CROSSED PRODUCTS AND RAMIFICATION
SUSAN WILLIAMSON

Introduction. Let S be the integral closure of a complete discrete rank
one valuation ring R in a finite Galois extension of the quotient field of R, and
let G denote the Galois group of the quotient field extension. Auslander and
Rim have shown in [3] that the trivial crossed product 4(1, S, G) is an he-
reditary order if and only if S is a tamely ramified extension of R. And the
author has proved in [7] that if the extension S of R is tamely ramified then
the crossed product 4(f, S, G) is a IT-principal hereditary order for each 2-
cocycle f in Z*(G, U(S)). (See Section 1 for the definition of IT-principal
hereditary order.) However, the author has exhibited in [8] an example of a
crossed product 4(f, S, G) which is a II-principal hereditary order in the case
when S is a wildly ramified extension of R. The purpose of this paper is to
present necessary and sufficient conditions for a crossed product 4(f, S, G) to
be a II-principal hereditary order when the extension S of R has a separable
residue class field extension.

Let S be an extension of R (with separable residue class field extension)
and let C denote the center of the first ramification group. In Section 1 we
define for each element [ f1 of H*(G, U(S)) a subgroup Rs of C called the
radical group of [f]. The main theorem of the paper states that the crossed
product 4(f, S, G) is a II-principal hereditary order if and only if the radical
group of [f] is trivial. As a corollary we obtain the result of Harada (see
[10]) that if R has perfect residue class field, then 4(f, S, G) is a IT-principal
hereditary order if and only if S is a tamely ramified extension of R. In an
appendix we present some facts concerning the cohomology of groups which
shall be referred to in the paper.

The following notation shall be employed throughout the entire paper. If
R is a ring then its multiplicative group of units shall be denoted by U(R),
and its radical by rad R. If R is a local ring, then R shall denote its residue
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class field. Unless otherwise stated, S shall always denote the integral closure
of a complete discrete rank one valuation ring R in a finite Galois extension
of the quotient field of R, and G the Galois group of the quotient field extension.
Since R is complete, S is also a complete discrete rank one valuation ring, and
IT shall denote a prime element of S. The i'* ramification group of the ex-
tension S of R shall be denoted by G;. That it to say, lG,' is the set of all
elements ¢ of G such that ¢(s) =s mod IT*** for all s in S. Each group G; is
a normal subgroup of G, and the inertia group G, acts trivially on S.

More generally, if G is a finite group and A is a G-ring over a unitary
commutative ring R, then [f] shall denote the cohomology class in H*(G,
U(A)) of the 2-cocycle f of Z*(G, U(A)). Furthermore, if A is a local ring,
then 7 shall denote the image of f under the natural map Z(G, U(A4)) »Z*G,
U(A)). For the definitions of crossed product and hereditary order we refer
the reader to [7]. The definitions of tame ramification and wild ramification
are given on pp. 88-89 of [6].

For the convenience of the reader we summarize some important facts
about ramification groups which may be found in Chapter IV of [5]. Let S
denote the integral closure of a complete discrete rank one valuation ring R
in a finite Galois extension of the quotient field of R such that the residue
class field extension is separable. If R has characteristic zero then the first
ramification group vanishes. If the characteristic p of R is non-zero then G,
is a p-group. The factor group Go/G; is a cyclic group whose order is relatively
prime to p. For i>1, each factor group Gi/G;:: is an Abelian p-group of type
(03 S )R

1. The radical group. Let S denote the integral closure of a complete
discrete rank one valuation ring R in a finite Galois extension K of the quotient
field £ of R, and let G denote the Galois group of K over k. If [f] is an
element of H*(G, U(S)) then the crossed product 4(f, S, G) is an R-order in
the central simple k-algebra 4(f, K, G). If IT denotes a prime element of S
it is easy to vérify from the definition of crossed product that the left ideal
A(f, S, G) IT of A(f, S, G) is in fact a two-sided ideal. Therefore 17 is always
contained in the radical of 4(f, S, G) according to Lemma 1.4. In the case
when 4(f, S, G)IT is precisely the radical of 4(f, S, G) we may conclude that
the crossed product 4(f, S, G) is an hereditary order by the Corollary to
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Theorem 2.2 of [2], since 4(f, S, G)IT is a free left 4(f, S, G)-module. This
leads us to make the following definition.

DeriniTION. A crossed product 4(f, S, G) is called a II-principal hereditary
order if its radical is generated by the prime element I7 of S.

We have already established the existence of a large class of I7-principal
hereditary orders, namely each crossed product 4(f, S, G) in the case when
S is a tamely ramified extension of R. The purpose of this paper is to study
IT-principal hereditary orders in the more general case when the residue class
field extension is separable. Observe that the crossed product 4(f, S, G) is a
II-principal hereditary order if and only if the crossed product 4(7, S, G) is
a semi-simple ring.

Let S be an extension of R with S separable over R, and let C denote the
center of the first ramification group. In Sections 2 and 3 the question of the
semi-simplicity of 4(f, S, G) shall be reduced to the question of the semi-
simplicity of 4(f, S, C).

Therefore our object of study in Section 1 is the crossed product 4( f, F, C)
where C is an Abelian p-group which acts trivially on a field F of characteristic
p. We shall define for each element [f] of HXC, U(F)) a subgroup Ry of C
and prove that 4(f, F, C) is semi-simple if and only if Rs is trivial. The
following remark establishes notation which shall be in constant use throughout
this section.

Remark 1.1. Let C = E;X * + + X E¢ be a decomposition of an Abelian p-group
C into a direct product of cyclic p-groups. It is well known that such a de-
composition of C is unique up to isomorphism except for the order of the cyclic
components, (see Theorem 3.3.2 of [4]). Let F be a field of characteristic p
such that C acts trivially on F. If [f] is an element of H*(C, U(F)) we may
assume according to Cor. A. 3 that f has been normalized in the sense of
Abelian p-groups, so that f=f- - - f; where each element f; of Z*(E;, U(F)) is
normalized in the sense of cyclic groups. The symbol %;(X) for 1<i<¢ shall
denote the polynomial #4;(X) =_'_Xe‘—a,~'in FILX1 where ¢; is the order of E;,
and g; is an element of U(F) such that [f;] corresponds to @; mod [U(F)]%
under the canonical identification H*(E;, U(F)) = U(F)/LU(F)J%.

We next observe that the crossed product 4(f, F, C) is isomorphic to a
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tensor product over F of factor rings of the polynomial ring FLX].

ProrosiTiON 1.2. The crossed product A\ f, F, C) is F-algebra isomorphic to
the tensor product A\@® A:® * + + @ A over F where A; = FLX1/(hi(X)) for 1<i<t.

Proof. The proof is by induction on the number ¢ of cyclic components
“of the Abelian p-group C. If #=1, then C is cyclic. Sincé f is normalized in
the sense of cyclic groups, the map ¢ : 4(f, F, C)-F[X1/(h(X)) induced by
defining ¢(u,;) = X is an F-algebra isomorphism where ¢ denotes a generator
of C.

For the inductive step we now suppose that C has » cyclic components,
say C=E;X * + * X Es-1X E,, and consider the subgroup C,—;=E;X * * * X Ep-1.
Then 4(f, F, C) = 4(gfn, F, Cu-1 X Es) where g =fi* * *fsn-1. Using the fact
that f is normalized in the sense of Abelian p-groups one can easily verify
that the natural map-

¢+ A(gfn, F, Cu-1X En) > 4(g, F, Ca-1) @ vd(fn, F, E-)

is an F-algebra isomorphism. The induction hypothesis states that the asser-
tion of the proposition is true for Abelian p-groups with # — 1 cyclic components.
Therefore the crossed product 4(g, F, Cp-1) is F-algebra isomorphic to
Ai® -+ ®RAs-1. And since E, is cyclic, it follows from the first part of the
proof that 4(fn, F, E,) is F-algebra isomorphic to A,. Combining these
results we conclude that 4(f, F, C) is F-algebra isomorphic to 4;Q * * * ® An.

The next object is to establish a criterion for the semi-simplicity of
4(f, F, C) in terms of the irreducibility of the polynomials #%;(X) and thus
establish a connection between the semi-simplicity of 4(f, F, C) and cohomology.
In order to do this we first prove two lemmas.

Lemma 1.3. Let F be a field, and let H(X) be a non-constant polynomial in
F[X]1. Denote the factor rving FLIX1/(H(X)) by L.. If L, is a field containing
F, then the tensor product Li® vL, is Li-algebra isomorphic to L,LY1/(H(Y)).

Proof. Define the map ¢ : Li® L.~ L[ Y1/ (H(Y)) by ¢(3la: ® fi( X)/H(X))
=>a;fil Y)/(H(Y)) where the a@; are in L, and the f; are in F[X1. If is easy
to verify that ¢ is a well-defined L;-algebra epimorphism.

In order to prove that ¢ is a monomorphism we first observe that
(1, X, ..., X"™") is a generating set for L, over F where # is the degree of*
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H(X). ‘Therefore any element of L;®L. may be written in the form
Ea;@Xi/(H(X) ) where the a; arein L,. Suppose now that >a; @ X'/ (H(X))
isin the kernel of ¢. Then the equahtles e Sa; X (H(X)) = Sa: Y /(HY)) =0
imply that the polynomial Za,Y of Li[Y] is in the principal ideal generated
by H(Y), so that Sla;Y’ = g(Y)H( Y) for some element g(Y) of LiLY] Now
the degree of ga;Y' is less than or equal to »—1. However, the degree of
g(Y)H(Y) is less than # if and only if g(Y) is the zero polynomial since H(Y)
has degree » and L, is a field. Therefore g(Y) is the zero polynomial, and so
the equality >a:;Y’ = g(Y)H(Y) implies that ;=0 for 0<i<#n — 1. Therefore

ker ¢ = (0) and so ¢ is a monomorphism.

Lemma 1.4. Let the extension S of R be a ring extension. If S is a finitely
generated left R-module and (vad R)S = S(rad R) then rad R is contained in rad
S.

Proof. To show that rad R is contained in rad S it suffices to show that
if M is a finitely generated left S-module and S(rad R)M = M, then M =0.
The fact that S (rad R) = (rad R)S implies that S(rad R)M = (rad R)SM =
(rad R)M. Since M is a finitely generated left S-module and S is a finitely
generated left R-module it follows that M is a finitely generated left R-module.
Therefore the equality (rad R)M =M implies that M =(0). Hence S(rad R)

is contained in rad S.

ProrosiTioN 1.5. Let F be a field of characteristic p =0, and let Hi(X) for
1<i<t be elements of F[X] of the form Hi(X) = X% —a; where each ¢; is a p*"
power. Let A denote the tensor product L, ® + * + ® Ls over F where L; = FLX]/(H{ X)).
Then the following statements are equivalent

1) A is semi-simple

2) A is a field

3) each polynomial Hi(X) is irreducible in a splitting field for E‘ Hi(X) over
F.

Proof. The proof is by induction on the number ¢ of polynomials H;(X).
We first prove that the statements are equivalent when #=1. In this case A
is of the form A= F[X1/(H(X)) where H(X)=X°—a and ¢ is a p'* power.
Since F has characteristic p, a factorization of H(X) into a product of irreducible
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polynomials of F[X1] is of the form H(X) = (X™—b)*™ where 6" =a and m
is a divisor of e. The radical of the commutative Artin ring F[X1/(X®—a)
is generated by the residue class of the polynomial X™ ~b5. Therefore A is
semi-simple if and only if m =¢, that is if and only if H(X) is irreducible in
F[X]. Therefore 1) is equivalent to 3). However, the polynomial H(X) is
irreducible in F[X] if and only if FLX1/(H(X)) is a field. Therefore 3) is
equivalent to 2) and this completes the proof in the case when #=1.

For the inductive step we assume the equivalence of the statements for
t<mn, and prove their equivalence for ¢ =#n. Throughout the rest of the proof
it shall be convenient to use the notation A;=L,® « - - @ L; for 1<i<#», and
Ay=F.

We show first that 1) implies 2). So suppose that A = A, is semi-simple.
Using the induction hypothesis we shall prove that each A; for 1<i<n-—1
must be a field. Observe that the natural map A;—> A is an injection because
each A; is a free F-module. Since A is a finitely generated commutative A;-
algebra, the radical of A; is contained in the radical of A according to Lemma
1.4. From the semi-simplicity of A we conclude that A; has zero radical.
Hence A; is semi-simple because it is an Artin ring. The induction hypothesis
implies therefore that A; is a field for 1<i<n—1.

Now we may prove that 1) implies 2). For since Ax-; is a field, and
A= An-1® La, we know that A is A,-s-algebra isomorphic to A»-[Y1/(Y*" —a,)
by Lemma 1.3. Thus we have reduced the problem to the case =1, and so
the assumption that A is semi-simple implies that A is a field.

In order to prove that 1) implies 3) we first observe that if A is semi-
simple, then each A; for 1<i<#z is a splitting field over F for the polynomial
JZ_:,_IL'(X). For by the above, the semi-simplicity of A implies that each A;
for 1<i<n is a field and is therefore A;-s-algebra isomorphic to A [Y1/(H:(Y))
according to Lemma 1.3. It now follows easily by induction that A; is a
splitting field for LIIIj(X) over F. Now we may prove that 1) implies 3).
For the fact that Z: is A;-s-algebra isomorphic to 4;-,LY1/(Y% —a;) together
with the fact that A; is a field implies that H{Y) is irreducible over A;-:
which is a splitting field for E_I{j(X).

We prove next that 3) in;piies 2). Consider the » polynomials H;(X) and
assume that each polynomial H;(X) is irreducible in a splitting field for I1 H;j(X)..

j<t
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Then certainly each H;(X) for i<z is irreducible in a splitting field for
IT Hj(X). By the induction hypothesis we may conclude therefore that An—,
;s< 'a field. We have already shown that if A.-. is a field it is necessarily a
splitting field for IT Hj(X). Now A = A,-1® Ln is Aa-1-algebra isomorphic to
An LY/ (HW(Y)) J‘;;r Lemma 1.3. Since Hn(X) is irreducible in A,-.[Y] we
conclude that A is a field.

The trivial observation that 2) implies 1) completes the proof of the pro-
position.

Prop. 1.5 motivates the definition of the radical group which we present
next. An element [f] of H*(C, U(F)) gives rise to a chain of fields
LyCL,c - -+ CLs defined inductively in the following way. Let Ly=F. When
L; has been defined, we then define L;:+; to be a splitting field for the polynomial
his( X) over L;, (see Remark 1.1).

We define Ry,; for 1<i<t to be the maximal subgroup of E; with the
property that the image of [f;] under the natural map H*E;, UF)) » H*(Ry, i, U(L;-1))

is trivial.

DeriniTION. The radical group Ry of an element [f1 of H*(C, U(F)) is
defined to be the direct product Rys,1X * * - X Rf,; where the Ry,; are defined as
above.

Observe that the definition of Rs depends upon the order of the cyclic
components E; of C. However, the non-triviality of Rs shall be seen to be
independent of the order of the cyclic components of C (see Theorem 1.10).
Once the order of the E; has been fixed, the definition of Ry depends only upon

the cohomology class of f.

It is convenient to make the following definition now.

DerFiniTiOoN. Let the extension S of R have a separable residue class field
extension, and let [f] be an element of H*(G, U(S)). Then the radical group

Ry of [f] is defined to be the radical group of [ /] where [ /] is the image of
[£] under the natural maps

H*(G, U(S)) »HXG, US))->H*C, U(S))

and C is the center of the first ramification group of S over R.
The following observation is immediate from the definition of the radical
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group, since the higher ramification groups of a tamely ramified extension

vanish.

ProrosiTiON 1.6. If S is a tamely ramified extension of R, then Rs= (1) for
each element [f] of H* (G, U(S)).

The following example shows that R need not equal C.

ExampLE 1.7. Let R=2Z[X1e and S=R[Y2]. Then S is a wildly ramified
extension of R and C= (1, o) is cyclic of order two. Let f be the element of
Z¥C, U(S)) defined by f(s, ¢) =X. Then since #(Y) = Y*— X is irreducible
over S=(Z/(22))(X) we conclude that Rs= (1).

The following proposition states necessary and sufficient conditions for
the ** component of the radical group to be trivial.

ProrositioN 1.8. The group Ry, is trivial if and only if hi(X) is irreducible
m Li—l[X ]

Proof. Let hi(X) =X%~—ag;=(X™ - p;)%"™ be a factorization of %:(X) in
Li-,[X] with X™ — b; irreducible. Note that »%/™ =gq;. We shall prove that
Ry ;= (6™) where ¢ is a generator of the cyclic group E;. To show that (4™)
is contained in Ry,; we observe that f; is cohomologous to the trivial 2-cocycle.
For the order of (¢™) is ei/m; and H*((¢™), U(Li-y)) = U(Li-)) [LU(L;-))1%/™:.

It remains to show that Ry,; is contained in (¢™). Let ¢* denote a generator

eilx

of Ry,i. Then a;=c{"* for some element ¢; in U(L;-;). From the inclusion
(e™) S Ry,; it follows that e;/m; divides e;/x so that (e;/mi)d =x for some
positive integer d. The equalities 5%/™ = ¢f/* = (¢f)%'™ imply that & = cf.
Therefore X™ —b; = (X*—¢;))%. Since X™ - b; is irreducible over L;-; we con-
clude that d=1 and so x=m;. Therefore Ry,; is contained in (¢™).

The group Ry,; is trivial therefore if and only if m; =e¢;, that is if and
only if #;(X) is irreducible in L;-,[X].

ProrosiTion 1.9. The radical group Ry is trivial if and only if each polynomial
hi(X) is irreducible in a splitting field for th(X) over F.
j<i

Proof. The radical group Ry is trivial if and only if each cyclic component
Ry.; is trivial. By Prop. 1.7, the group Ry,; is trivial if and only if %;(X) is
irreducible in Li-,[X]. However, the field L;-, was defined to be a splitting
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field for I17%;(X) over F.

J<<i
Now.we may prove the main theorem of this section.
Tueorem 1.10. The following statements are equivalent
1) the crossed product 4(f, F, C) is semi-simple
2) 4(f, F, C) is a field
3) the radical group Ry is trivial

Proof. By Prop. 1.2, the crossed product 4(f, F, C) is F-algebra isomorphic
to the tensor product 4:® -+ + - ® A: over F where A;= F[X1/(#:(X)). Com-
bining the results of Prop. 1.5 and Prop. 1.9 we arrive at the desired equiva-
lence.

The following corollary gives technical information about the radical of
4(f, F, C) in the case when 4(f, F, C) is not a field which shall be of use in
Section 2. Let C=E;x * -+ x E; be a decomposition of the Abelian p-group C
into a direct product of cyclic groups; and for convenience of notation let
Ey=(1).

CoroLLARY 1.11. If the crossed product 4(f, F, C) is not a field, then there
exists an element of the form u-—38 in rad A(f, F, C) where vx1 is in E,; for
some q=1, and 0 is in the subring A(f, F, EiX « « - X E,-1).

Proof. We assume as usual that the 2-cocycle f has been normalized in
the sense of Abelian p-groups. The assumption that 4(f, F, C) is not a field
implies that the radical group Ry of [f] is non-trivial according to the theorem.
We may therefore consider the least positive integer ¢ for which the component
Ry,q is non-trivial. By the choice of ¢ it is clear that the crossed product
A(f, F, E;X * * - X E,—y) is a field which shall henceforth be denoted by L. Let
o denote a generator of E,. Then the L-algebra map ¢ : 4(f, F, Eix * * + X E,)
- L[X1/(he(X)) induced by defining ¢(#,)= X is an L-algebra isomorphism.
If he(X) = (X™ — 5)¥™ is a factorization of %,(X) in L[X ] with X™ — b irreducible,
then the fact that L[X]/(%,(X)) is not a field implies that m <e. The radical
of L[X1/(h, (X)) is generated by the residue class of the element X™—b,
whose preimage in 4(f, F, Ei1x - + x E;) under ¢ is of the form #-. —  where
t=0¢"and 0 is in 4(f, F, Eix + + + xE4-;). Note that r =1 because 1<m<e.
The fact that 4(f, F, C) is a finitely generated commutative 4(f, F, E1X + * * X E)-
algebra now implies that #. —¢ is in rad 4(f, F, C).
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2. p-groups. In Szction 1 we noted that the crossed product 4(f, S, G) is
a IT-principal hereditary order if and only if 4(7, S, G) is a semi-simple ring.
The purpose of this section is to establish that 4(7, S, G,) is semi-simple if
and only if 4(7, S, C) is semi-simple, where C denotes the center of the first
ramification group G;. Our object of study in this section is therefore the
crossed product 4(f, F, G,) where G, is a p-group with trivial action on a
field F of characteristic p.

The notion of a splitting field of a cohomology class shall play an important
role in Sections 2 and 3 by reducing questions concerning semi-simplicity to

the case of a trivial crossed product.

DeriniTION. Let G be a finite group, and F and K fields such that K is a
G-ring over F. Let [f] be an element of H*(G, U(K)). Then an extension
field L of K is called a splitting field of [f]if [ f] is in the kernel of the natural
map H*(G, U(K)) -»H*G, U(L)) induced by the inclusion of X in L. If L is
a splitting field for [f] we say that L is a splitting field of the crossed product
4(f, K, G). Finally, if a splitting field L of 4(f, K, G) is a purely inseparable
extension of K we call L a purely inseparable splitting field of 4(f, K, G).

Lemma 2.1. Let F be a field of characteristic p =0, and C an Abelian p-group
with trivial action on F. Let [f] be an element of H*(C, U(F)). Then the crossed
product 4(f, F. C) has a purely inseparable splitting field L. [n the case when
A(f, F, C) is a field we may take L = 4(f, F, C).

Proof. Let C=E;x * ++x E; be a decomposition of C into a direct product
of cyclic groups. We may assume that f is normalized in the sense of Abelian
p-groups, and write f = f1* * - f; where the element f; of Z*(E;, U(F)) is normalized
in the sense of cyclic groups. Let a; be an element of UtF) such that [f]
corresponds to a; mod [U(F)J1% under the canonical identification H*(E:, UF))
= U'F)/LU(F)]% where e; denotes the order of E;. Let L be the field obtained
by adjoining the roots of the polynomials X% —gq; to . Then L is a purely
inseparable extension of F and [f] is in the kernel of the map H*(C, U\ F)) —»
H*(C, U(L)) induced by the inclusion of F in L.

In the case when 4(f, F, C) is a field let L= 4(f, F, C). To verify that
L is a splitting field of 4(f, F, C) it is sufficient to observe that X% — a; = (X — u,)%
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so that each polynomial X% — g; splits into linear factors in L[X]. Since L is
a splitting field for the polynomial l? (X% - a;) over F it is clear that L is a
purely ihseparable extension of F.

Let G: be a p-group with trivial action on a field F of characteristic p.
The main theorem of this section states that the crossed product 4(f, F, Gi)
is semi-simple if and only if 4(f, F, C) is a field where C is the center of G,.
The proof in{rolves an inductive process.

Consider the following chain of subgroups of the p-group G,
C”D .« e DCiD o o DCoDC-x

where the groups C; are defined inductively in the following way. Let C-;= (1).
When G; has been defined, we then define Ci+; to be the preimage of C,,: in
G, where Ci;: is the center of Gi/Ci. Note that C, = C where C is the center
of Gy, and C,=G,. It is easy to verify that each C; is a normal subgroup of
G,. Furthermore, each inclusion C;C C;+, is strict since G; is a p-group. The
following lemma states a property of the subgroups C; which shall be useful
later in this section.

Lemma 2.2. Let p be an element of Cr/Cr-2 not in the subgroup Ci-1/Ck-2.
Then there exists an element v in G1/Cr—, such that the commutator c= tpr 'p*
is in Cr-1/Cr-2 and c=1.

Proof. Suppose that rp = pr for all elements r in Gi/Cr-2. Since Cg-1/Ck-2
is by definition the center of G,/Ci-: it would then follow that p is in Cr-1/Ci-2
which contradicts the assumption on p. Therefore we may consider an element
t of G;/Cr-» such that rp= pr.

Now the isomorphism (Gy/Cr-2)/(Cr-1/Cr-3) = G:/Cr-1 together with the fact
that Cp/Ce-y is the center of Gi/Ck-; implies that r commutes with p modulo
Ci-1/Cr-2. Therefore tp = cpr for some element ¢ in Cr-1/Cr-2 With c=1. ’

The lemma concerning the existence of purely inseparable splitting fields

shall be used to prove the next proposition.

ProrosiTiON 2.3. Let G, be a p-group with trivial action on a field F of

characteristic p, and let [f] be an element of H*(Gi, U(F)). Then there exists a
chain of fields

F-:LoCLlC\‘ . -CL‘-C .o 'CLn
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and 2-cocycles gi in ZX(Gy, U(L))) such that
1) each extensio;z LiC Liy; is purely inseparable
2) gi is cohomologous to the image of f in Z* (G, U(L)) for each i
3) each gi is in the image of the inflation map Z*(G:/Ci-1, U(L))->Z*G:, U(L;))

Proof. The construction of the fields L; and the 2-cocycles g; is done
inductively. Let Lo=F and go=/f. It is clear that L, and g, satisfy statements
1), 2), and 3). When L; and g; have been defined, we then define L;i+; and gi+:
in the following way.

For convenience of notation we denote the preimage of g; in Z¥G:/Ci-1, U(L;))
by g: also. Then the field L;+, is defined to be a purely inseparable splitting
field for the crossed product 4(g;, L;, Ci/Ci-1). The existence of such a field
Lis; is guaranteed by Lemma 2.1; when 4(gi, Li, Ci/Ci-1) is a field we take
Liw= 4(gi, Li, Ci/Ci-1).

We next use L;+; in order to define the 2-cocycle gi+1. Let Z;i denote the
image of g; in Z*(Gy, U(Li+y)) under the map of Z*(Gy, U(Li)) into Z*(Gy, U(Li+1))
induced by the inclusion of L; in L;+;. From the definition of L;+ it follows
that the preimage of [2/] in H*(G\/Ci-1, U(L;+,)) is trivial on Ci/Ci-1x C;/Ci-1.

Consider the following diagram

H ((G3/Ci-) [ (Ci/Ci-r), ULiv) )~ HGA/Ct, UlLis)
linf linf
inf
Hz(G1/Ci—1, U(Li+l)) “_’Hz(Gh U(Liu))
ires

H*(Ci/Ci-y, U(Li)

where the map ¢ is induced by the second Noether isomorphism theorem. It
may be verified from the definitions of the maps that the diagram is com-
mutative. Furthermore, by Prop. A. 7 we know that the column is exact. By
diagram chasing we conclude that there exists a 2-cocycle gi+; in Z2(Gy, U(Li+1))
cohomologous to 2; and in the image of the inflation map Z*(G:/Ci, U(Li+1)) >
Z*(Gy, U(L;i+y)). Observe that since the map H%G./C;, U(L;i+)) = HAG,, U(L;+1))
is an injection, we may assume that the preimage of gi.; in Z*(Gi/Ci, U(Li+))
is normalized on Ci:+1 X Ci+; in the sense of Abelian p-groups.

The notation used in the statement of Prop. 2.3 shall be in use throughout
the rest of Section 2. The next object is to prove that each crossed product
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4(gi, Li, C;/Ci-)) is a field whenever 4(f, F, C) is a field. In order to do this
we present three lemmas. The first two are of a general nature and shall be
referred to several times in the paper. The third lemma gives technical
information about the g; and L; of Prop. 2.3.

LemMma 2.4. Let the extension S of R be an extension of Artin rings. Then
(rad S) N R is a nilpotent two-sided ideal of R. Therefore (vad S) N R is contained
in rad R.

Proof. Since S is an Artin ring it is well known that rad S is a nilpotent
two-sided ideal of S. It follows easily now that (rad S) N R is a nilpotent two-
sided ideal of R and is therefore contained in rad R.

LemmMma 2.5. Let G be a finite group, R a unitary commutative ring, and A
a G-ring over R. Let G= UHrt; be a disjoint right coset decomposition of G
relative to the subgroup H of G. If [f] is an element of H*(G, U(A)), then the
crossed product 4(f, A, G) is a free left 4(f, A, H)-module with free generators
{u-;}.

Proof. Clearly the set {u:,} generates 4(f, 4, G) as a left 4(f, A, H)-
module. In order to show that {#-,} is a free basis we shall show that if
8 = 3)0;u., = 0 with the §; in 4(f, 4, H), then 6; = 0 for each ;. Write §; = Za‘h"’uh
where each 4}’ is in A and each % is in H. Then 5=2'2a},"’f(h, r:') Uy
The coefficient of uns, is therefore a’F (%, ;). Since 4( 7, 'A,LG) is a free left
A-module with free generators u. for r in G, and the f(%, ;) are in U(A),
we conclude that a}f’ =0 for each % and i. Therefore 6; =0 for each i.

Denote the crossed product 4(ge-1, Le-1, C&/Cr-2) by 4r and the crossed

product 4(gk-1, Lk-1, Ck-1/Ck-2) by dr-1. Observe that de-. is a subring of 4.

LemMa 2.6. The crossed products dr and dr-, satisfy the following rules

1) u-(rad 4p) (u:)"'Crad 4e for each t in Gi/Cr-2

2) (rad 4p) N dp-1Crad dp_;

3) di-1 s contained in the center of dr

Proof. In order to prove statement 1) we first observe that rad 4 is a
nilpotent two-sided ideal of 4 since dr is an Artin ring. Using the fact that

rad 4e is two-sided together with the fact that Ci/Ci-: is a normal subgroup
of Gi/Cr-» we can conclude that u:(rad 4:) (#.)™"' is a two-sided ideal of 4.
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And the nilpotency of #-(rad 4;) (#:) ! follows immediately from that of rad 4.
Therefore, since u;(rad 4p) (#:) 7" is a nil ideal of 4 we know that it is contained
in rad 4.

Assertion 2) follows immediately from Lemma 2. 4.

We shall make use of Prop. A. 1 to prove that 4, is contained in the
center of 4. For let A = >la,u, denote any element of 4x-:, where the elements
p are in Ck-1/Ck-» and the a, are in Lr-;. Since Ci/Ck-, acts trivially on Lg-i,
we know that A is in the center of 4: if and only if Au- = #-4 for each element
v of Ci/Ch-2. Now At = 238, gr-1(p, T)ttpe. On the other hand, u.i=
@, gr-1(t, 0)th<p = D apgr-1(p, T)%p since Cr_1/Cr-» is in the center of Ci/Ci-2
and gr-1(r, p) = gk-1(p, v) according to Prop. A.1. Therefore Au:=u.2 for
every A in 4dp-; and t in Ci/Ck-2, and so dx-: is contained in the center of 4.

It is in the next proposition that we make use of the fact that the extension

L;.1 of L; is purely inseparable for each i.

ProposiTION 2.7. If the crossed product 4(f, F, C) is a field then each crossed
product 4(gi, Li, Ci/Ci-1) is a field.

Proof. The proof is by contradiction. Suppose therefore that not all the
commutative rings 4(g;, L;, Ci/Ci-1) are fields. By hypothesis, 4(go, Lo, Co) =
4(f, F, C) is a field so we may consider the least positive integer %2 such that
A4(gk, Lk, Cr/Cr-1) is not a field. We shall show first that the assumption that
4(gr, Lk, Cp/Cr-1) is not semi-simple implies that 4(gk-1, Lr-1, Cr/Cr-2) is not
semi-simple. Then we shall show that the semi-simplicity of 4(gx-1, L1, Ck-1/Ch-2)
implies the semi-simplicity of the crossed product 4(gk-i1, Lg-1, Ce/Cr-1) and
thus arrive at a contradiction.

We proceed to show that 4(gx-1, Le-1, Cr/Cr-2) is not semi-simple. The
first step is to establish a connection between A4(gr-1, Le-1, Ct/Cr-5) and the
commutative ring 4(gx, Lk, Cr/Cr-1). It follows from Prop. A. 7 that the sequence
(1) > H*(Ci/Cr-2, U(Lx)) > H*(Ce, U(L)) is exact. Since g is cohomologous
to ge-1 in Z*(Cr, U(Lk)) we conclude therefore that their preimages are
cohomologous in Z*(Ci/Ci-s, U(L)) by some map ¢ : Cr/Cr-2—U(Ly). Then
the map ¢ : 4(gk, Lk, Ck/Cir-2) - 4(gk-1, Le, Ck/Cr-2) induced by defining
¢lau,) = ag(p)u, for a in Lr and p in Cr/Cr-» is an Lg-algebra isomorphism.

The following diagram establishes the desired relation between the crossed
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products 4(gr-1, Lg-1, Cr/Cr-2) and 4(gr, Lg, Ct/Cz-1). Observe that the

columns are exact.

4(gr, Lk, Ck/Ck—z)LA(gk—x, Li, Ci/Cr-2)
T

|
W
A4(gr, L, Cr/Cr-y)  4(gt-1, Le~1, Cr/Cr-2)

| !

(1) (D

Explicitly, the map « is defined as follows. Let N be the left ideal of
4(gr, Lr, Cr/Cr-2) generated by the set of all elements of the form 1--#%, for
p in Cp-1/Ck-2. The ideal N is in fact two-sided, and the natural map
A4(gr, L, Cp/Cr-3)/N— 4(gr, Li, Ct/Cr-1) is an Li-algebra isomorphism. Then
« is defined to be the composition of the natural maps

4(gk, Li, Cr/Cr-2) > 4(gr, Lk, Cr/Cr-2) /N~ 4(gk, Lr, Cr/Cr-1).

Note that the preimage of rad 4(ge, Lk, Ci/Ce-1) is contained in rad
4(gr, Lr, Cr/Cr-z) since N is contained in rad 4(gkr, Lr, Cr/Cr-s).

Now let Cr/Cr-1=Ei1x - - - X Et be a decomposition of the Abelian p-group
Cr/Cp-1 into a direct product of -cyclic groups. The assumption that
4(gr, Lk, Cr/Cr-1) is not semi-simple implies by Cor. 1.11 that there exists an
element of the form ux— ¢ in rad 4(ge, L, Cr/Cr-1) where T is an element
different from 1 in E, for some ¢ satisfying 1<g<? and § is in 4(gx, Le,
E;x +-+XE;.1). We may therefore consider an element #.—4 of rad
A4(gr, Ly, Ce/Cr-2) in the preimage of uz — 6.

We now use the element #:—6 to produce a non-zero element x in the
radical of 4(gk-1, Li-1, Ck/Cr-2). Write ¢(8) in the form ¢(38) = > a,u, where
each p is in Cr/Ci-2 and the elements a, are in L. Now by the assumption
on k£ we have taken L= 4(gk-1, Lr-1, Ck-1/Cr-2), S0 we may consider the

-isomorphism
0 : Lp->A4(gk-1, Li-1, Cr=1/Cr=2)

of subfields of 4(gr-1, Lg, Cr/Cr-2) which leaves Li-; element-wise fixed. Define
the element x of 4(gk-1, Lk—1, Cr/Cr-2) by setting x = ¢(z)u. — 8, where 8; = > 0(a,)u,.

The next step is to show that x is in rad J(ge-1, Lk, Cr/Cr-2); and to do
this it suffices to show that the image ¢ (%) of ¢™'(x) in 4(gr, Lk, Ct/Ck-1)
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is in the radical. Since 4(gx, Lk, Ck/Ck-)) is a commutative Artin ring, ¢~(x)
is in the radical if and only if ¢ (%) is nilpotent. In order to prove the
nilpotency of ¢~'(%) we prove first that §° = ¢='(8:)° where P is the degree of
L over Liy_;. (Since Lp is purely inseparable over L;-; we have the inclusion
LiCLy-) Now §=¢ (Da,u,) so that

5 = ST N an g ) T = S0 @) ().

On the other hand, using the fact that af is in Lk-: and is therefore left fixed
by 6 we obtain the equalities

o0 = W HO@N g Ul = S @D g ud)

=3°

Since #:—3 is in the radical of an Artin ring, we have that (#:~3)Y=0 for
some positive integer N. It is easy now to verify that ¢~'(x) is nilpotent.
For ¢~ (%)™ =[uzs — ¢77 (61" = us™ - §™ = [uz - §1™' = 0. This concludes the
proof of the assertion that x is in rad 4(ge-1, Lz, Ct/Ci-2).

Since x is in (rad 4(gk-1, Lr, Ck/Cr-2)) N 4(gk-1, Li-1, Cr/Ci-2) we conclude
from Lemma 2.4 that x is in rad 4(gk-1, Le-1, Cr/Cr-2).

It remains to show that x is non-zero. It may be observed from the first
part of the proof that r=%p mod Cp-1/Ci-2 for any element p in the expression
6 =¢ " (Sa,u,), from which it certainly follows that r % p for any such p. Since
the crossed product 4(ge-1, Le-1, Ce/Cr-2) is a free left Li-;-module with free
generators #, for ¢ in Cr/Cr-; we conclude that x~0. Therefore 4(ge-1, Li-1,
Ci/Cr-2) is not semi-simple, and this concludes the first part of the proof.

The rest of the proof involves showing that the semi-simplicity of 4(gk-i1,
Lg-1, Cr-1/Cr-») implies the semi-simplicity of 4(gk-i, Lr-1, Ck/Ck-2). As in
Lemma 2.6 we use the notation dz-1 = 4(gk-1, Li-1, Cr-1/Cs-2) and 4p = 4(gr-1,
Li-1, Cr/Ch-s). Let Ci/Ch-s= \:) (Cr-1/Cr-2) pi be a disjoint right coset decom-
position of Ci/Cr-» relative to the subgroup Ck-1/Cr-:. Then an element ¢ of
4r can be written uniquely in the form § = :('}_35,4;9,. where each ¢; is in dg-;.

We may assume that p; = 1.

The proof that 4; is semi-simple is by induction on #(8). If #(6) =1, then
8 is in (rad 4e) N 4k-1, so that & is in rad 4e- by Lemma 2.6. Since di_; is
t

semi-simple we conclude that § = 0. Now let § = >,0;u,, be an element of rad 4z,
i=1
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with 8;% 0 and p, =1. The induction hypothesis states that if r is an element
of rad 4, and t(y) <t, then y=0. Consider the element p; of C¢/Cr-.. By
Lemma 2.2 there exists an element r in Gi/Ck-» such that tpst o' =¢; is in
Ci-1/Crsand c: = 1. For 1<i<t —1, let ¢; be defined by ¢; = ;v 'pi' and observe
that each ¢; is in Cr-1/Cp-2.

Now form the element 7 =68 —#-.8(%#:)"". By Lemma 2.6 it follows that 7
is in rad 4r. Using the fact that 4x-, is contained in the center of 4, together

with the definition of the ¢; one may obtain the equalities

r= é&'um - “r(gai“h) ()™

_ 6'[1 _ 8r-1(z, 07) ge-1(zpi, 1)
: gh-alt, T7Y)g8r-1(Ci, p1)

-

Ue; JuPi

Se-1(r, 0 gr-1(rpi, v
gk-lT, T71) gralei, pi)
and note that each 1; is in 4r-;. It is easy to check that ¢, =1 and A, = 0 since

For convenience of notation, let 4;=1—

uc; for 1<i<t,

o1=1. Therefore r = é_}(&;l;)u,,,. with d;; in 4k-, for 2<i<¢. Hence y is an
element of rad 4 suc'}; that #(y) <¢t. By the induction hypothesis we may
conclude that v =0, and so d:4; =0 for 2<i<¢t. But 2:%0 since ¢ 1, so that
=0 because 4i-; is a field. This contradicts the assumption that d:=0.

Therefore rad 4r = (0), and so 4 is semi-simple.

Lemma 2.8. If the crossed product 4(gi, Li, Ci/Ci-\) is a field for some i,
then the radical of 4(gi, Li, Ci) is generated as a right ideal by the radical of
41, L;, Ci-1)..

Proof. Recall that gi=1 on C;-;xCi-;. Let N denote the right ideal of
the trivial crossed product 4(1, L;, Ci-1) generated by the set of all elements
of the form 1 —u#, with ¢ in C;j-;. It follows at once from the exercise on
p. 435 of [9] that N is the radical of 4(1, L;, Ci-;). Therefore Lemma 1.4 now
implies that N4(g;, L;, C;) is contained in rad 4(g;, L;, C;). In order to con-
clude that N4(g:, L;, C)) is the radical of 4(g;, L;, C;), observe that the factor
ring 4(g;, Li, Ci)/ N4(g;, Li, Ci)is isomorphic to the crossed product 4(g;, L;, Ci/Ci-1)
and is therefore simple by hypothesis. -

ProrosiTiON 2.9. Let G be a p-group with trivial action on a field F of
characteristic p.  Then the crossed product A(f, F, G1) is semi-simple if and only
if 4(f, F, C) is a field where C denotes the center of G.
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Proof. If 4(f, F, G)) is semi-simple, the fact that rad 4(f, F, C) is contained
in rad 4(f, F, G\) (see Lemma 1.4) implies that 4(f, F, C) is also semi-simple.
Therefore 4(f, F, C) is a field according to Theorem 1.10.

To prove the assertion in the other direction recall first of all that the
assumption that 4(f, F, C) is a field implies that each crossed product
4(gi, Li, Ci/Ci-1) is a field by Prop. 2.7. We shall use this fact to prove
inductively that d4(f, F, C) is semi-simple for 0<:<n. Note that 4(f, F, Cy)
is semi-simple by hypothesis. So suppose that 4(f, F, C;-,) is semi-simple.
In order to prove that 4(f. F, C;) is semi-simple consider the sequence of maps

A(f, F, C))—>4(f, L, Ci)‘iﬁ”’d(gi: L;, C—>4(gi, Li, Ci/Ci-1)

where ¢ is the L;-algebra isomorphism defined by ¢(au.) =a¢(c)u. for a in L;
and r in C;, and ¢ : C;—»U(L;) is the map by which f is cohomologous to g;
in Z%(C;, U(Ly)). The other maps are the obvious ones.

Let & denote any element of rad 4(f, F, C;). We shall use the above
sequence to prove that §=0. By applying Lemma 1.4 we may conclude that
0 is in rad 4(f, Li, C)), so that ¢(8) is in:rad 4(g;, L;, C;) since ¢ is an
isomorphism. According to Lemma 2.8 the fact that 4(g;, L;, C;?Ci_l) is a
field ‘implies therefore that we may write ¢(d) in the form ¢(8) = S1u;3; where
each #; is in rad 4(1, L;, Ci-1) and each d; is in 4(gi, L;, C;). Therefore
6=>1¢""(#)¢""(8;). From the definition of the isomorphism ¢, it follows that
each eiement ¢ M) is in rad 4(f, Li, Ci-y). Consider now a disjoint right
coset decomposition C; = U Ci-10; of C; relative to the subgroup Ci-;. Then
each element ¢~ 1(B,) has a unique expression in the form ¢71(8)) = }_,A"’u,,
where the 2}’ are in 4(f, L;, Ci-)). Therefore &= EEEWI(n,H“’]uP, The
fact that & is in 4(f, F, C;) implies now that Zgb"(n,)/l“’ is in 4(f, F, Ci-1)
for each j, so that Zigb"‘(n;)x‘,-"’ is in (rad 4(f, .L,-, Ci-)) NA(f, F, Ci-y). It
follows from Lemma 2.4 that (rad 4(f, L;, Ci-))) N 4(f, F, Ci-;) is contained
in the radical of 4(f, F, Ci-1). By the induction hypothesis, rad 4(f, F, C;-;) = (0).
Therefore 3¢ (#:)4;’ =0 for each j, and so we conclude finally that = 0.

3. Hereditary orders. Let S be the integral closure of a complete discrete
rank one valuation ring R in a finite Galois extension of the quotient field of

R, and let G denote the Galois group of the quotient field extension. Assume
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moreover that the residue class field extension S of R is separable. The purpose
of this section is to prove the main theorem of the paper, namely that the
crossed product 4(f, S, G) is a II-principal hereditary order if and only if the
radical group Ry is trivial. (See Section 1 for the definition of radical group.)

The results of Sections 1 and 2 together imply that 4(f, S, G,) is semi-
simple if and only if Rr= (1), where G denotes the first ramification group
of S over R. The crossed product 4(f, S, G) is a IT-principal hereditary order
if and only if 4(f, S, G) is semi-simple. Therefore our next object is to prove
that 4(f, S, G) is semi-simple if and only if 4(f, S, G;) is semi-simple.

The first step is to reduce the problem to the inertial case. For the sake
of completeness we prove the folldwing proposition which has already been
established by Harada in [10].

ProrosiTiON 3.1. Let S be an integrally closed extension of a complete discrete
rank one valuation ring R, and let Gy denote the inertia group of S over R. Let
Lf1 denote an element of H (G, U(S)). Then the radical of the crossed product
A(f, S, G) is generated as a right ideal by the radical of 4(f, S, Go).

Proof. Let IT denote a prime element of S. Since IT is in rad 4(f, S, G)
and in rad 4(f, S, G,) it suffices to prove that the radical of 4(7, S, G) is
generated as a right ideal by the radical of 4(7, S, Go). For convenience of
notation we let 4 = 4(¥, S, G) and 4,= 4(7, S, Gy). '

Let U denote the inertia ring of S over R. Since S is a purely inseparable
extension of U, the inertiévgrou‘ﬁ G, acts trivially on S. Furthermore, U = R(6)
for some element 6 of U since U is a finite separable extension of K.

Observe that the intersection (rad 4) N4, is contained in rad Zo under the
natural injection of 4, into 4 according to Lemma 2.4.

Now we may prove the proposition. Let G = UGor; be a disjoint right
coset decomposition of G relative to the normal subgroup G,. Let § be an

t(8) .
element of rad 4 and write § = >)diu., where d; = >)cj, 'us with the % in G, and

the c}f’ in U(S). Note that th(; élements 0:; are unique by Lemma 2.5. We
shall prove by induction on #(8) that each ¢; is in rad 4,. For suppose that
t(®) =1. Then 6 =d;iu., where §; is in 4. The element (u-,) ! is therefore
in (rad 4) N4,. By the above observation we conclude that §; is in rad 4,.

Now let 6 = >)0;us, be an element of rad 4 for which £(3) =¢ The induction
i=1
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hypothesis states that if t(y) <t for an element r of rad 4 then each y; is in
t—-1

rad 4, where y = S'riu-,. Consider the element a =05 —d7; '(6) = ?_j(ﬁ — zite (0))0itt~,.
Since « is in rad 4 and #(a) <¢ it follows from the induction hypothesis that
(60— rit7'(6))d; is in rad 4, for each i such that 1<i<¢t—1. Since G/G, is the
Galois group of U over R (see p. 32 of [5]) we have that r;t7 1(6) =6 if and
only if i=¢ Therefore §; is in rad 4, for 1<i<¢t—1. Finally we observe that
8tu-, is in rad 7 so that & = dsu-,(u<,) ™" is in (rad 4) N4, and hence in rad 4.
Therefore §; is in rad 4, for 1<i<¢ and this concludes the proof.

As in Section 2 we shall use the notion of a splitting field of a crossed

product to reduce computations to the case of a trivial crossed product.

ProposiTION 3.2. Let f be an element of Z*(Go, U(S)). Then there exists a
finite purely inseparable extension L of S and a 2-cocycle g of Z*(G,, U(L)) such
that g is in the image of the inflation map Z*(Go/G,, U(L)) » Z*(Gy, U(L)) and
is cohomologous to the image of f in Z(G,, U(L)).

Proof. The proof is by induction on the number of ramification groups.
Let '

GeyDGatyD * * * DGuin) D Garnyy = (1)

be the sequence of (distinct) ramification groups of the extension S of R,
observing that «(0) =0 and a(1) =1. We first construct a chain of fields
S=L,cL,c---cL,and 2-cocycles g; of Z*(Gy, U(L;)) such that each Li,
is a purely inseparable extension of L;, and each g; is in the image of the
inflation map Z*(Go/Gan+1-i, UL:i)) - Z*(Go, U(L;)) and is cohomologous to
the image of 7 in Z*(G,, U(L)).

We define Ly=S and go=7. It is a trivial observation that L, and g, have
the desired properties. When L; and g; have been defined, we then define L;4:
and gi+: in the following way. For convenience of notation we denote the
preimage of g in Z*(Go/Gun+1-i), U(L)) by g; also. Then L;i, is defined to
be a finite purely inseparable splitting field for the crossed product
4(gi, Li, Gan-iy/Gan+1-iy). The existence of such a field L;., is guaranteed
by Lemma 2.1, since Gyn-i)/Gan+1-i) is an Abelian p-group with trivial action
.on L;. By an argument entirely similar to that used in the proof of Prop. 2.3
we may conclude the existence of a 2-cocycle g+ in Z*(Gy, U(Li+1)) which is
in the image of the inflation map Z*(Go/Gun-ir, ULis1)) - Z%(Gy, ULi+1)) and

https://doi.org/10.1017/50027763000023977 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023977

CROSSED PRODUCTS AND RAMIFICATION 105

is cohomologous to the image of 7 in Z* Gy, U(Li+;)). We may prove the
proposition now by taking L =L, and g= gnu.
The notation established in Prop. 3.2 shall be used throughout the rest of

Section 3.

ProrosiTioN 3.3. The radical of the crossed product 4(g, L, Go) is generated
as a right ideal by the radical of 4(1, L, G).

Proof. Let N denote the right ideal of 4(1, L, G,) generated by the set of
all elements of the form 1 —#, with ¢ in G;. Since G, is a p-group and L has
characteristic p, it follows at once from the exercise on p. 435 of [9] that N
is the radical of the trivial crossed product 4(1, L, G,).

It remains to show that N4(g, L, Gy) is the radical of 4(g, L, G,). Using
the fact that g is in the image of the inflation map Z*(G./G., U(L)) » ZXG,, U(L))
together with the fact that G, is a normal subgroup of G,, one may conclude
from the definition of N that the right ideal N4(g, L, Go) is equal to the left
ideal 4(g, L, Go))N. Lemma 1.4 now implies that N4(g, L, G,) is contained
in rad 4(g, L, G,). To prove that N4(g, L, G,) is the radical of 4(g, L, Go)
it suffices therefore to show that the factor ring 4(g, L, Go)/Nd(g, L, Go) is
semi-simple. Now 4(g, L, Gy"/N4(g, L, G,) is isomorphic to the crossed product
4(g, L, Gy/G,) in a natural way. Since Go/G, acts trivially on L, and the
Aorder of Go/G; is relatively prime to the characteristic of L, it follows from

Theorem 1.1 of [7] that 4(g, L, Gy/G,) is L-separable and therefore semi-simple.

Prorosition 3.4. The radical of the crossed product A(F, S, G,) is generated
as a right ideal by the radical of 4(¥, S, G)).

Proof. The first step is to prove that the radical of 4(f, L, G,) is generated
as a right ideal by the radical of 4(f, L, Gi). Consider the 2-cocycle g of
Z% Gy, U(L)) whose existence is established by Prop. 3.2, and let ¢ : Go- U(L)
be the map by which f is cohomologous to g in Z%(G,, U(L)). It is well known
that the map ¢ : 4(f, L, Gy) > 4(g, L, Go) defined by ¢lau-) = a¢p(c)u- for ain
L and r in G, is an L-algebra isomorphism. The radical of 4(g, L, Go) is
generated as a right ideal by the radical of 4(1, L, G;) according to Prop. 3.3.
Since ¢ '[4(g, L, G\)]1=4(¥, L, G,) we may conclude therefore that the radical
of 4(F, L, Go) is generated as a right ideal by the radical of 4(%, L, G)).

Now consider an element ¢ of rad 4(f, S, Go). It follows easily from
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Lemma 1.4 that ¢ is also in rad 4(¥, L, Go), so that according to the first part
of the proof we may write 6 = >)#;8; where each #; is in rad 4(%, L, G,) and
the o; are in 4(¥, L, Go). Each element §; has a unique expression in the form
8i = 24"u,, with the 2" in 4(¥, L, G,), where Go= UGy, is a disjoint right
coset :iecomposition of G, relative to the subgroup G;. Therefore § = S3[ > %25 Ju,,.
Since ¢ is in 4(¥, S, Gy, the fact that 4(%, L, Go) is a free leftJA(;_‘, L, G-
module with free basis {,} implies that 3}%;2{" is in 4(¥, S, G)) for each j.
Therefore each En,-x}"’ is in (rad 4(%, L, bl)) N4(7, S, G, which according
to Lemma 2.4 is lcontained in rad 4(¥, S, G)). The fact that an element 6 of
rad 4(7, S, G)) may be written in the form 6 = [ >)#iz{ Ju,; with each >’
in rad 4(¥, S, G,) establishes the assertion of t}:e p.roposition. '
Using Prop. 3.4 together with the results of Sections 1 and 2 we may now

prove the main theorem of the paper.

TueoreMm 3.5. Let S be an integrally closed extension of a complete discrete
rank one valuation ring R such that the residue class field extension is separable,
and let [ ] be an element of H*G, U(S)). Then the crossed product 4(f, S, G)
is a II-principal hereditary order if and only if the radical group Ry of [f] is

trivial.

Proof. The crossed product 4(f, S, G) is a II-principal hereditary order if
and only if the crossed product 4(¥, S, G) is semi-simple. By Prop. 3.1 we
know that 4(¥, S, G) is semi-simple if and only if 4(7, S, Gy) is semi-simple
where G, denotes the inertia group of S over R. ~And the crossed product
4(#, 5, Gy) is semi-simple if and only if 4(¥, S, G,) is semi-simple according
to Prop. 3.4, where G, is the first ramification group of S over R. Prop. 2.9
implies in turn that 4(¥, S, G)) is semi-vsimpzle if and only if 4(¥, S, C) is a
field where C denotes the center of Gi. Finally, the fact that 4(7, S, C) is a
field if and only if Ry is trivial (see Theorem 1.10) establishes the assertion
of the theorem.

We obtain at once from Theorem 3.5 the following result which has already

been proved by Harada (see Theorem 2 of [10]).

CoroLLARY 3.6. Let R be a complete discrete rank one valuation ring with
perfect residue class field, and let S denote an integrally closed extension of R. If
[f] is an element of H*(G, U(S)), then the crossed product 4(f, S, G) is a II-
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principal hereditary order if and only if S is a tamely ramified extension of R.

Proof. In the case when S is a tamely ramified extension of R it was
proved in [7] that 4(f, S, G) is a IT-principal hereditary order.

We prove the assertion in the other direction by contradiction. So suppose
that the extension S of R is not tamely ramified. Then the center C of the
first ramification group G, is non-trivial. Since R is perfect, / is cohomologous
to 1 on CxC by Cor. A.5. From the definition of the radical group it now
follows that Rs=C. '

Arpenpix. Conomorocy. In this appendix to the paper we present several
general facts concerning cohomology which have application to the study of

crossed products.

ProrosiTiON A.1. Let F be a field of characteristic p=x0, and G a group
which acts trivially on F. Suppose that ¢ and v are elements of G such that st = ta.
If the order of <« is a p** power, then f(a, v) = f(x, o) for every 2-cocycle f in
Z*(G, UF)).

Proof. Let p' denote the order of r. By the associativity property of f
we obtain the equalities

f(z, arpt_l)f(o, ) = F(ra, t? N f(z, o)
flo, TN F (7 o) = f (e, ')
f (o, ri’t_l)f(a. ) = f(, 271

Combining the above equalities we obtain that
Fo, e D f(a, ) =F&?Y @) f(z, o).

We next obtain an expression for F&P g). Write £(r?7, o) = f(e?' 711, 4)

for 1<i<p’—1. By combining the equalities
f(rpt“"_lr, NP ) = F( P 10) f (2, 0)
F@? 60 Fla, ©) = f(e? 7, D F (2?7, )
we get that
FEP 6 = f(r, o) flar? 7L D £ (27 @) f (o, o) f (2?7 1)

for 1<i<p’—1. By repeated use of this equality it follows that

£ 0) = [f (6, £ 0, P L floe? ™, 005 (e#7, 0),
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t-j-1

On the other hand, we may write f(g, 2 = fla, ? r) and obtain an

expression for f(s, t?"!). The associativity property of f implies that
fla, e#7) = f(ae? 77 ) f o, <) £ (¥ 2).

By repeated use of this equality we obtain that
v , -
fla,c? ) = ;sz(ar’“', )/ f (=7 7).

Now we may conclude that f(q, 7) = f(c, ¢). For by substituting the above
expressions for f(v?"%, ¢) and f(s, v*™!) into the equality (s, c* ") f (o, 1) =
F(+?, ) f(z, o) we get that [f (s, ©)1* = [f(r, 9)1¥. Since F has characteristic
p, we conclude that f(g, 7) = f(z, o).

CoroLLARY A.2. Let F be a field of characteristic p=0, and let E and Gy
be groups with Gy a p-group. If E and Gp act trivially on F, then the natural
map

HYEX Gy, U(F)) > HE, U(F))x HG,, U(F))
is an isomorphism.
Proof. Define a map
¢ 1 ZAEXGyp, U(F)) = Z*E, UF)) xZXGp, U(F))

by ¢(f) =fif» where f; is the restriction of f to Ex E and f; is the restriction
of f to Gpx Gp. Then ¢ induces a well-defined map

¢ 1 H(Ex Gy, U(F)) »H'E, UF)) x H(Gp, U(F)).

We shall show that the map ¢ is a group isomorphism.

It follows from the definition of ¢ that ¢ is a homomorphism of groups.
We next observe that ¢ is an epimorphism. For let f1; be any element of
ZY(E, U(F)) x ZGyp, U(F)). Then define the map f : (ExG,)x (EX Gp) > U(F)
by f(oiti, oet2) = fi(o1, a2)f2(71, 72) where ¢, and o, are in E and 7; and . are
in Gp. It is easy to verify that f is an element of Z*(ExG,, U(F)) and that
¢(f)=fif>. Since ¢ is an epimorphism we may conclude that ¢ is an epimor-
phism.

It remains to show that ¢ is a monomorphism. Since the order of each
element of G, is a p'* power, and E and G, commute element-wise in Ex G,
we know by Prop. A.1that f(o, v) = f(r, ¢) for each ¢ in E and 7 in G, whe;'e
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f is any element of ZX Ex Gy, U(F)).

We next prove that for each element f of Z*(Ex Gy, U(F)) there exists
an element 7 of Z*E x Gp, U(F)) cohomologous to f and such that
7 (a1t1, a272) = £ (a1, a2)f (¢1, v2) where ¢, and o, are in E and ; and r. are in
G,. Since each element of EX G, can be written uniquely in the form or
with ¢ in E and v in G, we can define a map ¢ : E x Gp— U(F) by ¢(o7) = f(g,7).
Now define the 2-cocycle / by f (o, @) = f(p, 0)¢(p)¢(w)/¢(pw) for p and o in
ExGp. Note that f(s,7t)=1 whenever ¢ is in E and r is in G, since
#(ot) = f(s,7) and ¢lo) =¢(r) =1. We proceed to verify that f has the
desired property. Now f (aity, aatz) = f (ait102, 12) f (171, 02) since f (o, 72) =1,
so that it suffices to prove that f (oir102, 72) =f(n, 72) and f(om, 02) = f (a3, a2).
The equality 7 (s10271, Tz)f(omz, ) = f (o102, T 2) f (71, ©2) implies that
F otz ©) = £ (a1oer1, ©) = f (71, ) since f (o102, ©1) = f (o102, Tirz) = 1. On
the other hand, the equality £ (air1, @) f (a1, 71) = f (a1, 1) f (71, ¢») implies
that f (a7, 02) = f (01, T102) since f(m, =1 and £ (r1, @) = f (o, 1) =1.
But £ (a1, r1m) = £ (01, cer) and £ (a1, a271)f (02, 1) = £ (1602, 1) f (1, 02) together
imply that f (aits, 02) = f (61, @). Therefore f (ait1, arte) = f (a1, 32 f (11, 72).

Now we may prove that ¢ is a monomorphism. For suppose that f is a
2-cocycle for which @([f1 =[1]. Let f be the 2-cocycle cohomologous to f
and satisfying £ (oit1, aut2) = f (a1, @) f (r1, ), whose existence is established
by the above. Then the fact that @([/]1) =[1] implies that [f,]1=[1] and
[F:1=[1]. Let ¢ : E» U(F) and ¢. : Gp—~ U(F) be maps such that f1(si, a2)
= 61(0) $:(02)/$1(0102) and Fa(cs, ) = ga(rs) dal2) /s (r172) where the o are in
E and the r; are in G,. Then the map ¢ : Ex Gy » U(F) defined by
¢at) = ¢,(0)¢pe(7) for o in E and  in G, satisfies / (o171, 272) = ¢{0171) ¢ (0212) /P 51710272)
from which it follows that [f]="[1].

The following statement follows immediately from Cor. A.2.

CoroLLARY A.3. Let F bea field of characteristicp %0,and let C=E;x * + * X E:
be a direct product of cyclic p-groups. If C acts trivially on F, then the natural

map
H*(C, UF)) » HXEy, UF) x + + + x H'(E:, U(F))
induced by the restriction maps is an isomorphism.

DeriniTiON. Let C=E;X + - + X E; be an Abelian p-group which acts trivially
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on a field F of characteristic p. An element f of Z?(C, U(F)) of the form
f=fi+ - -f: where €ach element f; of Z*(E;, U(F)) is normalized in the sense
of cyclic groups (see p. 83 of [11) is said to be normalized in the sense of Abelian
p-groups.

According to Cor. A.3 we may always assume that an element f of
Z*(C, U(F)) has been normalized in the sense of Abelian p-groups.

CoroLrLarY A.4. Let G be a group which acts trivially on a field F of
characteristic p=0. If the subgroup D of G is an Abelian p-group, then for each
element f of Z(G, U(F)) there exists an element f' of Z(G, U\F)) cohomologous
to f and such that the restriction of f' to DX D is normalized in the sense of

Abelian p-groups.

Proof. For convenience of notation let f» denote the restriction of f to
DxD. By Cor. A.3 there exists a 2-cocycle f5 of Z*( D, U(F)) cohomologous
to fp such that fp is normalized in the sense of Abelian p-groups. Let
¢p : D> U(F) be the map satisfying f5(s, ©)=fila, t) ¢n(0) ¢n(c)/pp(ar) for o
and v in D. Extend ¢, to a map ¢ : G- U(F) by defining ¢(o) = ¢n(s) if o is
in D, and ¢(¢) =1if sisin G—D. Then the element f' of ZXG, U(F)) defined
by f'(a, v)= f(ag, t)¢(a)p(z)/¢(or) has the desired properties.

CoroLLARY A.5. Let F be a perfect field of characteristic p=0, and C an
‘Abelian p-group which acts trivially on F. Then H*(C, U(F)) = (1).

Proof. Let C=E;X - -+ x E; be a decomposition of C into a direct product
of cyclic p-groups. By Cor. A.3 it suffices to show that H*(E;, U(F)) = (1)
for each i. So consider an element [f] of H’(E;, U(F)) and let a be an
element of U(F) such that [f] corresponds to ¢ mod [U(F)]% under the
canonical identification H’(E;, U(F)) = U(F)/LU(F)]% where ¢; denotes the
order of E;. Since F is a perfect field of characteristic p, it follows that a is
an ¢ power. Therefore a=1 mod [U(F)1% and H¥E;, U(F) = (1).

The following lemma shall be useful in proving a statement concerning
the exactness of a sequence of cohomology groups.

Lemma A.6. Let G be a p-group and F a field of characteristic p upon which
G acts trivially. Then Z'(G, U(F)) = (1).

Proof. Let f: G- U(F) be an element of Z'(G, U(F)). We show first
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that (1) =1. For by the associativity property of f together with the fact
that G acts trivially on F we obtain the equality £ (1) =[f(1)J so that f(1) = 1.
Now let o denote any element of G and let p° denote the order of s. Then
1=£(1) = f(e®) =[f(0)1?* so that f(s)=1 since F has characteristic ».
Therefore f=1, and so Z(G, U(F)) = (1).

ProrosiTioN A.7. Let F be a field of characteristic p =0, and G, a normal

subgroup of a group G. If Gp is a p-group which acts trivially on F then the
sequence

(1) ~HAG/Gp, UF))» HYG, UF)) > H¥Gp, UF))
is exact where the maps are inflation and restriction.

Proof. Since G, is a p-group and F has characteristic p, we know by
Lemma A.6 that H'(Gp, U(F)) = (1). It now follows from Prop. 5 p. 126 of
[5] that the above sequence is exact.
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