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Introduction. Let S be the integral closure of a complete discrete rank

one valuation ring R in a finite Galois extension of the quotient field of R, and

let G denote the Galois group of the quotient field extension. Auslander and

Rim have shown in [3] that the trivial crossed product J( l , S, G) is an he-

reditary order if and only if 5 is a tamely ramified extension of R. And the

author has proved in [7] that if the extension S of R is tamely ramified then

the crossed product J(/, 5, G) is a 77-princiρal hereditary order for each 2-

cocycle / in Z2(G, U(S)). (See Section 1 for the definition of 77-ρrinciρal

hereditary order.) However, the author has exhibited in [8] an example of a

crossed product Δ(f, S, G) which is a 77-principal hereditary order in the case

when S is a wildly ramified extension of R. The purpose of this paper is to

present necessary and sufficient conditions for a crossed product J(/, 5, G) to

be a 77-principal hereditary order when the extension S of R has a separable

residue class field extension.

Let S be an extension of R (with separable residue class field extension)

and let C denote the center of the first ramification group. In Section 1 we

define for each element [/] of H\G, U(S)) a subgroup R/ of C called the

radical group of [/]. The main theorem of the paper states that the crossed

product Δ(ft S> G) is a 77-principal hereditary order if and only if the radical

group of [/] is trivial. As a corollary we obtain the result of Harada (see

[10]) that if R has perfect residue class field, then J(/, S, G) is a 77-principal

hereditary order if and only if 5 is a tamely ramified extension of R. In an

appendix we present some facts concerning the cohomology of groups which

shall be referred to in the paper.

The following notation shall be employed throughout the entire paper. If

R is a ring then its multiplicative group of units shall be denoted by U(R),

and its radical by rad R. If R is a local ring, then R shall denote its residue
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class field. Unless otherwise stated. 5 shall always denote the integral closure

of a complete discrete rank one valuation ring R in a finite Galois extension

of the quotient field of R, and G the Galois group of the quotient field extension.

Since R is complete, S is also a complete discrete rank one valuation ring, and

77 shall denote a prime element of S. The ith ramification group of the ex-

tension S of R shall be denoted by G, . That it to say, G, is the set of all

elements a of G such that σ(s) =ΞS mod Πt+1 for all 5 in S. Each group G, is

a normal subgroup of G, and the inertia group Go acts trivially on S.

More generally, if G is a finite group and A is a G-ring over a unitary

commutative ring R, then [/] shall denote the cohomology class in H2{G,

U(Λ)) of the 2-cocycle/of Z\G, U(A)). Furthermore, if A is a local ring,

then/shall denote the image of / under the natural map Z2(G, U(A))-+Z\G,

U(A)). For the definitions of crossed product and hereditary order we refer

the reader to [7]. The definitions of tame ramification and wild ramification

are given on pp. 88-89 of [6].

For the convenience of the reader we summarize some important facts

about ramification groups which may be found in Chapter IV of [5], Let 5

denote the integral closure of a complete discrete rank one valuation ring R

in a finite Galois extension of the quotient field of R such that the residue

class field extension is separable. If R has characteristic zero then the first

ramification group vanishes. If the characteristic p of R is non-zero then GL

is a p-growp. The factor group G0/Gi is a cyclic group whose order is relatively

prime to p. For />1, each factor group G//G/+1 is an Abelian ^-group of type

(py p, . . . ,p).

1. The radical group. Let 5 denote the integral closure of a complete

discrete rank one valuation ring R in a finite Galois extension K of the quotient

field k of R, and let G denote the Galois group of K over k. If [/] is an

element of H\G, U{S)) then the crossed product J(/, 5, G) is an border in

the central simple ^-algebra J(/, K, G). If 77 denotes a prime element of 5

it is easy to verify from the definition of crossed product that the left ideal

J(/, S, G) 77 of J(/, S, G) is in fact a two-sided ideal. Therefore 77 is always

contained in the radical of J(/, S, G) according to Lemma 1.4. In the case

when J(/ , 5, G)IT is precisely the radical of J (/ , 5, G) we may conclude that

the crossed product J(/ , 5, G) is an hereditary order by the Corollary to-
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Theorem 2.2 of [2], since J ( / , 5, G)77 is a free left J (/ , S, G)-module. This

leads us to make the following definition.

DEFINITION. A crossed product J(/ , S, G) is called a Ή-principal hereditary

order if its radical is generated by the prime element IT of 5.

We have already established the existence of a large class of ZiΓ-principal

hereditary orders, namely each crossed product J(/ , S, G) in the case when

5 is a tamely ramified extension of R. The purpose of this paper is to study

77-principal hereditary orders in the more general case when the residue class

field extension is separable. Observe that the crossed product Δ(f, S, G) is a

77-princiρal hereditary order if and only if the crossed product J(/, S, G) is

a semi-simple ring.

Let S be an extension of R with S separable over R, and let C denote the

center of the first ramification group. In Sections 2 and 3 the question of the

semi-simplicity of J(/, S, G) shall be reduced to the question of the semi-

simplicity of J(f, S, C).

Therefore our object of study in Section 1 is the crossed product J(f,F,C)

where C is an Abelian p-group which acts trivially on a field F of characteristic

p. We shall define for each element [/] of H\C, U(F)) a subgroup Rf of C

and prove that Δ(f, F, C) is semi-simple if and only if R/ is trivial. The

following remark establishes notation which shall be in constant use throughout

this section.

Remark l. 7. Let C = Ei x x Et be a decomposition of an Abelian p-growp

C into a direct product of cyclic ^-groups. It is well known that such a de-

composition of C is unique up to isomorphism except for the order of the cyclic

components, (see Theorem 3.3.2 of [4]). Let F be a field of characteristic p

such that C acts trivially on F. If If] is an element of i/2(C> UiF)) we may

assume according to Cor. A. 3 that / has been normalized in the sense of

Abelian ^-groups, so that / = / i •/* where each element /,• of Z2(Ei, U(F)) is

normalized in the sense of cyclic groups. The symbol hAX) for \<i<t shall

denote the polynomial hi(X) = Xeί-ai in F[X] where a is the order of Ei,

and a i is an element of U(F) such that C/J corresponds to at mod LU(F)]ei

under the canonical identification H\Eiy UiF)) = U(F)/W(F)7t.

We next observe that the crossed product J ( / , F, C) is isomorphic to a
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tensor product over F of factor rings of the polynomial ring FLX1.

PROPOSITION 1.2. The crossed product Jif, F, C) is F-algebra isomorphic to

the tensor product Ai® Aι® ®At over F where A\ =^ FίXl/(hi(X)) for l<>i<t.

Proof. The proof is by induction on the number t of cyclic components

of the Abelian £-group C. If t = 1, then C is cyclic. Since / is normalized in

the sense of cyclic groups, the map φ : J{f, F, C)-»FUΩ/(hiiX)) induced by

defining ψiu*) = X is an F-algebra isomorphism where a denotes a generator

of C.

For the inductive step we now suppose that C has n cyclic components,

say C = FιX * xEn-ιXEn, and consider the subgroup Cn-\ - EiX xEn-ι.

Then J(/, F, C) = Δ(gfn> F, Cn-ixEn) where g -/i •/„-!. Using the fact

that / is normalized in the sense of Abelian />-groups one can easily verify

that the natural map-

Ψ > Δ(gfny F, Cn-lXFn)-»J(g , F> Cn-l)®Fi(/n, F, En)

is an F-algebra isomorphism. The induction hypothesis states that the asser-

tion of the proposition is true for Abelian ^-groups with n - 1 cyclic components.

Therefore the crossed product J(gf F, Cn-ι) is F-algebra isomorphic to

At® ®i!n-i. And since En is cyclic, it follows from the first part of the

proof that Δ(fn, F, En) is F-algebra isomorphic to An. Combining these

results we conclude that Δ(f, F, C) is F-algebra isomorphic to ill® " ®An

The next object is to establish a criterion for the semi-simplicity of

J(f, F, C) in terms of the irreducibility of the polynomials kj{X) and thus

establish a connection between the semi-simplicity of J(/, F, C) and cohomology.

In order to do this we first prove two lemmas.

LEMMA 1.3. Let F be a field, and let H(X) be a non-constant polynomial in

FίXl. Denote the factor ring FίXl/(H(X)) by L2. If U is a field containing

F, then the tensor product Li®FL2 is Lralgebra isomorphic to LJLYM(HiY)).

Proof Define the map? : Li®L2->L1[Fj/(F(F)) by ψ(J]ai®fi(X)/H{X))

= Σβ//it Y)/(H(Y)) where the β, are in Li and the ft are in FίXl. If is easy

to verify that ψ is a well-defined Li-algebra epimorphism.

In order to prove that ψ is a monomorphism we first observe that

(1, X, . . . , I " " 1 ) is a generating set for L2 over F where n is the degree of*
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H(X). Therefore any element of Li®L2 may be written in the form

*Σi(H®Xil(H(X)) where the Λ, are in U. Suppose now that Σ<H®X'/{H(X))

is in the kernel of ψ. Then the equalities φ(Σfli ® X7(#(X))) = Σa/FVUft Y)) -= 0

imply that the polynomial Σ β / Γ of LiCY] is in the principal ideal generated

by H{Y), so that TfaY* =g{Y)H(Y) for some element g(Y) of LiCYl Now
M — 1

the degree of Σ # ί F ' is less than or equal to n- 1. However, the degree of
•4 = 0

£•( F)ϋ/\ F) is less than n if and only if .g( Y) is the zero polynomial since H{ Y)

has degree n and L\ is a field. Therefore g( Y) is the zero polynomial, and so

the equality Σ Λ / Γ 1 ' =g(Y)H( Y) implies that m = 0 for 0 < / ^ - 1. Therefore

ker f = (0) and so f is a monomorphism.

LEMMA 1.4. Let the extension S of R be a ring extension. If S is a finitely

generated left R module and (rad R)S = S(rad R) then rad R is contained in rad

S.

Proof To show that rad R is contained in rad S it suffices to show that

if M is a finitely generated left S-module and 5(rad R)M=M, then M=0.

The fact that 5 (rad R) = (rad R)S implies that S(rad R)M = (rad R)SM =

(rad R)M. Since M is a finitely generated left 5-module and 5 is a finitely

generated left i?-module it follows that M i s a finitely generated left i?-module.

Therefore the equality (rad R)M = M implies that M=(0) . Hence Sίrad R)

is contained in rad S.

PROPOSITION 1.5. Let F be a field of characteristic p^O, and let Hi(X) for

\<i<t be elements of FLX1 of the form HAX) = XH - at where each e, is a ptn

power. Let A denote the tensor product Li® ®Lt over F where Li = FίXl/{HiiX)).

Then the following statements are equivalent

1) A is semi-simple

2) A is a field

3) each polynomial Hi(X) is irreducible in a splitting field for Π Hj(X) over

F.

Proof. The proof is by induction on the number t of polynomials Hi(X).

We first prove that the statements are equivalent when t = 1. In this case A

is of the form A = FίXl/(H(X)) where H(X)^Xe-a and e is a pth power.

Since F has characteristic^, a factorization of H(X) into a product of irreducible
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polynomials of FίXl is of the form HiX) = (Xm-b)elm where betm = a and m

is a divisor of e. The radical of the commutative Artin ring FZXl/(Xe-a)

is generated by the residue class of the polynomial Xm - b. Therefore A is

semi-simple if and only if rn~e, that is if and only if H{X) is irreducible in

FίXl. Therefore 1) is equivalent to 3). However, the polynomial H(X) is

irreducible in FίXl if and only if FίXl/(H(X)) is a field. Therefore 3) is

equivalent to 2) and this completes the proof in the case when t- 1.

For the inductive step we assume the equivalence of the statements for

t < ny and prove their equivalence for t = n. Throughout the rest of the proof

it shall be convenient to use the notation Ai-Lχ® ®Li for l<i<n> and

A, = F.

We show first that 1) implies 2). So suppose that A - An is semi-simple.

Using the induction hypothesis we shall prove that each At for l<i<n — l

must be a field. Observe that the natural map Ai->A is an injection because

each Ai is a free F-module. Since A is a finitely generated commutative A%

algebra, the radical of Ai is contained in the radical of A according to Lemma

1.4. From the semi-simplicity of A we conclude that Ai has zero radical.

Hence Ai is semi-simple because it is an Artin ring. The induction hypothesis

implies therefore that Ai is a field for l ^ ί < » —1.

Now we may prove that 1) implies 2). For since An~i is a field, and

A = i n - i 0 l « , we know that A is i4»-i-algebra isomorphic to An-xlYlK Ye" - an)

by Lemma 1.3. Thus we have reduced the problem to the case /= 1, and so

the assumption that A is semi-simple implies that A is a field.

In order to prove that 1) implies 3) we first observe that if A is semi-

simple, then each Ai for \<i<>n is a splitting field over F for the polynomial

*ΣJHJ(X). For by the above, the semi-simplicity of A implies that each Ai

for \<i<n is a field and is therefore Λ-i-algebra isomorphic to Ai-iZYl/(Hi( Y))

according to Lemma 1.3. It now follows easily by induction that Ai is a

splitting field for TlHj(X) over F. Now we may prove that 1) implies 3).

For the fact that Ai is A -ralgebra isomorphic to Ai-iLYl/(Yei-en) together

with the fact that Ai is a field implies that HAY) is irreducible oyer Ai-i

which is a splitting field for ΏHj(X).

We prove next that 3) implies 2). Consider the n polynomials HiiX) and

assume that each polynomial Hi(X) is irreducible in a splitting field for ΏHj(X)..
ji
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Then certainly each Hi(X) for i<n is irreducible in a splitting field for

TlHj(X). By the induction hypothesis we may conclude therefore that An-\

is a field. We have already shown that if An-\ is a field it is necessarily a

splitting field for HHj(X). Now A=*An-ι®Ln is ^4n-i-algebra isomorphic to

A»-£Yl/(Hn(Y)) by Lemma 1.3. Since Hn(X) is irreducible in An-itYl we

conclude that A is a field.

The trivial observation that 2) implies 1) completes the proof of the pro-

position.

Prop. 1.5 motivates the definition of the radical group which we present

next. An element H/] of H2(C, U(F)) gives rise to a chain of fields

LoQLiQ QLt-i defined inductively in the following way. Let Lo = F. When

Li has been defined, we then define L/+i to be a splitting field for the polynomial

hi+iiX) over Li, (see Remark l . l ) .

We define R/,t for l<i<t to be the maximal subgroup of Ei with the

property that the image of [/}] under the natural map H\Ei, U{F))-^H\RfiuU{Li-i))

is trivial.

DEFINITION. The radical group Rf of an element [/] of H2(Ct U(F)) is

defined to be the direct product R/,iX x Rf.t where the R/j are defined as

above.

Observe that the definition of R/ depends upon the order of the cyclic

components Ei of C. However, the non-triviality of Rf shall be seen to be

independent of the order of the cyclic components of C (see Theorem 1.10).

Once the order of the JSi has been fixed, the definition of Rf depends only upon

the cohomology class of /.

It is convenient to make the following definition now.

DEFINITION. Let the extension 5 of R have a separable residue class field

extension, and let [/] be an element of H2(G, U(S)). Then the radical group

Rf of [/] is defined to be the radical group of [/] where if 2 is the image of

ίfl under the natural maps

H\G, U(S)) +H2(G, U(S))-+H2{C, U(S))

and C is the center of the first ramification group of S over R.

The following observation is -immediate from the definition of the radical
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group, since the higher ramification groups of a tamely ramified extension

vanish.

PROPOSITION 1.6. If S is a tamely ramified extension of R, then Rf = (1) for

each element [/] of H\G, U(S)).

The following example shows that Rf need not equal C.

EXAMPLE 1.7. Let R = ZDG ( 2 ) and 5 = Rh/'Jl. Then 5 is a wildly ramified

extension of R and C= (1, <;) is cyclic of order two. Let / be the element of

Z2(C, U(S)) defined by f(σ, a) = X. Then since h{Y) = Y2 ~ X is irreducible

over S = {Z/(2Z))(X) we conclude that i?/= (1).

The following proposition states necessary and sufficient conditions for

the ith component of the radical group to be trivial.

PROPOSITION 1.8. The group Rfj is trivial if and only if hi(X) is irreducible

in Li

Proof Let hAX) =Xe* - a, = (Xmi - biYilmi be a factorization of hάX) in

Li-itXl with Xm - bi irreducible. Note that bf/πtί = α, . We shall prove that

Rf,i = ((Jm) where a is a generator of the cyclic group j£, . To show that (J'71*)

is contained in Rfj we observe that fi is cohomologous to the trivial 2-cocycle.

For the order of («Λ) is ei/tm and tfdσ"*), UiLi-J) = UUH-J/imLi-i)!*""*.

It remains to show that 7?/, , is contained in Um ί). Let <;A' denote a generator

of i?/,, . Then ai = Ciilx for some element a in U(Li-i). From the inclusion

(σmi)QRf,i it follows that e, /m/ divides /̂/Λ: SO that (ei/tm)d = ΛΓ for some

positive integer rf. The equalities bflmi -= cf'* = (cf)*/m* imply that i/ = cf.

Therefore Xm ί - h = (X* - c, )r f. Since Xm - bi is irreducible over L, -i we con-

clude that d= 1 and so Λ: = m/. Therefore j?/,, is contained in (c;m0.

The group Rfj is trivial therefore if and only if m/ = βi, that is if and

only if hi(X) is irreducible in Li

PROPOSITION 1.9. The radical group Rf is trivial if and only if each polynomial

hi{X) is irreducible in a splitting field for Tlhj{X) over F.

Proof. The radical group Rf is trivial if and only if each cyclic component

Rf.i is trivial. By Prop. 1.7, the group R/j is trivial if and only if hi(X) is

irreducible in L, -iLXΊ However, the field L/-i was defined to be a splitting

https://doi.org/10.1017/S0027763000023977 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023977


CROSSED PRODUCTS AND RAMIFICATION 93

field for Uhj(X) over F.

Now. we may prove the main theorem of this section.

THEOREM 1.10. The following statements are equivalent

1) the crossed product J(ff F, C) is semi-simple

2) J(/ , F, C) is a field

3) the radical group R/ is trivial

Proof. By Prop. 1.2, the crossed product A(f, F, C) is F-algebra isomorphic

to the tensor product Aι® β ®At over F where i4, = FQG/(*, U0) Com-

bining the results of Prop. 1.5 and Prop. 1.9 we arrive at the desired equiva-

lence.

The following corollary gives technical information about the radical of

J(/, Fy C) in the case when d(f, F, C) is not a field which shall be of use in

Section 2. Let C = Ei x x Et be a decomposition of the Abelian ^-group C

into a direct product of cyclic groups; and for convenience of notation let

Fo=(l) .

COROLLARY 1.11. If the crossed product d(f, F, C) is not a field, then there

exists an element of the form ux — d in rad J ( / , F, C) where r # l is in Eq for

some q>l, and δ is in the subring J(f, F, EiX xEQ-ι).

Proof We assume as usual that the 2-cocycle / has been normalized in

the sense of Abelian ^-groups. The assumption that J(/, F, C) is not a field

implies that the radical group Rf of [/] is non-trivial according to the theorem.

We may therefore consider the least positive integer q for which the component

R/tQ is non-trivial. By the choice of q it is clear that the crossed product

Δ(f, F, EiX β xEQ-ι) is afield which shall henceforth be denoted by L. Let

a denote a generator of EQ. Then the L-algebra map ψ : Δ(f, F, EiX xEq)

-*LZXl/{hQ(X)) induced by defining ψ(uσ) =* X is an L-algebra isomorphism.

If hq(X) = (Xm - b)elm is a factorization of hQ(X) in L[X] with Xm - b irreducible,

then the fact that LlXl/{hQ{X)) is not a field implies that m<e. The radical

of mX"M{hQ(X)) is generated by the residue class of the element Xm-b,

whose preimage in J(ft F, EiX xEq) under ψ is of the form ux - δ where

τ = σm and δ is in J(/, F, F x x xEq-i). Note that r ^ l because \<m<e.

The fact that J(/, F, C) is a finitely generated commutative J(/, F, Fi x x EQ) -

algebra now implies that uτ - δ is i"n rad J(/, F, C).
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2. p-groups. In Section 1 we noted that the crossed product J(f, 5, G) is

a 77-principal hereditary order if and only if J(/t S, G) is a semi-simple ring.

The purpose of this section is to establish that Δ{fy S, d) is semi-simple if

and only if J(/, S, C) is semi-simple, where C denotes the center of the first

ramification group d . Our object of study in this section is therefore the

crossed product Δ{f, F, d) where Gi is a j!>-group with trivial action on a

field F of characteristic p.

The notion of a splitting field of a cohomology class shall play an important

role in Sections 2 and 3 by reducing questions concerning semi-simplicity to

the case of a trivial crossed product.

DEFINITION. Let G be a finite group, and F and K fields such that K is a

G-ring over F. Let [/] be an element of H2{G, U{K)). Then an extension

field L of K is called a splitting field of [/] if [/] is in the kernel of the natural

map H\G, U(K)) ->H\Gy U(D) induced by the inclusion of K in L. If L is

a splitting field for [/] we say that L is a splitting field of the crossed product

J(/, K, G). Finally, if a splitting field L of J(f, K, G) is a purely inseparable

extension of K we call L a purely inseparable splitting field of J(ft K, G).

LEMMA 2.1. Let F be a field of characteristic p*0, and C an Abelian p-group

with trivial action on F. Let C/3 bean element ofH^iC, U(F)). Then the crossed

product J(fy F, C) has a purely inseparable splitting field L. In the case when

A(f, F, C) is a field we may take L = A(f, F, C).

Proof Let C = Ei x x Et be a decomposition of C into a direct product

of cyclic groups. We may assume that / is normalized in the sense of Abelian

ί-groups, and write f-f\* * •/* where the element/,- of Z2(Ei, U{F)) is normalized

in the sense of cyclic groups. Let a\ be an element of UiF1) such that [/,-]

corresponds to ai mod LUiF)!3* under the canonical identification H2{Ei, U(F))

= U(F)/ίU(F)yi where e\ denotes the order of E{, Let L be the field obtained

by adjoining the roots of the polynomials Xβi - β, to F. Then L is a purely

inseparable extension of F and [/] is in the kernel of the map H*(Cf.lΛF)) -+

HhC, U(D) induced by the inclusion of F in L.

In the case when A(f, F, C) is a field let L= A(f, F, C). To verify that

L is a splitting field of J(ft F, C) it is sufficient to observe that XH - m ={X- uo)^
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so that each polynomial X9i - a,- splits into linear factors in LZXl. Since L is

a splitting field for the polynomial Π (X* - ad over F it is clear that L is a

purely inseparable extension of F.

Let Gi be a £-group with trivial action on a field F of characteristic p.

The main theorem of this section states that the crossed product A(f, F, Gι)

is semi-simple if and only if Δ{f> F, C) is a field where C is the center of d .

The proof involves an inductive process.

Consider the following chain of subgroups of the p-gvoup Gι

CΛ=> =>C, => =>Co=>C-ι

where the groups C; are defined inductively in the following way. Let C-i = (1).

When Cj has been defined, we then define C/+i. to be the preimage of Cι+\ in

Gi where C, +i is the center of Gild. Note that Co = C where C is the center

of Gi, and C« = Gj. It is easy to verify that each Q is a normal subgroup of

Gi. Furthermore, each inclusion C/CCz+i is strict since Gi is a />-group. The

following lemma states a property of the subgroups C, which shall be useful

later in this section.

LEMMA 2.2. Let p be an element of Ck/Ck-2 not in the subgroup Ck-i/Ck-2.

Then there exists an element τ in Gi/Ck-z such that the commutator c=rpr~V~1

is in Ck-i/Ck-2 and c # l .

Proof. Suppose that τp = pτ for all elements τ in Gι/Ck~z- Since Ck-ι/Ck-2

is by definition the center of GJCk-2 it would then follow that p is in Ck-i/Ck-*

which contradicts the assumption on p. Therefore we may consider an element

r of Gi/Ck-2 such that τμ^pτ.

Now the isomorphism iGJCk-2)/(Ck-i/Ck-z).^Gi/Ck-i together with the fact

that Ck/Ck-i is the center of GjCk-i implies that r commutes with p modulo

Ck-i/Ck-2. Therefore τp-cpτ for some element c in Ck-i/Ck-2 with c # l .

The lemma concerning the existence of purely inseparable splitting fields

shall be used to prove the next proposition.

PROPOSITION 2.3. Let Gi be a p-group with trivial action on a field F of

characteristic p, and let [/] be an element of H2(Gi, U(F)). Then there exists a

chain of fields

aLn
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and 2-cocycles gi in Z2(GU U{Li)) such that

1) each extension LiCzLi+i is purely inseparable

2) gi is cohomologous to the image of f in Z2 (G\> U(Li)) for each i

3) each gi is in the image of the inflation map Z2(Gι/d-if U(Li))-*Z\G\, U(Li))

Proof. The construction of the fields Li and the 2-cocycles gi is done

inductively. Let Lo-F and go =/. It is clear that Lo and go satisfy statements

1), 2), and 3). When Li and gi have been defined, we then define L, + i and gi+i

in the following way.

For convenience of notation we denote the preimage of gi in Z2(Gi/d-u U{Li))

by gi also. Then the field Li+i is defined to be a purely inseparable splitting

field for the crossed product Δ(gi, Li, d/Ci-i). The existence of such a field

Li+i is guaranteed by Lemma 2 .1 : when Δ(gi, Li, dld-i) is a field we take

We next use Z,ί+i in order to define the 2-cocycle gi+i. Let gi denote the

image of # in Z2(G,, U(Li^)) under the map of Z\GU U(Li)) intoZ2(GU U(Li+ι))

induced by the inclusion of L, in L/+i.- From the definition of L +i it follows

that the preimage of ίgβ in H^GJd-u U(Li+1)) is trivial on dld~ι*dld-ι-

Consider the following diagram

Jd-ι

linf I inf

&{&/&-!, U(Li+ι)) ^

i r e s

H*{Ci/Ci-i9

where the map ψ is induced by the second Noether isomorphism theorem. It

may be verified from the definitions of the maps that the diagram is com-

mutative. Furthermore, by Prop. A. 7 we know that the column is exact. By

diagram chasing we conclude that there exists a 2-cocycle gi+ι in Z2(G l t U(Li+ι))

cohomologous to gi and in the image of the inflation map Z2(Gi/C*, U(Li+i))-*

Z\GU U(Li+ι)). Observe that since the map H2(GJd, U(Li+1))->H2(Gu U(Li+1))

is an injection, we may assume that the preimage of gi*-ι in Z2(Gj/C/, C/(L, +i))

is normalized on C;+iXC, +i in the sense of Abelian ^-groups.

The notation used in the statement of Prop. 2.3 shall be in use throughout

the rest of Section 2. The next object is to prove that each crossed product
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A(giy Li, Ci/Ci-i) is a field whenever Δ{f, F, C) is a field. In order to do this

we present three lemmas. The first two are of a general nature and shall be

referred to several times in the paper. The third lemma gives technical

information about the gi and Li of Prop. 2.3.

LEMMA 2.4. Let the extension S of R be an extension of Artin rings. Then

{rad S) Π R is a nilpotent two-sided ideal of R. Therefore {rad S) Π R is contained

in rad R.

Proof Since 5 is an Artin ring it is well known that rad S is a nilpotent

two-sided ideal of 5. It follows easily now that (rad S) Π R is a nilpotent two-

sided ideal of R and is therefore contained in rad R.

LEMMA 2.5. Let G be a finite group, R a unitary commutative ring, and A

a G-ring over R. Let G = U Hτi be a disjoint right coset decomposition of G

relative to the subgroup H of G. If C/H is an element of H2{G, U{A)), then the

crossed product Δ(f, A, G) is a free left Δ(f, A, H)-module with free generators

Proof Clearly the set {uXi} generates Δ{f, A, G) as a left Δ(f, A, H)-

module. In order to show that {uXi} is a free basis we shall show that if

d = ΣδfKτ, = 0 with the fl. in Δ{f, A, H), then fl, = 0 for each i. Write ft = Σ « Λ } « *

where each a^ is in A and each h is in H. Then ^ Σ Σ t f / Λ τduhx^
t iι

The coefficient of Uhτt is therefore a(/t

]f{h, r, ). Since Δ(f, A, G) is a free left

i4-module with free generators ux for r in G, and the f{h, r, ) are in U(A),

we conclude that a^ = 0 for each h and /. Therefore δ, = 0 for each /.

Denote the crossed product Δ{gk-u Lk-u Ck/Ck-z) by Δk and the crossed

product Δ{gk-u Lk-u Ck-i/Ck-z) by Δk-i. Observe that Δk-ι is a subring of Δk.

LEMMA 2.6. The crossed products Δk and Δk-i satisfy the following rules

1) &t(rad Δk){Uχ)~xcira.ά Δk for each τ in GjCk-2

2) (rad Δk) Π J j ^ c r a d Δk~i

3) Δk-ι is contained in the center of Δk

Proof In order to prove statement l) we first observe that rad Δk is a

nilpotent two-sided ideal of Δk since Δk is an Artin ring. Using the fact that

rad Δk is two-sided together with the fact that Ck/Ck-2 is a normal subgroup

of Gi/Ck-z we can conclude that &τ(ra<3 A)(^ τ )" 1 is a two-sided ideal of Δk.
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And the nilpotency of u~(rad Δk) (u^)'1 follows immediately from that of rad Δ\.

Therefore, since u-Λrad Δk) {ux)~ι is a nil ideal of Δk we know that it is contained

in rad Δk.

Assertion 2) follows immediately from Lemma 2.4.

We shall make use of Prop. A. 1 to prove that Δk-ι is contained in the

center of Δk. For let λ = *Σa?u9 denote any element of Δk-u where the elements

P are in Ck-i/Ck-2 and the a9 are in Lk-u Since Ck/Ck-2 acts trivially on Lk-it

we know that λ is in the center of Δk if and only if λuτ -~ uxλ for each element

τ of Ck/Ck-2. Now λux =Σ«p^-i(p, τ)u?x. On the other hand, uτλ =

Σ«p^-i(r , p)ux? = Σ#p£"fc-i(P> r)^Pτ since Ck-i/Ck-2 is in the center of Ck/Ck-2

and gk-i(τ, ρ)=gk-i(p> τ) according to Prop. A.I. Therefore λux = uxλ for

every λ in Δk-i and r in Ck/Ck-2, and so J*-i is contained in the center of Δk-

It is in the next proposition that we make use of the fact that the extension

Li+ι of Li is purely inseparable for each /.

PROPOSITION 2.7. // the crossed product Δ{f, F, C) is α field then each crossed

product Δ(gi, Li, d/d-i) is a field.

Proof. The proof is by contradiction. Suppose therefore that not all the

commutative rings Δ(giy Li, d7C;-i) are fields. By hypothesis, Δ(gQ, Z,o, Co) =

Δ(f, F, C) is a field so we may consider the least positive integer k such that

Δ(gky Lky Ck/Ck-i) is not a field. We shall show first that the assumption that

Δ{gk, Lky Ck/Ck-i) is not semi-simple implies that Δ(gk-u Lk-u Ck/Ck-2) is not

semi-simple. Then we shall show that the semi-simplicity of Δ(gk-u Lk-u Ck-i/Ck-2)

implies the semi-simplicity of the crossed product Δ(gk-if Lk-iy Ck/Ck-i) and

thus arrive at a contradiction.

We proceed to show that J(gk-i, Lk-i, Ck/Ck-2) is not semi-simple. The

first step is to establish a connection between Δ(gk-u Lk~\, Ck/Ck-2) and the

commutative ring Δ{gkt Lk, Ck/Ck-i). It follows from Prop. A. 7 that the sequence

(l)-+H\Ck/Ck-2, U(Lk))-*H2(Ck, U(Lk)) is exact. Since gk is cohomologous

to gk-ι in Z2(Ck> U(Lk)) we conclude therefore that their preimages are

cohomologous in Z2(Ck/Ck-2, U(Lk)) by some map <ρ : Ck/Ck-2->U{Lk). Then

the map ψ : Δ(gkf Lkf Ck/Ck-2) -> Δ(gk-i, Lk, Ck/Ck-2) induced by defining

ψ(au?) =aφ{p)up for a in Lk and p in Ck/Ck-2 is an L*-algebra isomorphism.

The following diagram establishes the desired relation between the crossed
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products Jigk-u Lk-u Ck/Ck-2) and Jigky Lky Ck/Ck-ι). Observe that the

columns are exact.

Φ
Jigky Lk, Ck/Ck-2) >Δ(gk-ly

Jigky Lky Ck/Ck-i) Jigk-iy Lk-u Ck/Ck-2)

I ί
(1) (1)

Explicitly, the map a is defined as follows. Let N be the left ideal of

Jigky Lky Ck/Ck-2) generated by the set of all elements of the form 1 -- u? for

p in Ck-i/Ck-2. The ideal N is in fact two-sided, and the natural map

Jigky Lky Ck/Ck-2)/N-* Jigky Lky Ck/Ck-i) is an Z,£-algebra isomorphism. Then

a is defined to be the composition of the natural maps

Jigky Lky Ck/Ck-2)-* Jigky Lky Ck/Ck-*) / N ~» A igk y Lk y

Note that the preimage of rad Jigky Lky Ck/Ck-ι) is contained in rad

Jigky Lky Ck/Ck-2) since N is contained in rad Jigky Lkt Ck/Ck-2).

Now let Ck/Ck-i = Ei x x Et be a decomposition of the Abelian />-group

Ck/Ck-i into a direct product of cyclic groups. The assumption that

Jigky Lky Ck/Ck-ι) is not semi-simple implies by Cor. 1.11 that there exists an

element of the form uτ~δ in rad Jigky Lky Ck/Ck-i) where r is an element

different from ΐ in Eq for some q satisfying \<q<t and δ is in Jigky Lky

EiX xEQ-ι). We may therefore consider an element ux-δ of rad

Jigky Lky Ck/Ck-2) in the preimage of uτ-Ίϊ

We now use the element u^ - δ to produce a non-zero element x in the

radical of Jigk-u Lk-u Ck/Ck-2)^ Write ψ(δ) in the form ψiδ) =Σ<z p& p where

each p is in Ck/Ck-2 and the elements aP are in Lk. Now by the assumption

on k we have taken Lk = Jigk-iy Lk-i, Ck-i/Ck-2), so we may consider the

isomorphism

β ' Lk-*Jigk-u Lk-iy Ck-i/Ck-2)

of subfields of Jigk-iy Lky Ck/Ck-2) which leaves Lk-i element-wise fixed. Define

the element xof J(gk-u Lk-u Ck/Ck-2) by setting x = φiτ)uτ — δi where δi = *Σβ(a?)u?.

The next step is to show that x is in rad Jigk-u Lk, Ck/Ck-2) and to do

this it suffices to show that the image ψ~1(x) of ψ~1ix) in Jigky Lky Ck/Ck-ι)
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is in the radical. Since Δ(gk, Lk, Ck/Ck-i) is a commutative Artin ring, ~ψ~ιXx)

is in the radical if and only if ψ~\x) is nilpotent. In order to prove the

nilpotency of φ'ικx) we prove first that δp = ψ-\διf where P is the degree of

Lk over Lk-i. (Since Lk is purely inseparable over Lk-x we have the inclusion

Now δ = ψ'ιC^αPu?) so that

On the other hand, using the fact that αζ is in Lk-ι and is therefore left fixed

by θ we obtain the equalities

Since m - J is in the radical of an Artin ring, we have that (Ux - ~δ)N = 0 for

some positive integer JV. It is easy now to verify that φ~1(x) is nilpotent.

For φ=\£)p* = [«χ - r\SΓ)Ts = *χPJI - ?Pi" = luτ - J ] ^ v = 5. This concludes the

proof of the assertion that x is in rad d(gk-u Lk, Ck/Ck-2).

Since x is in (rad A(gk-i, Lk, Ck/Ck-z)) Π Δ{gk-u Lk-u CklCk-2) we conclude

from Lemma 2.4 that # is in rad Δ(gk-if Lk-u CklCk-i).

It remains to show that x is non-zero. It may be observed from the first

part of the proof that τΦp mod Ck-i/Ck-2 for any element p in the expression

δ = ̂ ΉΣflμKp), from which it certainly follows that r =*= ί> for any such p. Since

the crossed product Δ(gk-\, Lk-u Ck/Ck-z) is a free left Z,&-i-module with free

generators uσ for σ in Ck/Ck-2 we conclude that ΛΓ^O. Therefore Δ(gk-i, Lk-u

Ck/Ck-2) is not semi-simple, and this concludes the first part of the proof.

The rest of the proof involves showing that the semi-simplicity of Δ(gk-u

Lk-\, Ck-ι/Ck-2) implies the semi-simplicity of Δ(gk-i, Lk-u Ck/Ck-z), As in

Lemma 2.6 we use the notation Δk-i = Δ(gk-u Lk-u Ck-i/Ck-2) and Δk = Δ(gk-u

Lk-u Ck/Ck-2)' Let Ck/Ck-2 = U (Ck-ιlCk-ΐ)Pi be a disjoint right coset decom-

position of Ck/Ck-2 relative to the subgroup Ck-JCk-2 Then an element δ of
ί(jδ)

Δk can be written uniquely in the form <5 = ^δiUH where each δi is in Δk-ι.

We may assume that pi = 1.

The proof that Δk is semi-simple is by induction on t{δ). If t(δ) = 1, then
δ is in (rad Δk) Π Δk-u so that δ is in rad Δk-ι by Lemma 2.6. Since Λ-i is

t

semi-simple we conclude that δ = 0. Now let 5 = Σ ί , «w be an element of rad J^,
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with dt*O and Pi = 1. The induction hypothesis states that if γ is an element

of rad Άk and t(γ) <t, then r = 0. Consider the element p* of CklCk-2* By

Lemma 2.2 there exists an element τ in GjCk-2 such that rp/τ"~1pf1 = c* is in

Ck-i/Ck-2 andcί=¥l. For l < / < £ - 1, Ietc2 be defined by Cι= rp/r^pΓ1 and observe

that each c, is in Ck-i/Ck-t.

Now form the element γ = 5 - u-δ(u^)'1. By Lemma 2.6 it follows that γ

is in rad J&. Using the fact that Δk-ι is contained in the center of Δk together

with the definition of the a one may obtain the equalities

Σ P < (

_ V /ϊ Γi - ^ - l ( r >

ίtί *.i{c f > p.)

For convenience of notation, let λi = 1 - ^ ~ ϊ ( r ' pi}fk-liτpi> τ ^ «c, for K/<ί ,

and note that each λi is in J^-i. It is easy to check that cL =. 1 and Ai = 0 since
ί

Pi = l. Therefore r - Σ(^Λ')^Pi with W/ in Δk-ι for 2</<ί. Hence r is an
t = 2

element of rad Δk such that ί(r)<£. By the induction hypothesis we may

conclude that r = 0, and so cM/ = 0 for 2<i<*t. But /U=̂ 0 since ^=^1, so that

fl/ = 0 because Δk-i is a field. This contradicts the assumption that δt^O.

Therefore rad Δk- (0), and so Δk is semi-simple.

LEMMA 2.8. // the crossed product Δ(gi, Li, Ci/Q-i) is a field for some i>

then the radical of Δ(gif Li, Q) is generated as a right ideal by the radical of

J(l, Li, G-i)..

Proof Recall that gi= 1 on C, -ixCz -i. Let N denote the right ideal of

the trivial crossed product J(l, L, , CV-i) generated by the set of all elements

of the form 1 - uo with a in Cf -i. It follows at once from the exercise on

p. 435 of [9] that iVis the radical of J(l, L/, C, -i). Therefore Lemma 1.4 now

implies that NΔ(gi, Li, d) is contained in rad Δ(gi, Li, d). In order to con-

clude that NΔ(gi, Li, d) is the radical of Δ(gi, Li, C, ), observe that the factor

ring Δ(gi, Li, d)/NΔ(gi, Li, d) is isomorphic to the crossed product Δ(gi, Li, dld-i)

and is therefore simple by hypothesis.

PROPOSITION 2.9. Let Gι be a p-group with trivial action on a field F of

characteristic p. Then the crossed product Δ(f, F, &) is semi-simple if and only

if Δ{f, F, C) is a field where C denotes the center of Gu
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Proof. If Δ(f, F, Gι) is semi-simple, the fact that rad Δ(f, F, C) is contained

in rad Δ(f, F, &) (see Lemma 1.4) implies that Δ(f, F, C) is also semi-simple.

Therefore Δ(f, F, C) is a field according to Theorem 1.10.

To prove the assertion in the other direction recall first of all that the

assumption that J(/, F, C) is a field implies that each crossed product

J(gi, Li, Ci/Ci-i) is a field by Prop. 2.7. We shall use this fact to prove

inductively that Δ(f, F, d) is semi-simple for Q<i<n. Note that J(/, F, Cύ)

is semi-simple by hypothesis. SD suppose that Δ(f, F, d-i) is semi-simple.

In order to prove that J (/ . F, d ) is semi-simple consider the sequence of maps

Δ(f, F, d ) —>j(/, L/, C, )--»J(#, Z,/, Cί>—>J(#, Lf, d/d-i)

where 0 is the L/-algebra isomorphism defined by ψ(auτ) =aφ(τ)u, for α in Li

and r in d , and 0 : d*-> Z7(L| ). is the map by which / is cohomologous to gi

in Z 2 (d, U{Lj)). The other maps are the obvious ones.

Let δ denote any element of rad Δ(ft F, d). We shall use the above

sequence to prove that # = 0. By applying Lemma 1.4 we may conclude that

δ is in rad J(/, L, , C, ), so that ψ(δ) is in rad Δ(git Li, C, ) since ψ is an

isomorphism. According to Lemma 2.8 the fact that Δ(gj, Li, dlCi-i) is a

field implies therefore that we may write ψ{δ) in the form ψ(δ) = Σ ^ ^ ί where

each m is in rad Δ(l, Li, C/-i) and each £, is in J(^/, Li, Q). Therefore

5 = Σ^'"1(»ιV"1(^/). From the definition of the isomorphism #, it follows that

each element ψ~ι(tii) is in rad Δ(f, Li, C/-i). Consider now a disjoint right

coset decomposition C/= UC,-ipy of d relative to the subgroup d -i. Then

each element 0~x(5/) has a unique expression in the form ψ^iδi) = Σ^y^p;

where the if are in Δ(f, Li, d-i). Therefore 5= ΣΐΣ>Φ~\ni)λf']uJ The

fact that δ is in J(/, F, d ) implies now that Ίjψ'^ndλf is in J(/, F, d-i)

for each , so that Έψ"\m)λf is in (rad Δ(f, Li, d-0) ΠJ(/, F, d-i) . It

follows from Lemma 2.4 that (rad Δ(f, Li, d-i)) ftΔ(ftF, d-i) is contained

in the radical of Δ(f, F, d-ι) . By the induction hypothesis, rad Δ(f, F, d-i) = (0).

Therefore Σψ^in^λf = 0 for each /, and so we conclude finally that-£ = 0.

3. Hereditary orders. Let 5 be the integral closure of a complete discrete

rank one valuation ring R in a finite Galois extension of the quotient field of

Rf and let G denote the Galois group of the quotient field extension. Assume
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moreover that the residue class field extension S of R is separable. The purpose

of this section is to prove the main theorem of the paper, namely that the

crossed product J(/, S, G) is a 77-principal hereditary order if and only if the

radical group R/ is trivial. (See Section 1 for the definition of radical group.)

The results of Sections 1 and 2 together imply that J(/, S, &) is semi-

simple if and only if R/= (l), where Gi denotes the first ramification group

of 5 over R. The crossed product J(/, 5, G) is a 77-principal hereditary order

if and only if J(/, S, G) is semi-simple. Therefore our next object is to prove

that J(/, S, G) is semi-simple if and only if J(/, S, Gι) is semi-simple.

The first step is to reduce the problem to the inertial case. For the sake

of completeness we prove the following proposition which has already been

established by Harada in [10].

PROPOSITION 3.1. Let S be an integrally closed extension of a complete discrete

rank one valuation ring Ry and let Go denote the inertia group of S over R. Let

H/] denote an element of H2(G, U(S)). Then the radical of the crossed product

Δ(f> S, G) is generated as a right ideal by the radical of Δ(f, S, Go).

Proof Let 77 denote a prime element of 5. Since 77 is in rad J(/, S, G)

and in rad A(f, S, Go) it suffices to prove that the radical of J ( / , S, G) is

generated as a right ideal by the radical of Δ(f, S, Go). For convenience of

notation we let J = Δ(f, S, G) and Jo = Δ{f, S, Go).

Let U denote the inertia ring of S over R. Since S is a purely inseparable

extension of U, the inertia group Go acts trivially on S. Furthermore, Ό = R{β)

for some element θ of U since U is a finite separable extension of 7?.

Observe that the intersection (rad Δ) Πϊ o is contained in rad Jo under the

natural injection of J o into Δ according to Lemma 2.4.

Now we may prove the proposition. Let G= UGor/ be a disjoint right

coset decomposition of G relative to the normal subgroup Go. Let d be an
„ ί(δ)

element of rad Δ and write δ = Σ ^ T . where δi = ̂ Σc'^Uh with the h in Go and

the c{h in U(S). Note that the elements δi are unique by Lemma 2.5. We

shall prove by induction on t{δ) that each δi is in rad Jo. For suppose that

t(δ) = 1. Then δ = δiUXi where δi is in j 0 . The element δiu^)"1 is therefore

in (rad J) Π Jo. By the above observation we conclude that δi is in rad Jo.

Now let δ = Σ f t ^ f be an element of rad J for which t(δ) = /. The induction
i = 1
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hypothesis states that if t(γ)<t for an element γ of rad ~Δ then each n is in
ί-l

rad Io where γ = Σ n ^ . Consider the element a = θδ-dπ\θ) = Σ(0 - τiτj\θ))δtuXi.

Since a is in rad Z and t(a)<t it follows from the induction hypothesis that

(θ-τiτf\θ))δi is in rad ΐ 0 for each i such that \<i<t-\. Since G/Go is the

Galois group of U over R (see p. 32 of [5]) we have that τ{τΐ\β) =0 if and

only if i=t. Therefore δi is in rad Jo for l</<* - 1. Finally we observe that

δtuτt is in rad Z so that δt = δtUτ^u^)"1 is in (rad Z) Π Zo and hence in rad Zo.

Therefore <5, is in rad Jo for l</<* and this concludes the proof.

As in Section 2 we shall use the notion of a splitting field of a crossed

product to reduce computations to the case of a trivial crossed product.

PROPOSITION 3.2. Let f be an element of Z2(G0, U(S)). Then there exists a

finite purely inseparable extension L of S and a 2-cocycle g of Z2(GQt U(D) such

that g is in the image of the inflation map Z2(Go/Gu U{D) -+Z2(Go, U(D) and

is cohomologous to the image of f in Z2{G0, U{D).

Proof The proof is by induction on the number of ramification groups.

Let

) 3 * ZDGΛ(rt) ̂ Gain + l) = ( l )

be the sequence of (distinct) ramification groups of the extension 5 of R,

observing that α:(0)=0 and <*(l)=l. We first construct a chain of fields

S = L o cLiC cLn and 2-cocycles gi of Z2{G0, UiLi)) such that each L, +i

is a purely inseparable extension of Z,, , and each gi is in the image of the

inflation map Z2(Go/Gα(M+i-, ), U{Lj)) -*Z2(G0, U(Lj)) and is cohomologous to

the image of / in Z2{G0, U{Li)).

We define Lo = S and £b = / . it is a trivial observation that Lo and go have

the desired properties. When L, and gi have been defined, we then define L, +i

and gi+i in the following way. For convenience of notation we denote the

preimage of gi in Z2{Go/Ga(n+i-i), U(Li)) by gi also. Then Li+i is defined to

be a finite purely inseparable splitting field for the crossed product

Δ(gi, Li, Gtt(W-i)/Gα(n+i-ί)). The existence of such a field Li+1 is guaranteed

by Lemma 2.1, since Ga{n-i)/Ga{n+i-i) is an Abelian p-gτoup with trivial action

. on Li. By an argument entirely similar to that used in the proof of Prop. 2.3

we may conclude the existence of a 2-cocycle gi+ι in Z2(G0, U(Li+i)) which is

in the image of the inflation map Z2(G0/Ga(n-i), U{Li+ι)) ->Z*(GQ, U(Li+ί)) and
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is cohomologous to the image of / in Z2iG0, UiLi+i)). We may prove the

proposition now by taking L = Ln and g - gn.

The notation established in Prop. 3.2 shall be used throughout the rest of

Section 3.

PROPOSITION 3.3. The radical of the crossed product Jig, L, Go) is generated

as a right ideal by the radical of J ( l , L, d ) .

Proof, Let N denote the right ideal of Jil, L, d ) generated by the set of

all elements of the form l-uo with a in d . Since d is a ^-group and L has

characteristic p, it follows at once from the exercise on p. 435 of [9] that N

is the radical of the trivial crossed product J(l, L, d ) .

It remains to show that NJig, L, Go) is the radical of Jig, L, Go). Using

the fact that g is in the image of the inflation map Z 2(G 0/d, U(D)-»Z2{Go, U{L))

together with the fact that d is a normal subgroup of Go, one may conclude

from the definition of N that the right ideal NJig, L, Go) is equal to the left

ideal Jig, L, GQ)N. Lemma 1.4 now implies that NJig, L, Go) is contained

in rad Jig, L, Go). To prove that NJig, L, Go) is the radical of Jig, L, Go)

it suffices therefore to show that the factor ring J(g, L, Go)/NJig, L, Go) is

semi-simple. Now Jig, L, Go]/NJig, L, Go) is isomorphic to the crossed product

Jig, L, Go/d) in a natural way. Since G0/Gi acts trivially on L, and the

order of G0/Gi is relatively prime to the characteristic of L, it follows from

Theorem 1.1 of [7] that J(g, L, GJG\) is L-separable and therefore semi-simple.

PROPOSITION 3.4. The radical of the crossed product JiJ, S, Go) is generated

as a right ideal by the radical of J(J, St d ) .

Proof The first step is to prove that the radical of JiJ, L, Go) is generated

as a right ideal by the radical of JiJ, L, d ) . Consider the 2-cocycle g of

Z2(G0, UiD) whose existence is established by Prop. 3.2, and let φ : Go-*UiL)

be the map by which / is cohomologous to g in Z2iGo, UiD). It is well known

that the map ψ : JiJ, L, Go)-*Jig, L, Go) defined by ψ(auτ) =aφiτ)ux for a in

L and r in Go is an L-algebra isomorphism. The radical of Jigy L, Go) is

generated as a right ideal by the radical of Jil, L, d ) according to Prop. 3.3.

Since ψ'XJig, L, d ) ] = JiJ, L, d ) we may conclude therefore that the radical

of JiJ, Ly Go) is generated as a right ideal by the radical of JiJ, L, Gi).

Now consider an element d of rad JiJ, S, Go). It follows easily from
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Lemma 1.4 that δ is also in rad ΔQy Ly Go), so that according to the first part

of the proof we may write # = *Σniδi where each nι is in rad Δ(Jy L, d ) and

the δi are in Δ(fy Ly Go). Each element δi has a unique expression in the form

ί/ = Σ i f % ; with the λf in Δ(fy Ly d ) , where Go = U&pj is a disjoint right

coset decomposition of Go relative to the subgroup Gu Therefore δ = ΣCΣtfiΛ}0]^.

Since 5 is in Δ(fy S, Go), the fact that Δ(fy L, Go) is a free left J(/, Ly d ) -

module with free basis {uH} implies that Σwi Λ}n is in J(/, S, Gi) for each /.

Therefore each Σmλf is in (rad Δ(fy L, GI)) Π Δ(fy S, d ) , which according

to Lemma 2.4 is contained in rad J(/, S, Gi). The fact that an element δ of

rad J(J, S, Go) may be written in the form δ = ΣίΣniλflu,; with each Σ^^}^

in rad J(ff S, d ) establishes the assertion of the proposition.

Using Prop. 3.4 together with the results of Sections 1 and 2 we may now

prove the main theorem of the paper.

THEOREM 3.5. Let S be an integrally closed extension of a complete discrete

rank one valuation ring R such that the residue class field extension is separable,

and let [/] be an element of H2{G, U{S)). Then the crossed product Δ{fy S, G)

is a Ή principal hereditary order if and only if the radical group R/ of [/] is

trivial.

Proof The crossed product Δ(fy Sy G) is a tf-principal hereditary order if

and only if the crossed product Δ(fy Sy G) is semi-simple. By Prop. 3.1 we

know that Δ(fy Sy G) is semi-simple if and only if Δ{fy S, Go) is semi-simple

where Go denotes the inertia group of 5 over R. And the crossed product

Δ(fy Sy GQ) is semi-simple if and only if Δ(fy S, G^ is semi-simple according

to Prop. 3.4, where Gj is the first ramification group of 5 over R. Prop. 2.9

implies in turn that Δ(fy S, Gi) is semi-simple if and only if Δ{fy S, C) is a

field where C denotes the center of Gi. Finally, the fact that Δ{fy S, C) is a

field if and only if R/ is trivial (see Theorem 1.10) establishes the assertion

of the theorem.

We obtain at once from Theorem 3.5 the following result which has already

been proved by Harada (see Theorem 2 of [10] >.

COROLLARY 3.6. Let R be a complete discrete rank one valuation ring with

perfect residue class field, and let S denote an integrally closed extension of R. If

ίfl is an element of H2(Gy 17(5)), then the crossed product Δ(f, Sy G) is a IT-
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principal hereditary order if and only if S is a tamely ramified extension of R.

Proof. In the case when S is a tamely ramified extension of R it was

proved in [7] that Δ{f% S, G) is a 77-ρrincipal hereditary order.

We prove the assertion in the other direction by contradiction. So suppose

that the extension 5 of R is not tamely ramified. Then the center C of the

first ramification group Gi is non-trivial. Since R is perfect, / is cohomologous

to 1 on C x C by Cor. A. 5. From the definition of the radical group it now

follows that R/ = C.

APPENDIX. COHOMOLOGY. In this appendix to the paper we present several

general facts concerning cohomology which have application to the study of

crossed products.

PROPOSITION A.I. Let F be a field of characteristic p*0, and G a group

which acts trivially on F. Suppose that a and τ are elements of G such that στ = τβ.

If the order of τ is a pth power, then f(σ, τ) = / ( r , a) for every 2-cocycle f in

Z\G, U(F)).

Proof Let pt denote the order of τ. By the associativity property of /

we obtain the equalities

Combining the above equalities we obtain that

/ U Γ ^ - O / U r) =/(r*'-\ a)f(τ, σ).

We next obtain an expression for f(τpt~\ a). Write f(rpt'\.a) = fiτ^'^τ, a)

for 1 <;*":£/>* —L By combining the equalities

/ ( τ ^ - ' τ , Λ/CΓ*1-'-1, τ) = fXτ"-'-*, τσ)f{τtσ)

we get that

f(τP
ι-\ a)=f(τ, σ)f{στpt-i~\ τ)f(rpt-^\ σ)/f(o, x)f{τpι-i'\ τ)

for l<i<.p* — 1. By repeated use of this equality it follows that

\ a) = Zf(τ**VA*. τM^Tlfiaτ^ τ)lf(τpt~\ τ).
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On the other hand, we may write /(</, τpt'%) =/(<;, τpt"tmmlr) and obtain an

expression for /(<;, r^" 1 ) . The associativity property of / implies that

By repeated use of this equality we obtain that

f(σ,τp )=Π/(<;r p , τ)//(τ p , τ).

Now we may conclude that /(<;, τ) = /(r, a). For by substituting the above

expressions for /(r*'~\ <r) and /(<;, r^1""1) into the equality /(<;, r* 1"" 1)/^, r) =

f(τpt~\ ΰ)f(τ, a) we get that [ / U r ) ] ^ = [/(r, <;)]^. Since Fhas characteristic

A we conclude that /(<;, r) = / ( r t ί;).

COROLLARY A. 2. I>£ F be a field of characteristic p * 0, ##d /̂ / -E and Gp

be groups with Gp a p-group. If E and Gp act trivially on F, then the natural

map

H\ExGPt U(F))-*H2(Et U{F))xH\GPt U(F))

is an isomorphism.

Proof Define a map

φ : ZHExGp, mF))-*Z*{E, U(F))xZ2{Gp, U(F))

by ψ(f) -fifz where /] is the restriction of / to ExE and /2 is the restriction

of / t o Gp x Gp. Then φ induces a well-defined map

φ : H2(ExGP, U(F))-*H2(Ef U{F))xH\GPi U(F)).

We shall show that the map ψ is a group isomorphism.

It follows from the definition of ψ that ψ is a homomorphism of groups.

We next observe that φ is an epimorphism. For let /i/2 be any element of

Z2(E, U(F))xZ2(Gp, U(F)). Then define the m a p / : (ExGp)x(ExGP)-*U(F)

by /(tfiΓi, <72r2) =/i(tfi, <72)/2(ri, τ2) where β\ and σ2 are in E and n and r2 are

in G/,. It is easy to verify that / is an element of Z2(ExGPf U(F)) and that

ψ(f) =/i/2. Since ψ is an epimorphism we may conclude that ψ is an epimor-

phism.

It remains to show that φ is a monomorphism. Since the order of each

element of Gp is a pth power, and E and Gp commute element-wise in ExGPi

we know by Prop. A. 1 that f(σ, τ) = / ( r , σ) for each σ in E and τ in Gp where
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/ i s any element of Z2(ExGp, U(F)).

We next prove that for each element / of Z2(ExGpy U(F)) there exists

an element / of Z2(E x Gp, U(F)) cohomoiogous to / and such that

/ U m , σ2τo) =/(</!, 02)f (n, Γ2) where σι and a2 are in E and τx and r2 are in

Gp. Since each element of ExGp can be written uniquely in the form στ

with a in E and r in Gp we can define a map φ : ExGp-* U(F) by $(<rr) = f(σ,τ).

Now define the 2-cocycle / by f(py ω) = f(ρ, ω)φ{p)φ(ω)/φ(pω) for p and ω in

ExGp. Note that /(<;, r ) = l whenever <j is in E and r is in Gp, since

0(<rr) = /(</, r) and φ(σ) = $(r) = 1. We proceed to verify that / has the

desired property. Now f(^iτu 0-1X2) = f (σiTiσ2y τ2)f{β\τu a2) s ince/ (σ2y τ2) = 1,

so that it suffices to prove that/ (<?irî , τ2) = / (ri, r2) and / (c iτi, <j2) = / U i , 02).

The equality f{0iσ2τίy τ2)f(σi<?2, τx) ~ f {o\βiy τ ir 2 )/(τ i, r2) implies that

f(<J\τ\02, r2) =/(</i^2ri, r2) = / ( r i , r2) since f {a\θz, ri) = f(aιa2> nr2) = 1. On

the other hand, the equality f(σιτu <τ2)/(<7i, ri) =/(<;i, τi<r2)/(ri, <r2) implies

that /(tfiΓi, <r2) = / U i , rκr2) since /ίtfi, τi) = 1 and / (n, <r2) = /(tf2, ri) = 1.

But/(ί;i, ri<72) -/(ίTj, <;2Γi) and/(<ri, o2τι)f(σ2i n) = fiσite, τι)f(σi, a2) together

imply that f (aτu a2) =/{σu <r2). Therefore f (σiτu w2) = f(σly σ2)f(τu τ2).

Now we may prove that φ is a monomorphism. For suppose that / is a

2-cocycle for which y(C/3) = Cll Let / be the 2-cocycle cohomoiogous to /

and satisfying /(</ιri, </2r2) =/(tfι, σ2)f(τίy r2), whose existence is established

by the above. Then the fact that ? ( [ / ] ) = [1] implies that [/i] = Cl] and

C/2] = [1]. Let 0i : £-> i/(F) and 02 : G/,-* ί7(F) be maps such that / \ U , <y2)

= φi(σι) φι(a2)/φi(σiσ2) and / 2 ( r j , r2) = φ2{τ\)φ2{τ2)Iφ2{πτ2) where the <y, are in

E and the r, are in Gp. Then the map φ : Ex Gp-+ U{F) defined by

ψ(<;r) = 0i((j)02(τ)for oinEand r in G/, satisfies/(</in, <τ2r2) = 0(<;iτi)0(<;2τ2)/0(ί;iτiί;2τ2)

from which it follows that [/] = [ l l

The following statement follows immediately from Cor. A. 2.

COROLLARY A. 3. Let Fbea field of characteristic p # 0, and let C = J5Ί x x Et

be a direct product of cyclic p-groups. If C acts trivially on Fy then the natural

map

H\Cy U{F))->H2(Eu U(F))x xH2{Ety WF))

induced by the restriction maps is an isomorphism.

DEFINITION. Let C = Eι x x Et be an Abelian £-grouρ which acts trivially

https://doi.org/10.1017/S0027763000023977 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023977


110 SUSAN WILLIAMSON

on a field F of characteristic p. An element / of Z2(C, U(F)) of the form

/ = /i -ft where each element fi of Z2(Ei9 U(F)) is normalized in the sense

of cyclic groups (see p. 83 of [1]) is said to be normalized in the sense of Abelian

p-groups.

According to Cor. A. 3 we may always assume that an element / of

Z2(C, U(F)) has been normalized in the sense of Abelian />-groups.

COROLLARY A. 4. Let G be a group which acts trivially on a field F of

characteristic p^O. If the subgroup D of G is an Abelian p-group, then for each

element f of Z2(Gt UiF)) there exists an element / ' of Z2{G, U(F)) cohomologous

to f and such that the restriction of f to DxD is normalized in the sense of

Abelian p-groups.

Proof For convenience of notation let fD denote the restriction of / to

DxD. By Cor. A. 3 there exists a 2-cocycle f'Ό of Z2(D, U(F)) cohomologous

to fD such that f'D is normalized in the sense of Abelian /^-groups. Let

φD

 : D-+U(F) be the map satisfying /ί>U, r) = f»(σ, τ)φn(σ)φn(r)/φD(oτ) for a

and τ in D. Extend φD to a map Φ . G^Ί/iF) by defining φiσ) = φiλσ) it σ is

in D, and φ(σ) = 1 if a is in G - D. Then the element / ' of Z2(G, U(F)) defined

by f'(σ, τ) =/(<;, τ)φ(σ)φ{τ)/φ{στ) has the desired properties.

COROLLARY A. 5. Let F be a perfect field of characteristic p*0> and C an

Abelian p-group which acts trivially on F. Then H2{C, U(F)) = (1).

1 Proof Let C = Ei x x Et be a decomposition of C into a direct product

of cyclic ^-groups. By Cor. A.3 it suffices to show that H2(Eif UiF)) = (1)

for each ί. So consider an element ίfl of H2(Ei, U(F)) and let a be an

element of U(F) such that [/] corresponds to a mod LU{F)Ti under the

canonical identification H2(Eit U(F)) = U(F)/ίU(F)Ti where a denotes the

order of Ei. Since F is a perfect field of characteristic p, it follows that a is

an e\h power. Therefore a = 1 mod ίU(F)Ύ* and H\Eu UKF)) = (1).

The following lemma shall be useful in proving a statement concerning

the exactness of a sequence of cohomology groups.

LEMMA A. 6. Let G be a p-group and F a field of characteristic p upon which

G acts trivially. Then Z\Gy U(F)) = (1).

Proof L e t / : G-+U{F) be an element of Z\G, U{F)). We show first
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that /( l ) =1. For by the associativity property of / together with the fact

that G acts trivially on F we obtain the equality / ( I ) = [/(I)] 2 so that / ( l ) = 1.

Now let a denote any element of G and let pι denote the order of a. Then

! = / ( ! ) = f(apt) =[/(<;)]p t so that f{σ) = 1 since F has characteristic p.

Therefore / = 1, and so Z\G, U(F)) = (1).

PROPOSITION A. 7. Let F be a field of characteristic p*0, and Gp a normal

subgroup of a group G. If Gp is a p-group which acts trivially on F then the

sequence

(ϊ)->H\GIGp, U{F))-*H\G,U(F))-*H\GPi U(F))

is exact where the maps are inflation and restriction.

Proof Since Gp is a />-group and F has characteristic p, we know by

Lemma A.6 that H\Gp, U{F)) = (l). It now follows from Prop. 5 p. 126 of

Γ5] that the above sequence is exact.
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