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Abstract

Severe infections and psychiatric disorders have a large impact on both society and the
individual. Studies investigating these conditions and the links between them are therefore
important. Most past studies have focused on binary phenotypes of particular infections or
overall infection, thereby losing some information regarding susceptibility to infection as
reflected in the number of specific infection types, or sites, which we term infection load. In
this study we found that infection load was associated with increased risk for attention-deficit/
hyperactivity disorder, autism spectrum disorder, bipolar disorder, depression, schizophrenia
and overall psychiatric diagnosis. We obtained a modest but significant heritability for infection
load (h2 = 0.0221), and a high degree of genetic correlation between it and overall psychiatric
diagnosis (rg = 0.4298). We also found evidence supporting a genetic causality for overall
infection on overall psychiatric diagnosis. Our genome-wide association study for infection
load identified 138 suggestive associations. Our study provides further evidence for genetic links
between susceptibility to infection and psychiatric disorders, and suggests that a higher infection
load may have a cumulative association with psychiatric disorders, beyond what has been
described for individual infections.

Introduction

Infections are one of the major global health concerns and a leading cause of early mortality [1,
2]. In addition to the health risk conferred directly by severe infections, studies have shown them
to be associated with an increased risk of mental disorders, including schizophrenia [3], mood
disorders such as depression [4], and neurodevelopmental disorders such as autism spectrum
disorder (ASD) [5]. While infections are inherently caused by external pathogens, susceptibility
to infection has a genetic component [6].

In addition to replicating the epidemiological associations between psychiatric disorders and
infections, we showed in a previous study that susceptibility to severe infections (i.e., infections
requiring hospital contact) had a modest but significant heritability (3.2% on the observed scale)
and that the genetic correlation between overall infection (defined as having at least one diagnosis
from a variety of infection categories included in the study) and overall psychiatric diagnosis
(International Classification of Diseases (ICD-10) codes F00–F99 and/or ICD-8 codes 290–315,
but mostly one or more of schizophrenia, bipolar disorder or depression (affective disorder),
ASD, attention-deficit/hyperactivity disorder (ADHD), and anorexia) was 0.4–0.5, depending on
the method used to estimate it [7]. Another study that used the iPSYCH sample found genetic
overlaps between susceptibility to infections and specific psychiatric disorders, namely schizo-
phrenia, ADHD, depression, bipolar disorder, and post-traumatic stress disorder, but not ASD,
using genetic correlation analysis and/or polygenic risk scores (PRSs) [8]. Interestingly, a recent
study has shown positive genetic correlations between blood levels of C-reactive protein, a
marker for infection and inflammation, and major depressive disorder (MDD) and ADHD, as
well as positive genetic correlations between white blood cell counts and MDD, ADHD, and
schizophrenia [9], which could provide insights into the molecular mechanisms underlying the
genetic correlation between susceptibility to infection and psychiatric disorders, although the
trends were not always similar across individual psychiatric disorders in that study.

The aim of this study was to investigate these links further by employing a quantitative
phenotype for infection load in the iPSYCH cohort, comprising 65,534 individuals selected as
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cases of major psychiatric disorders (schizophrenia, bipolar dis-
order or depression (affective disorder), ASD, ADHD, and anor-
exia) or as part of a random population sample. Infection load in
this study is defined as the number of site-specific infection cat-
egories (central nervous system infection, gastrointestinal infec-
tions, genital infections, hepatitis, otitis, pregnancy-related
infections, respiratory infections, sepsis, skin infections,
HIV/AIDS, and urological infections) for which an individual
received at least one diagnosis. Thus, infection load in this sense
makes use of register-based diagnoses, similar to other studies [10],
to get a quantitative measure for an individual’s overall suscepti-
bility to severe infections using binary trait data (the presence or
absence of a diagnosis). This extends our previous study on overall
infection as a binary trait. Additionally, we replicate our previous
results and results from this study using an external sample and
perform genetic correlation analyses bothwithin and across the two
samples.

Methods

Data sources for diagnoses and study sample

The sample and the phenotypes used in this study have been
described in our previous publications [7, 11–15], and we repeat
the details here, with changes relevant to the present study: the
iPSYCHConsortium linked data from the Danishmedical registers
to biobank data via the unique civil registration number used in
Denmark since 1968 [16]. Biological data from the Danish Neo-
natal Screening Biobank include dried blood spots taken 4–7 days
after birth from nearly all infants born in Denmark after 1981 [16,
17], which were used for downstream genotyping. Infection diag-
noses were obtained from the Danish National Hospital Register,
which, since 1977, has included records of all inpatients treated in
Danish non-psychiatric hospitals, and, since 1995, has included
information regarding outpatient and emergency room contacts
[18]. The Psychiatric Central Research Register includes data from
all psychiatric inpatient facilities since 1969 and outpatient contacts
since 1995 [19]. In Denmark, diagnoses were based on the 8th
Revision of the ICD-8 [20] from 1977 to 1993, and, since 1994, they
have been based on ICD-10 [21]. For the psychiatric phenotypes
included in this study, all diagnosis types apart from henvisnings-
diagnose (referral diagnosis) were included, and the types of contact
included were inpatient, outpatient, and emergency care unit con-
tact. Data for psychiatric phenotypes are from the Psychiatric
Central Research Register. For infection phenotypes, the included
types of diagnosis were the following: ICD-8: hoveddiagnose and
bidiagnose (main and auxiliary diagnosis, respectively); ICD-10:
aktionsdiagnose, grundmorbus, and bidiagnose (main, basic, and
auxiliary diagnosis, respectively), and the included types of contact
were inpatient and outpatient hospitalisations and emergency
room contact, all from the Danish National Hospital Register.
Tillægsdiagnoser (associated diagnoses) were not considered, and
diagnoses of the following types were excluded: henvisningsdiag-
nose (referral) and komplikation (complication). ICD-8 diagnoses
with the following modifications: ‘Obs. Pro’ and ‘Ej befundet’
(suspected and not found, respectively) were also excluded. All
individuals in this study are part of the iPSYCH2012 sample [22],
selected from among all individuals born inDenmark between 1981
and 2005 (N = 1,472,762), and which included individuals diag-
nosed with at least one of schizophrenia, bipolar disorder or
depression (affective disorder), ASD, ADHD, and anorexia, and
individuals who were selected as part of a randomly selected sample

from theDanish population. The iPSYCH sample used in this study
has undergone several rounds of quality control (QC) as described
in our previous studies [7, 11–15] using data from high-quality
genetic markers prior to the imputation. The main sample QC
steps included the removal of individuals based on ancestry
(individuals who did not have Danish ancestry, as determined
from register data of family history and genetic principal compo-
nent analyses had been removed), as well as relatedness (if they
were first- or second-degree relatives of other individuals in the
sample; this step prioritised iPSYCH cases and then individuals
with a higher genotype call rate). Other QC steps involved the
removal of individuals based on missingness (>1%), abnormal
heterozygosity, ambiguous sex (discrepancies between annotated
sex and genetic data), or if they were duplicates of other individ-
uals. The first studies employing this QC protocol have more
information about the procedures [23, 24], including the supple-
mentary methods of a preprint of the former [25] and another
study [26]. Before QC, 78,050 individuals from 23 genotyping
waves were included. Following QC, 65,534 unrelated Danish
individuals were retained, of whom 34,705 were male and
30,829 were female. Data up to the end of 2012 were included
for infections, and data up to the end of 2013 were included for
psychiatric diagnoses. We had diagnoses for the following infec-
tion categories: bacterial, viral, central nervous system infection,
gastrointestinal, genital, hepatitis, otitis, pregnancy infection,
respiratory, sepsis, skin infection, HIV/AIDS, urological, and
other infections (e.g., protozoan infections). ICD codes for these
are provided in Supplementary Table S1. For psychiatric dis-
orders, the following ICD codes were used: any/overall psychiatric
diagnosis (ICD-8 code within the range 290–315 and/or ICD-10
code within the range F00–F99); ADHD (ICD-10: F90.0); anor-
exia (ICD-8: 306.50; ICD-10: F50.0); ASD (ICD-10: F84.0, F84.1,
F84.5, F84.8, and F84.9); bipolar disorder (ICD-8: 296.19, 296.39,
and 298.19; ICD-10: F30 and F31); depression (single and recur-
ring) (ICD-8: 296.09, 296.29, 298.09, and 300.49; ICD-10: F32 and
F33); schizophrenia (ICD-8: 295.x9 (excl. 295.79); ICD-10: F20).

Defining phenotypes for infection load and
psychiatric diagnoses

For specific psychiatric disorders, case (control) status was deter-
mined based on having (not having) the relevant ICD diagnosis as
per the above codes. For any/overall psychiatric disorder, cases had
any ICD code from ICD-8: 290–315 and/or ICD-10: F00–F99, and
controls did not have any of the codes from those ranges. For the
quantitative phenotype of infection load, individuals who did not
have any diagnosis from the above 14 infection categories received
an infection load phenotype value of 0; for individuals with infec-
tion diagnoses, we counted the number of infection categories they
had excluding the broad categories of bacterial, viral, and other
infections, and the total count was used as their infection load value.
This approach was chosen because these broad categories include
codes that were also found in specific categories, and, moreover,
they do not indicate specific infection sites. Individuals who were
cases only for those three categories without any site-specific cat-
egory (N = 3,074) received a missing infection load value and were
not used in analyses for this phenotype. The final sample used in
this study, therefore, included 62,460 individuals for the infection
load phenotype (NB: when using the binary overall infection
phenotype in some analyses, the full sample was used). The pheno-
type distribution figure was exported using Daniel’s XL Toolbox
v7.3.4 [27].
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Statistical and epidemiological analyses

Statistical analyses were performed in R [28] v.3.5.1. Logistic
regressions of psychiatric diagnosis on infection load were per-
formed with the glm function (family = binomial(link = ‘logit’))
with covariates for age (in years), age squared, and sex, resulting in
two-sided p-values from a Wald test for the infection load coef-
ficient’s being different from zero. Confidence intervals were
calculated with the confint function. The regressions were per-
formed in the random population sample (N = 21,706 before
exclusions; N = 20,822 after exclusions for the infection load
phenotype) to avoid potential biases and obtain population esti-
mates, and controls for psychiatric disorders were ‘normal con-
trols’, that is, they did not have the diagnosis which was being
tested but they could have other (psychiatric) diagnoses. Note that
the age covariates in this study were censored for a minority of
individuals who emigrated (0.43%), died (1.02%), or lost contact
with the Danish authorities (0.02%) by July 2013 (i.e., we set their
age to what it was when their status changed, whereas, for other
individuals, the age at the end of 2013 was used). These figures
apply to the full sample. Tetrachoric correlations for overall
infection and overall psychiatric diagnosis in the full sample and
in the random population sample were calculated with the polycor
R package v.0.8-1 [29].

Genetic dataset and genome-wide association study for
infection load

We performed a discovery genome-wide association study
(GWAS) for infection load, and GWASs for other phenotypes
(overall psychiatric diagnosis; overall infection) for downstream
heritability and genetic correlation analyses. The description of the
genetic dataset used in this study has appeared in several of our
previous publications [11, 12], but we repeat it briefly here, with
further information relevant to the present study: the marker
dataset used in this GWAS has undergone several rounds of
QC. The starting point for the QC was a dataset which had
78,050 samples genotyped in 23 of the original 25 waves. This
dataset is described in detail elsewhere [30]. Further QC of this
dataset including a description of the procedures for sample and
marker QC is provided in the first study that utilised it [23]. Note,
however, that that study had a minor allele frequency (MAF)
threshold (for dosage data) different from the one below. Before
the imputation of moremarkers, markers with rare alleles and non-
autosomal markers were removed. The pre-imputation QC is
described in more detail in other studies which used this sample
[23, 24, 26]. For the imputation, genotypes were phased with
SHAPEIT3 [31] and the imputation was performedwith IMPUTE2
[32]. Following the imputation, markers were excluded if they had
an INFO score (calculated with QCTOOL) <0.2;MAF <0.001; best-
guess genotypes missing in >10% of subjects, whereby the missing-
ness in imputed genotypes was determined by treating individual
genotypes with probability <0.9 as missing; Hardy–Weinberg equi-
librium P < 1 × 10�6; and/or a genome-wide significant association
with the genotyping wave or with the imputation batch itself
(in controls in a homogeneous European subset of the sample).
Lastly, markers with differential missingness between psychiatric
cases and controls (P < 1 × 10�6) were also removed. In this study,
we used only best-guess genotypes, or hard calls, and only geno-
types with a probability of 0.9 or above (i.e., the imputation resulted
in a best-guess genotype with a probability of at least 0.9 for a given
marker and a given individual) were retained (others were set to

missing). Furthermore, markers were retained only if they had an
INFO score (following the imputation) of at least 0.8 andMAF of at
least 0.01 in the QCed sample (these steps were additional steps not
included in some of the previous studies mentioned [23, 24, 26]).
Ultimately, 7,071,055 markers were used in the GWASs. The
genome build for our dataset was hg19. The infection load discov-
ery GWAS was performed with PLINK v.1.90b6.18 using a linear
regression model (--linear) and included covariates for age, age
squared, sex, the first 10 principal components, and overall psychi-
atric diagnosis status. The Manhattan plot and the QQ plot were
generated with the ‘qqman’R scripts by Stephen Turner and Daniel
Capurso (with the (major update) version from 19 April 2011 for
the former plot and the version from 10 June 2013 for the latter,
available at https://github.com/stephenturner/qqman/blob/v0.0.0/
qqman.r). Other GWASs (with logistic regression in the case of
binary phenotypes, with --logistic) were performed for downstream
analysis with LDSC, as described below. Those GWASs included
covariates for age, age squared, sex, and the first 10 principal
components. A covariate for overall psychiatric diagnosis status
was included in some analyses for the heritability estimates and not
in others (as indicated in the Results section), and it was not
included in GWASs used in downstream genetic correlation ana-
lyses. For the top markers, a post hoc association test was run in R
using a Poisson regression with the glm function (family = poisson
(link = ‘log’)) and the same covariates as in the GWAS, as the
infection load phenotype consisted of counts and was not normally
distributed.

Heritability estimates and genetic correlations

Using the same dataset of markers and covariates as the ones used
in the GWAS, we estimated the heritability of infection load in our
full sample. This was achieved with GCTA [33] as well as LDSC [34,
35]. For GCTA, the genetic relationship matrix (GRM) was calcu-
lated for each autosomal chromosome separately with --make-grm
and merged with --mgrm with GCTA v1.91.1 beta as previously
described [14]. The heritability of infection load was estimated with
--reml in GCTA v1.93.2 beta (covariates included age, age squared,
sex, the first 10 principal components, and overall psychiatric
diagnosis status). The number of markers in the final GRM for
the full sample was 6,941,439. For LDSC, LD score files were
generated using the QC-passing random population sample (from
the marker dataset with best-guess genotype hard calls updated to
have genetic positions using the genetic map from 1000 Genomes
phase 3), with a 1 cm window (--l2 --ld-wind-cm 1), as described
previously [7]. The summary statistics (PLINK output) from the
GWAS were processed with themunge_sumstats.py script with the
default parameters (after adding A2 from the PLINK bim file and
using the NMISS column as the N for LDSC), and LDSC (ldsc.py)
v.1.0.1 was used (with the default parameters) in the estimation of
the heritabilities (with --h2) and genetic correlations (with --rg).We
used the same LD score dataset as both reference and regression
(--ref-ld-chr and --w-ld-chr) datasets, as recommended in the LDSC
tutorial for non-partitioned LD Score regression (https://github.
com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation, version
from 13 July 2017). In the iPSYCH datasets, 5,464,859 markers
remained after processing with munge_sumstats.py. We tested the
heritability (h2) as being different from zero using a Wald test and
the χ2 distribution with 1 degree of freedom (d.f.) in the following
way: χ2 = (h2/SE)2, where h2 is the heritability on the observed scale
from LDSC and SE is the standard error for the heritability, and p-
values were calculated with 0.5*pchisq(χ2, df = 1, lower.tail = F) in R
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(we multiply by 0.5 since h2 should be nonnegative). For GCTA, the
likelihood ratio test statistic from the GCTA output was used to
derive p-values using the χ2 distribution with 1d.f., as described
above for the LDSC h2 estimates. Genetic correlations were esti-
mated only with LDSC, as it is robust to sample overlap for the
studied traits and allowed the use of only summary statistics-level
data from the replication sample. Note that when testing for genetic
correlations between infection phenotypes and psychiatric disorders
in iPSYCH, the summary statistics for the infection phenotypes in
iPSYCH were from a GWAS that did not include a covariate for
overall psychiatric diagnosis status, as stated previously. For herit-
ability estimation with LDSC, a covariate for overall psychiatric
diagnosis status was included in the corresponding GWAS, or not,
as indicated in the Results section. All GWASs used in downstream
LDSC analyses included covariates for age, age squared, sex, and
the first 10 principal components. The genetic correlation (rg) was
tested for being different from zero using a Wald test as well:
χ2 = (rg/SE)

2, where rg is the genetic correlation from LDSC and
SE is the standard error for the genetic correlation. P-values were
calculated inR using pchisq(χ2, df = 1, lower.tail = F).Note that in the
case of the heritabilities and genetic correlation for or between any
infection and any psychiatric diagnosis, which we reported previ-
ously [7], we include in this study results that used the censored age
covariates, so as to be in line with the present study’s methodology.
For the binary traits, heritabilities were transformed to the liability
scale [36] using the proportion of cases in each GWAS and a
population prevalence estimate from the iPSYCH random popula-
tion sample (0.1 for overall psychiatric diagnosis and 0.357 for
overall infection).

Replication sample

To replicate the results from the present study and our previous
study with a binary overall infection phenotype, we used summary
statistics from FinnGen [37] Release 7 (309,154 individuals). We
used two phenotypes which were the closest possible to our any/
overall infection and any/overall psychiatric diagnosis phenotypes:
certain infectious and parasitic diseases (AB1_INFECTIONS,
based on ICD-10 codes starting with A or B) and any mental
disorder (KRA_PSY_ANYMENTAL, based on ICD-10 codes
F00–F03, F051, G30, and F1–F9, or ICD-8/9 equivalent codes) with
the following numbers of cases and controls: 86,892 and 222,262,
and 76,073 and 233,081, respectively. The FinnGen summary stat-
istics were processed in the following way: first, they were cross-
referenced with the HRC reference panel (ftp://ngs.sanger.ac.uk/
production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz)
based on the marker ID. From that, the chromosome and position
in genome build hg19 were added to the summary statistics. Based
on the chromosome and position in hg19, marker IDs were
changed to corresponding marker IDs in the iPSYCH dataset,
and only overlapping markers were retained. This made it possible
to use the same LD score files and to have greater marker overlap
between the iPSYCH and FinnGen datasets for the genetic correl-
ation analyses. Duplicate markers and markers with mismatched
alleles (identified using PRSice [38] v2.3.5) were removed from the
summary statistics. The QCed summary statistics were then pro-
cessed with munge_sumstats.py (as they did not contain sample
sizes permarker, the total sample size as per the above numbers was
used). After QC and processing, 4,887,803 markers were included
in the FinnGen datasets. It should be noted that our LD score files
were based on a homogenousDanish-European sample; while there

exist LD differences between Finns and Danes, studies have used
the same (European) LD weights when analysing both Finnish and
Danish samples for genetic correlation estimation with LDSC
[39]. However, we also checked the heritabilities and genetic cor-
relations within FinnGen using European LD scores (https://data.
broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2).
In these analyses, we did not convert marker IDs, as both FinnGen
datasets and the LD score files included SNP rsIDs. Preprocessing
with munge_sumstats.py in this case included adding the total
sample size as per the above; otherwise, the default thresholds
we used. After processing, 12,809,821 markers in each dataset
(AB1_INFECTIONS andKRA_PSY_ANYMENTAL)were retained
(excluding markers with no rsID in the summary statistics files).
The number of overlapping markers across the FinnGen datasets
and the European LD score dataset was 1,169,856. Heritabilities
were transformed to the liability scale using the proportion of
cases for each trait as reported by FinnGen, and the same values
were used for the population prevalence (since FinnGen is a full
population cohort).

Post hoc analyses for genetic correlations

We performed several post hoc analyses and sensitivity analyses to
evaluate whether various factors affected the genetic correlation
analyses and/or provide further insight into the genetic relationship
between infection andmental illness. The first of these was a test for
cross-trait assortativemating, which could influence the rg estimate.
It was shown that, for a single trait, assortativemating would induce
a correlation between a PRS generated using only odd- or only
even-numbered chromosomes (in the target sample) at a time and
that, under random mating, these scores should not be correlated
[40]. This approach was later extended to cross-trait assortative
mating [41], whereby the PRS for trait 1 generated using only odd-
numbered chromosomes is tested for correlation with the PRS for
trait 2 generated using only even-numbered chromosomes, and
vice versa. We used a simplified version of this procedure, testing
for both correlations at both an inclusive p-value threshold (pT = 1)
and the genome-wide significance threshold (pT = 5 × 10�8), with
FinnGen summary statistics (as processed above for genetic cor-
relations with iPSYCH) as the training dataset and iPSYCH as the
target dataset. The PRSs were generated with PRSice v.2.3.5 with an
r2 threshold of 0.1 in a window of 250 kbp and using the --score sum
method. Otherwise, the default parameters were used. The correl-
ation was tested with the cor.test function in R, using the Pearson
correlation as the method. The tests were two-sided.

To test for genetic causality between overall infection and overall
psychiatric diagnosis in iPSYCH, we used the latent causal variable
(LCV) model [42]. This model tests whether trait 1 (in our case,
overall infection) is causal to trait 2 (overall psychiatric diagnosis)
using a latent causal variable which is assumed to mediate the
genetic correlation between the two traits. If trait 1 is strongly
genetically correlated with this variable, then it is partially genetic-
ally causal to trait 2. This relationship is quantified using the genetic
causality proportion (GCP). GCP ranges from 0 (no genetic caus-
ality) to 1 (full genetic causality; if it is negative, it means that trait
2 is partially or fully genetically causal to trait 1). LCV uses LD
scores and summary statistics (we used the same LD scores as used
with LDSC, and the summary statistics processed with LDSC), as
LDSC does, but it uses them in amodified procedure.We used both
the full dataset of summary statistics and markers with MAF ≥ 0.05
as recommended on the LCV GitHub page. The scripts used were

4 Ron Nudel et al.

https://doi.org/10.1017/S0950268823000687 Published online by Cambridge University Press

ftp://ngs.sanger.ac.uk/production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz
ftp://ngs.sanger.ac.uk/production/hrc/HRC.r1-1/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.gz
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2
https://doi.org/10.1017/S0950268823000687


https://github.com/lukejoconnor/LCV/blob/master/R/ExampleR
ealdataScript.R, https://github.com/lukejoconnor/LCV/blob/mas
ter/R/MomentFunctions.R, and https://github.com/lukejoconnor/
LCV/blob/master/R/RunLCV.R. The versions used were from
1 July 2020 for the first script and 14 March 2019 for the last two
scripts.

Lastly, we performed sensitivity analyses for the LDSC results
after removing the major histocompatibility complex (MHC)
region on chromosome 6 from the dataset used to generate the
LD scores: we removed markers on chromosome 6 between
coordinates 25,392,021 and 33,392,022, based on the coordinates
from a GWAS protocol [43] converted to genome build hg19 using
the UCSC Genome Browser LiftOver tool, and regenerated the LD
scores with LDSC v1.0.1 using the dataset of the randompopulation
sample (as described earlier). The LDSC analyses were then
repeated using these new LD scores. The numbers of markers
included in the h2 and rg analyses after the removal of the MHC
region were 5,424,093 for the iPSYCH datasets and 4,857,454 for
the FinnGen datasets (when used with iPSYCH LD scores). Note
that the external European LD score dataset did not include the
MHC region to begin with.

Results

In the full iPSYCH sample, 24,161 individuals had a psychiatric
diagnosis but no infection diagnosis, 6,744 had an infection diag-
nosis but no psychiatric diagnosis, 21,728 had both, and 12,901 had
neither. In the random population sample, 1,113 had a psychiatric
diagnosis but no infection diagnosis, 6,693 had an infection diag-
nosis but no psychiatric diagnosis, 1,062 had both, and 12,838 had
neither. The tetrachoric correlation between overall infection and
overall psychiatric diagnosis was 0.2006 (SE = 0.0063) in the full
sample and 0.1923 (SE = 0.0143) in the random population sample.
Sample sizes for psychiatric disorders and the binary infection
phenotype are shown in Table 1. To examine the age relationship
between the two disease classes, we used individuals who had both
diagnoses and defined the following variable: age at (first) infection
category diagnosis minus age at (first) psychiatric diagnosis (both
in years). This variable had a mean of �8.45, a median of �8.21,
and a standard deviation of 8.17. In the random population sample,

these were �8.79, �8.89, and 8.24, respectively. This suggests that,
on average, the first severe infection was diagnosed before the first
psychiatric diagnosis in our sample. For infection load, the counts
of individuals per infection load value are shown in Table 2. Among
individuals with an infection load of 0 in the full sample, the
proportion of individuals with overall psychiatric diagnosis was
65%, which rose to 85% for individuals with an infection load of 5 or
above. Among individuals with an infection load of 0 in the random
population sample, the proportion of individuals with overall psy-
chiatric diagnosis was 8%, which rose to 27% for individuals with an
infection load of 5 or above. Supplementary Figure S1 shows the
proportion of individuals with any psychiatric diagnosis across
infection load values.

Comorbidity analyses for infection load and psychiatric
disorders

Infection load was significantly associated with an increased risk of
all individual psychiatric disorders except for anorexia. It was
especially associated with overall psychiatric diagnosis, with an
odds ratio (OR) of 1.4578 (P = 1.10 × 10�41). Table 3 shows the
results of the regression analyses.

Heritabilities and genetic correlations

Infection load showed a significant nonzero heritability, but
it was not high, at h2 = 0.0221 (SE = 0.0055, P = 2.93 × 10�5)
from LDSC. The heritability estimate for infection load from
GCTA was similar: h2 = 0.0432 (SE = 0.0053, LRT statis-
tic = 77.298, P = 7.35 × 10�19). GCTA used a genomic relation-
ship matrix which was based on more markers than included in
the summary statistics used by LDSC, which could contribute to
the difference between these estimates, in addition to the meth-
odological differences between GCTA and LDSC. The binary
overall infection and overall psychiatric diagnosis phenotypes in
iPSYCH and the corresponding phenotypes in FinnGen were
also significantly different from zero, with the psychiatric
phenotypes showing higher heritabilities. Table 4 shows the
results of all LDSC heritability analyses.

For the binary phenotypes, our genetic correlation analyses
replicated our previous results. Namely, overall infectionwas highly
correlatedwith overall psychiatric diagnosis within iPSYCH,within
FinnGen, and across FinnGen and iPSYCH, with estimates mostly
being higher than 0.4. For infection load, the genetic correlation

Table 1. Sample sizes for psychiatric disorders and overall infection phenotype

Phenotype

Number of
individuals in
the full sample

Number of
individuals in the
random population

sample

Full sample size 65,534 21,706

Overall infection 28,472 7,755

Overall psychiatric diagnosis 45,889 2,175

Autism spectrum disorder 12,331 277

Attention-deficit/hyperactivity
disorder

14,397 338

Schizophrenia 2,401 70

Bipolar disorder 1,391 36

Depression 18,511 435

Anorexia 2,551 50

Table 2. Distribution of infection load in the full sample and in the random
population sample

Infection
load

Number of individuals in
the full sample

Number of individuals in the
random population sample

0 37,062 13,951

1 17,682 5,166

2 5,858 1,366

3 1,460 271

4 324 53

5–7a 74 15

aDue to the data information policy of the iPSYCH Consortium, exact numbers that are lower
than 5 (excluding 0) are not specified, which is why we combined the counts for infection load
5–7; this was done only for reporting purposes, and the actual analyses used the individual
counts.
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with overall psychiatric diagnosis was slightly higher than that
between overall infection and overall psychiatric diagnosis. For
the corresponding phenotypes across iPSYCH and FinnGen, the
genetic correlations were above 0.6. All estimates remained signifi-
cant after the Bonferroni correction for the number of genetic
correlations estimated in this study. The full results are shown in
Table 5.

Top results from the discovery GWAS for infection load

Our GWAS found 138 associations at the suggestive threshold
(1 × 10�5), which are shown in Supplementary Table S2. Figure 1
shows the Manhattan plot for the GWAS, and the corresponding
QQ plot is shown in Supplementary Figure S2. The top association
in our study was with marker rs12361013 on chromosome

Table 3. Results of regressions of psychiatric disorder on infection load in the random population sample

Disorder
Estimate from
the regression SE (estimate) P-value OR

OR 95% CI
lower bound

OR 95% CI
upper bound

Autism spectrum disorder 0.3084 0.0750 3.94 × 10�5 1.3613 1.1698 1.5703

Attention-deficit/hyperactivity disorder 0.4250 0.0626 1.16 × 10�11 1.5297 1.3488 1.7247

Schizophrenia 0.4309 0.1241 0.000519 1.5386 1.1890 1.9375

Bipolar disorder 0.4548 0.1684 0.006911 1.5758 1.1038 2.1444

Depression 0.4102 0.0530 9.96 × 10�15 1.5072 1.3560 1.6694

Anorexia 0.1325 0.1915 0.488794 1.1417 0.7584 1.6132

Overall psychiatric diagnosis 0.3770 0.0279 1.10 × 10�41 1.4578 1.3800 1.5393

Note: The p-values are not corrected. CI, confidence interval; OR, odds ratio.

Table 4. Heritability estimates from LDSC

Trait Observed scale h2 SE P-value Liability scale h2

iPSYCH infection load (with covariate for overall psychiatric diagnosis) 0.0221 0.0055 2.93 × 10�5
–

iPSYCH infection load (without covariate for overall psychiatric diagnosis) 0.0252 0.0055 2.30 × 10�6
–

iPSYCH overall infection (with covariate for overall psychiatric diagnosis) 0.0157 0.0048 0.0005362 0.0242

iPSYCH overall infection (without covariate for overall psychiatric diagnosis) 0.0178 0.0048 0.0001043 0.0274

iPSYCH overall psychiatric diagnosis 0.0763 0.0061 3.37 × 10�36 0.0956

FinnGen infections (iPSYCH LD scores) 0.0118 0.0030 4.19 × 10�5 0.0210

FinnGen infections (European LD scores) 0.0159 0.0020 9.33 × 10�16 0.0283

FinnGen any mental disorder (iPSYCH LD scores) 0.0260 0.0019 6.31 × 10�43 0.0486

FinnGen any mental disorder (European LD scores) 0.0437 0.0028 3.25 × 10�55 0.0817

Note: The p-values are not corrected. ‘Liability scale h2’ is relevant only to binary traits; in all cases, the h2 in the ‘observed scale h2’ column is the one reported by LDSC. SE, standard error.

Table 5. Genetic correlation estimates from LDSC

Trait 1 Trait 2 rg SE P-value

iPSYCH overall infection iPSYCH overall psychiatric diagnosis 0.4061 0.1049 0.000108

iPSYCH overall infection FinnGen any mental disorder 0.4131 0.0956 1.55 × 10�5

iPSYCH overall infection FinnGen infections 0.6189 0.1394 9.01 × 10�6

iPSYCH overall psychiatric diagnosis FinnGen any mental disorder 0.6660 0.0444 7.34 × 10�51

iPSYCH overall psychiatric diagnosis FinnGen infections 0.4062 0.1118 0.000280

iPSYCH infection load iPSYCH overall psychiatric diagnosis 0.4298 0.0901 1.84 × 10�6

iPSYCH infection load FinnGen infections 0.6347 0.1279 6.96 × 10�7

iPSYCH infection load FinnGen any mental disorder 0.3388 0.0733 3.80 × 10�6

iPSYCH infection load iPSYCH overall infection 0.9837 0.0364 7.57 × 10�161

FinnGen infections (iPSYCH LD scores) FinnGen any mental disorder (iPSYCH LD scores) 0.5603 0.1110 4.47 × 10�7

FinnGen infections (European LD scores) FinnGen any mental disorder (European LD scores) 0.6465 0.0555 2.33 × 10�31

Note: When at least one of the traits was measured in iPSYCH, iPSYCH-generated LD scores were used. The p-values are not corrected. SE, standard error.
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11 (β = �0.0323, P = 4.88 × 10�7, effect allele: A, other allele: G),
which was the leading SNP in the suggestive association peak on
chromosome 11. There was also a second suggestive association
peak, almost equally significant, on chromosome 9, with the leading
SNP being rs35711908 (β = 0.0242, P = 5.33 × 10�7, effect allele: A,
other allele: G). These two markers were manually tested in a
Poisson regression in R, due to the fact that the phenotype consisted
of count data. This type of regression model is not implemented in
common genetic association tools, but it may be more suitable for
the infection load phenotype. For rs12361013, we obtained an
estimate (beta) of �0.05848 for the A allele count, with
P = 7.64 × 10�8. For rs35711908, we obtained an estimate of
0.04231 for the A allele count, with P = 1.14 × 10�7. Thus, at least
for the top results, the linear regression analysis in PLINK under-
estimated the effects, but the differences were not large.

Tests for assortative mating and causal relationship between
overall infection and overall psychiatric diagnosis, and
sensitivity analyses for genetic correlations

All cross-trait PRS correlations between odd- and even-numbered
chromosomes were close to zero and nonsignificant: for infection
PRS for odd-numbered chromosomes and psychiatric diagnosis
PRS for even-numbered chromosomes, the correlations
were �0.0018 (P = 0.6388) and 0.0042 (P = 0.2875) for pT = 1
and pT = 5 × 10�8, respectively. For infection PRS for even-
numbered chromosomes and psychiatric diagnosis PRS for odd-
numbered chromosomes, the correlations were 0.0002 (P = 0.9560)
and 0.0044 (P = 0.2643) for those two p-value thresholds.

The LCV analyses showed some evidence for a causal rela-
tionship between overall infection and overall psychiatric diag-
nosis with GCP = 0.71 (P = 6.41 × 10�5) with all markers and
GCP = 0.77 (P = 4.65 × 10�8) usingmarkers withMAF ≥ 0.05. The

LCV Z-scores for the heritability of overall infection were 5.96
and 5.59, respectively. The h2 Z-scores for overall psychiatric
diagnosis were >7.

Our LDSC sensitivity analyses after the removal of the MHC
region obtained results that were similar to the original results in
terms of the sizes of the correlations, with the average change across
all h2 estimates being ~0.001 and the average change across all rg
estimates being ~0.051. The full results can be found in the Sup-
plementary Notes for this paper.

Discussion

Our study identified strong epidemiological and genetic associ-
ations between infection load and psychiatric disorders. In both
cases, the association was positive, that is, an OR greater than 1 in a
regression of a psychiatric diagnosis on infection load or a positive
genetic correlation. Our previous study obtained higher ORs for the
effect of the (binary) overall infection phenotype [7] on psychiatric
diagnosis (it will be noted that the results of our previous study do
not change much after censoring the age for individuals who died,
emigrated or lost contact with the Danish authorities, as employed
in the present study. For example, for overall psychiatric diagnosis,
before age-censoring, the OR for overall infection was 1.74 (95%CI:
1.59-1.90), and after age censoring it was 1.73 (95%CI: 1.58-1.90)).
However, in this study, we report the increase in odds per infection
category/site on psychiatric diagnosis, in this study, we report the
increase in odds per infection category/site (Table 3). Thus, having
been diagnosed with, for example, infections of five different cat-
egories would increase the odds of having a psychiatric diagnosis by
a factor of 6.6. In our sample, individuals tended to have been
diagnosed with the (first) infection before the (first) psychiatric
diagnosis. When looking at the quantitative phenotype of infection

Figure 1.Manhattan plot for the genome-wide association study for infection load. The blue line represents the threshold for suggestive association (P = 1 × 10�5), and the red line
represents the threshold for genome-wide significance (P = 5 × 10�8).
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load, we observe a general positive association trend between
infection load and the proportion of psychiatric cases
(Supplementary Figure S1). While the temporal relationship
between the two disease classes is obscured with the infection load
phenotype, we know from the literature that some somatic diseases
have a bidirectional relationship with psychiatric disorders and that
the latter are also associated with the risk of somatic diseases even a
decade later [44, 45]. Infections can also have a bidirectional
relationship with psychiatric disorders [46].

The heritability of infection load is similar to the heritability of
overall infection on the liability scale, and, as expected, they are
strongly correlated genetically. Infection load shows a slightly
higher genetic correlation (than overall infection) with overall
psychiatric diagnosis in iPSYCH but also a lower one with Finn-
Gen; however, in all cases, the genetic correlation is positive and
remains significant after the Bonferroni correction. The genetic
correlation between overall infection and overall psychiatric diag-
nosis replicated between iPSYCH and FinnGen (using infections
in iPSYCH and psychiatric diagnosis in FinnGen and vice versa)
and was about 0.4. It should be noted that the genetic correlations
between the corresponding phenotypes across iPSYCH and Finn-
Gen were not 1, but they were >0.6. This is not uncommon when
the phenotypes were ascertained differently and come from dif-
ferent studies (e.g., as in the case of ASD in iPSYCH and in PGC
[30]), and in our case, there were differences in sample compos-
ition and (mostly for infections) differences in the included diag-
noses. The highest genetic correlation between overall infection
and overall psychiatric diagnosis was obtained when using Finn-
Gen summary statistics for both phenotypes, with European LD
scores. Combined, the results of all analyses suggest that there is a
high degree of positive genetic correlation between susceptibility
to severe infections and psychiatric disorders. We found no evi-
dence that the genetic correlation between overall infection and
overall psychiatric diagnosis was inflated by potential cross-trait
assortative mating between susceptibility to infection and psychi-
atric disorders. We found some evidence that susceptibility to
overall infection is partially genetically causal to overall psychi-
atric diagnosis using the LCV model. We note that the LCV Z-
scores for the heritability of overall infection were below 7, the
threshold recommended in the LCV script; however, the LCV
script also specifies that it is ‘a very stringent threshold’. These
results do not mean that specific psychiatric disorders are neces-
sarily linked to infections via genetics in the same way as overall
psychiatric diagnosis. For example, we have shown in a previous
study that susceptibility to infection is not genetically correlated
with ASD, but genetics does play a role in the interplay between
infections and ASD [11]. Namely, ASD cases with a history of
maternal pregnancy-related infections were genetically different,
as a group, from ASD cases without a history of maternal infec-
tions (the genetic correlation between the two phenotypes was
rg = 0.3811, P = 0.0033 when testing against a null of
0, P = 1.89 × 10�6 when testing against a null of 1). ASD cases
with a history of maternal infections occurring more than
2 months following birth were not genetically distinct from the
group of ASD cases without a history of maternal infections
(i.e., their genetic correlation was not significantly different from
1). These estimates do not change much when the MHC region is
excluded from the analysis (discussed in more detail below). As
ASD cases form a large part of the iPSYCH case subset, this may
suggest that the underlying factors in the high genetic correlation
between overall infection and overall psychiatric diagnosis could
be non-disorder-specific with regard to psychiatric disorders or

that they are driven by other disorders in iPSYCH. Lastly, our
LDSC analyses includedmarkers in theMHC region.Most studies
that use LDSC remove these due to the high level of LD in the
MHC region because such markers could be outliers in the regres-
sion model and influence the LDSC regression. However, in the
iPSYCH GWASs in this study and our previous studies [7, 11],
there was no strong signal in the MHC region (for infection
phenotypes, this was true both for GWASs with and without a
covariate for overall psychiatric diagnosis). The problem with
LDSC and the MHC region having extremely strong associations
pertains mostly to autoimmune diseases [47], and we did not have
any such signal in our results. Also, given the relevance of the
MHC to infection-related phenotypes, we decided to retain it in
the analyses. However, we also provide results for the LDSC
analyses repeated after removing the MHC region from the LD
score datasets, for h2 and rg estimates reported in this study or
relevant studies that employed the iPSYCH-generated LD scores.
These can be found in the Supplementary Notes. The removal of
the MHC region affected mostly analyses involving the FinnGen
infections phenotype (when using the iPSYCH LD scores). This is
likely due to the fact that, unlike the iPSYCH overall infection
GWAS, the FinnGen infection GWAS did obtain a genome-wide
significant signal within the MHC region, and, therefore, the
analyses without the MHC region could be more appropriate
when this dataset is used. A previous study that used the iPSYCH
sample examined genetic correlations between infections and
specific psychiatric disorders, and positive genetic correlations
were found between infections and anorexia, ADHD, bipolar
disorder, depression, and schizophrenia [8].

Our GWAS for infection load identified two suggestive associ-
ation peaks. Interestingly, the top association from our GWAS for
overall infection, with rs6447952, was not among the suggestive
associations for infection load. In this context, one important point
to consider is what our phenotype of infection load captures. By
definition, all individuals with infection load >0 would be cases for
our overall infection phenotype, and, therefore, we expect some
overlap in genetic associations, as also reflected in the high genetic
correlation between the phenotypes (which, it should be noted,
could be very high in part due to the low heritabilities of the
individual phenotypes). However, a high infection load, as defined
in our study, suggests a high predisposition to infection regardless
of the site of infection. In other words, it may indicate a deeper
cause of immune dysfunction. This is not the same as simply having
an infection or even being prone to a specific type of infection: an
individual with 20 skin infections of the same kind and no other
infection would have an infection load of 1, whereas an individual
with a skin infection, a gastrointestinal infection, and a central
nervous system infection would have an infection load of 3, and
both individuals would have the same affection status for overall
infection. This also makes biological sense: repeated infections of
the same type may suggest a narrower genetic risk, or a primarily
non-genetic risk factor, for example, personal hygiene in the case of
skin infection, or diet in the case of gastrointestinal infection,
whereas an individual with multiple infections at different sites of
the body is likely to have amore general immune deficit. Thus, there
could be genetic factors that might be captured by one phenotype
but not the other.

Our top GWAS association was with rs12361013, which is
located in the Contactin 5 (CNTN5) gene on chromosome 11.
Contactin 5 is an immunoglobulin cell adhesion molecule which
is involved in neural development and has been implicated in ASD
[48]. It has also been implicated in inflammatory diseases such as
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gout [49] and in the response to anti-tumour necrosis factor alpha
medication in Crohn’s disease patients [50]. Moreover, a variant in
CNTN5 showed a genome-wide significant association with
secreted Interleukin-2 in response to vaccinia virus stimulation in
individuals who had received a smallpox vaccine [51]. The second
highest association was with rs35711908 on chromosome 9. This
variant showed genome-wide significant associations with several
phenotypes in FinnGen (Release 7, accessed through the web portal
on 9 October 2022), including various forms of hypothyroidism
and disorders of the thyroid gland, which, in turn, may be associ-
ated with infections [52, 53]. On the GTEx web portal (Version
8, accessed on 9 October 2022), rs35711908 is associated with the
expression of the Proteasome 20S Subunit Beta 7 (PSMB7) and
NIMA Related Kinase 6 (NEK6) genes in several tissues. PSMB7
encodes a subunit of the 20S proteasome, which is responsible for
protein degradation; upon stimulation by pro-inflammatory cyto-
kines, this subunit is down-regulated and replaced by one encoded
by PSMB10, which forms part of the immunoproteosome, which is
involved in MHC class I antigen presentation [54, 55]. NEK6 is
involved in mitosis and, if overexpressed, may result in human
B-cell lymphoma [56]. Interestingly, both PSMB7 and NEK6 inter-
act or are predicted to interact with B-cell-specific enhancers [56,
57]. Thus, our top GWAS results do show some links to immune-
related functions, but they are not genome-wide significant.

Conclusions

Our study identified positive associations between infection load
and psychiatric disorders both epidemiologically, using the random
population subset of the iPSYCH sample, and genetically, using the
full iPSYCH sample as well as an external replication sample,
FinnGen.We have also replicated our previous result for the genetic
correlation between overall infection and overall psychiatric diag-
nosis using the FinnGen sample. Our results also suggest that
infection susceptibility could have a causal genetic relationship
with psychiatric disorders. Our GWAS for infection load identified
suggestive associations that were linked to genes involved in neu-
rodevelopmental or inflammatory diseases or immune-related
phenotypes. Our study thus provides further support to the notion
of links between the immune system and psychiatric disorders.
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found at http://doi.org/10.1017/S0950268823000687.
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