ : A ->• 8 is a <J>-comodel since Z is; so that composition

with Z gives a functor Z* : F-Cocts[P, 8] -•fc-ComtA, 8] . We are to

show Z* to be an equivalence, with inverse the restriction of Lanv .

We first show that, for any F_cocontinuous H , we have

Lan̂ X-ffZ) eg H . Since H is a comodel for the theory tP^ , and since the

full inclusion V -Alg -*- \P , Set] is "equivalent" to J by Proposition

6, it follows from Proposition 3 that H s JT for some T : 8 ->• C . If we

set G = 5Z , we have

GS = 8(ffZ_, B) = (HB)Z ̂  (JrS)Z = C(JZ-, TB) = C(K-, TB) = KTB .

Using Z -Z.KJ from Proposition 2, we have since K is fully faithful that

[Aop, Set](Z0, GB) s [Aop, Set] (^D, XTS) ^C(JD, TB)

= (JrS)O s (HB)D = C(ff£), S) ;

which gives the desired result LariyG ̂  // .

The proof will now be complete when we show that every $-comodel

G •. A ->• 8 is isomorphic to HZ for some F-cocontinuous H : V '-+ 8 . We

first do this in the case where 8 is small, so that we can look on o

itself as an F_theory. Then by Proposition h we have a fully-faithful

L : 8 •* F-Cts[o , Set] that preserves and reflects F_colimits. Hence

LG is a $-comodel since G is. Moreover LanI/(£G) exists, since the

category E = F-Cts[B°p, Set] of 8°p_algebras is cocomplete. By

Proposition 5, therefore, we have LG '=s SK for some left-adjoint

S : C •+ E . set

V' = {C Z C | SC ̂  LB for some S 6 8} .

Then Pf contains each £4 since SKA '̂  £G4 , and V' is closed under
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F-colimits since S and L preserve these. Therefore V contains V ,

so that SJ = LH for some H : V •+ B ; and H is F-cocontinuous since

SJ is and since L reflects F-colimits. Moreover, since

LHZ = SJZ = SK ••£ LG and since L is fully faithful, we have HZ S G , as

required.

If B is large, we define the full subcategory B' of B as the

closure in B under F-colimits of the objects of the form GA . Then 8'

is small since A and F are small, and the full inclusion N : B' •* B

preserves and reflects F-colimits. If the factorization of G through N

is NG' , then G' is again a <S>-comodel, so that by the argument above

G' = H'Z for some F-cocontinuous H' . Now we have G = HZ where H is

the F-cocontinuous NH' . This completes the proof.
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