# POINCARE'S CONJECTURE AND THE HOMEOTOPY 

## GROUP OF A CLOSED, ORIENTABLE 2-MANIFOLD

## Dedicated to the memory of Hanna Neumann

JOAN S. BIRMAN

(Received 28 June 1972, revised 28 November 1972)
Communicated by M. F. Newman

## 1. Introduction

In 1904 Poincaré [11] conjectured that every compact, simply-connected closed 3-dimensional manifold is homeomorphic to a 3 -sphere. The corresponding result for dimension 2 is classical; for dimension $\geqq 5$ it was proved by Smale [12] and Stallings [13], but for dimensions 3 and 4 the question remains open. It has been discovered in recent years that the 3 -dimensional Poincaré conjecture could be reformulated in purely algebraic terms $[6,10,14,15]$ however the algebraic problems which are posed in the references cited above have not, to date, proved tractable.

We concern ourselves herc with a new and more explicit reduction of the Poincaré conjecture to an algebraic problem. Our approach is to regard an arbitrary 3-manifold as the union of two solid handlebodies, which are sewn together along their surfaces. This identification of the surfaces is via a surface homeomorphism, which in turn corresponds to an element in the homeotopy group of the surface. [The homeotopy group of a surface is the group of outer automorphisms of the fundamental group of the surface.] Thus a correspondence can be set up between 3-manifolds and elements in the homeotopy group of a surface.

We begin in section 2 by making this correspondence explicit. We then examine how the fundamental group of the 3-manifold depends on the choice of the surface automorphism (Theorem 1). In section 3 we delineate, in the homeotopy group, the class of elements which corresponds to 3-manifolds which are homology 3 -spheres, that is, their abelianized fundamental group is trivial (Theorem 2). A second subset of the homeotopy group, studied in Section 4, consists of those
surface automorphisms which correspond to 3 -manifolds which are homeomorphic to the 3 -sphere (Theorem 3). Putting together Theorems 1, 2 and 3, we are able to reformulate the Poincaré conjecture as an explicit statement about certain subsets of the homeotopy group $H\left(T_{g}\right)$ of a closed, orientable surface $T_{g}$ of genus $g$ (Corollary 1). The final section of the paper, Section 5, discusses the algebraic problems which remain.

## 2. Constructing 3 -manifolds from surface homeonorphis.ns

Let $X_{g}$ and $X_{g}^{\prime}$ be handlebodies of genus $g$ with boundaries $T_{g}$ and $T_{g}^{\prime}$ respectively. Choose a common base point $z_{0} \in T_{g}$ for $\pi_{1} T_{g}$ and $\pi_{1} X_{g}$, and a common base point $z_{0}^{\prime}$ for $\pi_{1} T_{g}^{\prime}$ and $\pi_{1} X_{g}^{\prime}$. Choose canonical generators for $\pi_{1} T_{g}, \pi_{1} T_{g}^{\prime}$, $\pi_{1} T_{g}$ and $\pi_{1} X_{g}^{\prime}$ in such a way that:

$$
\begin{align*}
& \pi_{1} T_{g}=\left\langle a_{1}, \cdots a_{g}, b_{1}, \cdots b_{g} ; \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]\right\rangle  \tag{1}\\
& \pi_{1} T_{g}^{\prime}=\left\langle b_{1}^{\prime} \cdots b_{g}^{\prime}, a_{1}^{\prime}, \cdots a_{g}^{\prime} ; \prod_{i=1}^{g}\left[b_{i}^{\prime}, a_{i}^{\prime}\right]\right\rangle  \tag{2}\\
& \pi_{1} X_{g}=\left\langle\hat{a}_{1} \cdots, \hat{a}_{g}\right\rangle  \tag{3}\\
& \pi_{1} X_{g}^{\prime}=\left\langle\hat{b}_{1} \cdots \hat{b}_{g}\right\rangle \tag{4}
\end{align*}
$$

Let $\Phi$ be the natural homomorphism from $\pi_{1} T_{g}$ to $\pi_{1} X_{g}$ which is induced by the inclusion map. Similarly, let $\Phi^{\prime}$ be the natural homomorphism from $\pi_{1} T_{g}^{\prime}$ to $\pi_{1} X_{g}^{\prime}$. Suppose that the action of $\Phi$ and $\Phi^{\prime}$ are given by:

$$
\begin{align*}
& \left(a_{i}\right) \Phi=\hat{a}_{i}, \quad\left(b_{i}\right) \Phi=1  \tag{5}\\
& \left(a_{i}^{\prime}\right) \Phi^{\prime}=1, \quad\left(b_{i}^{\prime}\right) \Phi^{\prime}=\hat{b}_{i} \quad(i=1 \cdots, g) \tag{6}
\end{align*}
$$

Let $\eta:\left(T_{g}, z_{0}\right) \rightarrow\left(T_{g}^{\prime}, z_{0}^{\prime}\right)$ be any homeomorphism which takes representatives of $a_{i}, b_{i}$ onto representatives of $b_{i}^{\prime} a_{i}^{\prime} b_{i}^{\prime-1}, b_{i}^{\prime-1} 1 \leqq i \leqq g$. Let $\tau:\left(T_{g}, z_{0}\right)$ $\rightarrow\left(T_{g}, z_{0}\right)$ be any self-homeomorphism of $T_{g}$. Then $\tau$ and $\eta$ can be used to construct a closed compact 3-manifold which we will denote by $X_{g} U_{\tau} X_{g}^{\prime}$ by making the identification:

$$
\begin{equation*}
\tau(z)=\eta(z) \tag{7}
\end{equation*}
$$

for every point $z \in T_{g}$. Our 3-manifold is, of course, given as a Heegaard splitting of genus $g$; moreover, every 3-manifold which admits a decomposition as a Heegaard splitting of genus $g$ can be obtained in this way, by allowing $\tau$ to range over the full group of homeomorphisms of $T_{g}$, or (eliminating obvious duplications) by allowing the induced automorphism $\tau_{*}$ to range over Aut $\pi_{1} T_{g} / \operatorname{Inn} \pi_{1} T_{g}$ $=H\left(T_{g}\right)$.

Suppose that the action of $\tau_{*}$ is given by:

$$
\begin{align*}
& \left(a_{i}\right) \tau_{*}=A_{i}\left(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\right)  \tag{8}\\
& \left(b_{i}\right) \tau_{*}=B_{i}\left(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\right), i=1, \cdots, g
\end{align*}
$$

Observe that the action of $\tau_{*}$ induces a homomorphism $\Phi_{\tau}^{\prime}$ which maps $\pi_{1} T_{g}$ to $\pi_{1} X_{g}^{\prime}$, and which is defined by

$$
\begin{align*}
& \left(A_{i}\left(a_{1}, \cdots a_{g}, b_{1}, \cdots, b_{g}\right)\right) \Phi_{\tau}^{\prime}=1 \\
& \left(B_{i}\left(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\right)\right) \Phi_{\tau}^{\prime}=\hat{b}_{i}^{-1}, i=1, \cdots, g \tag{9}
\end{align*}
$$

If we apply Van Kampen's Theorem to the 3-manifold $X_{g} U_{\tau} X_{g}^{\prime}$, noting that $X_{g} \cap X_{g}^{\prime}=T_{g}=T_{g}^{\prime}$, we can obtain a presentation for the fundamental group of $X_{g} U_{\tau} X_{g}^{\prime}$ :

$$
\pi_{1}\left(X_{g} U_{\tau} X_{g}\right)=\left\{\begin{array}{c}
\hat{a}_{1}, \cdots, \hat{a}_{g}  \tag{10}\\
\hat{b}_{1}, \cdots \hat{b}_{g}
\end{array}\right\}:\left\{\begin{array}{l}
\left(a_{i}\right) \tau_{*} \Phi=\left(a_{i}\right) \eta_{*} \Phi^{\prime}, i=1, \cdots, g \\
\left(b_{i}\right) \tau_{*} \Phi=\left(b_{i}\right) \eta_{*} \Phi^{\prime}, i=1, \cdots, g
\end{array}\right\}
$$

Using (8), this reduces to:

$$
\begin{equation*}
\pi_{1}\left(X_{g} U_{\imath} X_{g}^{\prime}\right)=\left\langle\hat{a}_{1}, \cdots, \hat{a}_{g} ; A_{i}\left(\hat{a}_{1}, \cdots, \hat{a}_{g}, 1, \cdots, 1\right) 1 \leqq i \leqq g\right\rangle \tag{11}
\end{equation*}
$$

Thus we have established
Theorem 1. Let $\tau_{*} \in$ Aut $\pi_{1} T_{g}$. Let the action of $\tau_{*}$ be given by equation (8). Then the fundamental group of the three manifold $X_{g} U_{\mathrm{r}} X_{g}^{\prime}$ admits the presentation (11).

## 3. Characterization of the homology 3-spheres

Let $\operatorname{Sp}(2 g, Z)$ denote the group of $2 g \times 2 g$ symplectic matrices with integral entries [5]. A natural homomorphism, which we denote by $\psi$, exists from Aut $\pi_{1} T_{g} / \operatorname{lnn} \pi_{1} T_{g}$ onto $\operatorname{Sp}(2 g, Z)$ : If $\tau_{*} \in$ Aut $\pi_{1} T_{g}$ is any representative of an element $\left[\tau_{*}\right]$ in Aut $\pi_{1} T_{g} / \operatorname{Inn} \pi_{1} T_{g}$, and if the action of $\tau_{*}$ is given by (8), and if:

$$
\begin{gather*}
A_{i}\left(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\right)=\prod_{k=1}^{g} a_{k}^{\tau_{i k}} b_{k}^{\tau_{i},++k} \bmod \left[\pi_{1} T_{g}, \pi_{1} T_{g}\right]  \tag{12}\\
B_{i}\left(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\right)=\prod_{k=1}^{g} a_{k}^{\tau_{n+i, k}} b_{k}^{\tau_{1+i}, g+k} \bmod \left[\pi_{1} T_{g}, \pi_{1} T_{g}\right]
\end{gather*}
$$

Then the homomorphism $\psi:$ Aut $\pi_{1} T_{g} / \operatorname{Inn} \pi_{1} T_{g} \rightarrow \operatorname{Sp}(2 g, Z)$ is defined by

$$
\begin{equation*}
\left(\left[\tau_{*}\right]\right) \psi=\left(\tau_{r s}\right) \tag{13}
\end{equation*}
$$

That is, the image of [ $\tau_{*}$ ] under $\psi$ is the matrix whose entries are the exponents of $a_{k}$ and $b_{k}$ occuring in (12). Let $K$ denote the kernel of $\psi$.

Let $N\left(x_{1}, \cdots, x_{r}\right)$ be the smallest normal subgroup of $\pi_{1} T_{g}$ containing the elements $x_{1}, \cdots, x_{r}$ of $\pi_{1} T_{g}$. Define subgroups $A, B$ of Aut $\pi_{1} T_{g} / \operatorname{Inn} \pi_{1} T_{g}$ by:

$$
\begin{align*}
A & =\left\{\left[\tau_{*}\right] /\left(N\left(a_{1}, \cdots, a_{g}\right)\right) \tau_{*} \subseteq N\left(a_{1}, \cdots, a_{g}\right)\right\}  \tag{14}\\
B & =\left\{\left[\tau_{*}\right] /\left(N\left(b_{1}, \cdots, b_{g}\right)\right) \tau_{*} \subseteq N\left(b_{1}, \cdots, b_{g}\right)\right\}
\end{align*}
$$

We assert :
TheORem 2: $\left(X_{g} U_{\tau} X_{g}^{\prime}\right)$ is a homology 3-sphere if and only if $\left[\tau_{*}\right] \in A K B$
Proof. If $\tau_{*} \in$ Aut $\pi_{1} T_{g}$, then $\left(\left[\tau_{*}\right]\right) \psi$ will be a matrix in the group $\operatorname{Sp}(2 g, Z)$, that is a $2 g \times 2 g$ matrix of the form

$$
\left(\left[\tau_{*}\right]\right) \psi=\left(\tau_{i j}\right)=\left[\begin{array}{ll}
Y_{1} & Y_{2}  \tag{15}\\
Y_{3} & Y_{4}
\end{array}\right]
$$

where $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are $g \times g$ matrices of integers satisfying the symplectic conditions [5]:
(16.1) $Y_{1} Y_{2}^{t}=Y_{2} Y_{1}^{t}$
(16.4) $Y_{2}^{t} Y_{4}=Y_{4}^{t} Y_{2}$
(16.2) $Y_{1}^{t} Y_{3}=Y_{3}^{t} Y_{1}$
(16.3) $Y_{3} Y_{4}^{t}=Y_{4} Y_{3}^{t}$
(16.5) $Y_{1} Y_{4}^{t}-Y_{2} Y_{3}^{t}=I$
(16.6) $Y_{1}^{t} Y_{4}-Y_{3}^{t} Y_{2}=I$
where the symbol $Y^{t}$ denotes the transpose of the matrix $Y$. Using the presentation given in equation (11) for $\pi_{1}\left(X_{g} U_{\tau} X_{g}^{\prime}\right)$, and the definition of the integers $\tau_{i j}$ in equation (12), we note that the first homology group of $X_{g} U_{\mathrm{r}} X_{g}^{\prime}$ will be trivial if and only if the $g \times g$ matrix $Y_{1}$ has determinant $\pm 1$. Noting that the matrix

$$
\left[\begin{array}{ll}
Y_{1} & 0 \\
0 & \left(Y_{1}^{t}\right)^{-1}
\end{array}\right]
$$

is symplectic if determinant $Y_{1}= \pm 1$ it then follows that

$$
\left(\left[\tau_{*}\right]\right) \psi=\left[\begin{array}{ll}
Y_{1} & 0  \tag{17}\\
0 & \left(Y_{1}^{t}\right)^{-1}
\end{array}\right]\left[\begin{array}{ll}
I & \tilde{Y}_{2} \\
\tilde{Y}_{3} & \tilde{Y}_{4}
\end{array}\right]
$$

where the matrix on the far right is symplectic, and therefore satisfies the symplectic conditions (16). Equations (16.1) and (16.2) imply that $\tilde{Y}_{2}$ and $\tilde{Y}_{3}$ are symmetric matrices. Equation (16.6) then reduces to:

$$
\begin{equation*}
\tilde{Y}_{4}=I+\tilde{Y}_{3} \tilde{Y}_{2} \tag{18}
\end{equation*}
$$

Therefore

$$
\left(\left[\tau_{*}\right]\right) \psi=\left[\begin{array}{ll}
I & 0  \tag{19}\\
\left(Y_{1}^{t}\right)^{-1} \tilde{Y}_{3} Y_{1}^{-1} & { }_{I}
\end{array}\right]\left[\begin{array}{lc}
Y_{1} & Y_{1} \tilde{Y}_{2} \\
0 & \left(Y_{1}^{t}\right)^{-1}
\end{array}\right]
$$

In (19), the matrix on the left is in the subgroup $(A) \psi \subseteq \operatorname{Sp}(2 g, Z)$, while the matrix on the right is in $(B) \psi$. It then follows that $\tau_{*}$ must have represented an element in $((A) \psi(B) \psi) \psi^{-1}=A K B$

Conversely, suppose that $\left[\tau_{*}\right] \in A K B$. Then

$$
\left(\left[\tau_{*}\right]\right) \psi=\left[\begin{array}{ll}
P_{1} & 0  \tag{20}\\
P_{3} & P_{4}
\end{array}\right]\left[\begin{array}{ll}
Q_{1} & Q_{2} \\
0 & Q_{4}
\end{array}\right]
$$

Since both matrices in equation (20) are in $\operatorname{Sp}(2 g, Z)$, condition (16.5) implies that $P_{1} P_{4}^{t}=Q_{1} Q_{4}^{t}=I$, therefore $\operatorname{det} P_{1}$, $\operatorname{det} Q_{1}= \pm 1$. Therefore:

$$
\left(\left[\tau_{*}\right]\right) \psi=\left[\begin{array}{ll}
P_{1} Q_{1} & *  \tag{2}\\
* & *
\end{array}\right]
$$

where $\operatorname{det} P_{1} Q_{1}= \pm 1$. This implies that the group $\pi_{1}\left(X_{g} U_{t} X_{g}^{\prime}\right)$, when abelianized is trivial, hence ( $X_{g} U_{\tau} X_{g}^{\prime}$ ) is a homology 3 -sphere.

## 4. The Poincaré conjecture as a problem about $\boldsymbol{H}\left(\boldsymbol{T}_{\boldsymbol{g}}\right)$

We begin by establishing a result which allows us to set up a correspondence between Heegaard splittings of $S^{3}$ and the complex $A B \subset H\left(T_{g}\right)$.

Theorem 3. The 3-manifold $X_{g} U_{\tau} X_{g}^{\prime}$ is topologically equivalent to a 3sphere if and only if $\left[\tau_{*}\right] \in A B$.

Proof. The necessity of the condition of Theorem 3 will be shown to follow from a result due to Waldhausen:

Lemma 1 [Waldhausen 16]. If $S^{3}$ admits two Heegaard splittings of the same genus, say $\widehat{X}_{g} U_{\tilde{\chi}} \tilde{X}_{g}^{\prime}$ and $X_{g} U_{\mathfrak{t}} X_{g}^{\prime}$, then there is a homeomorphism $h$ mapping $S^{3} \rightarrow S^{3}$ such that $\tilde{T}_{g} h=T_{g}$.

The conventions adopted in Section 2 ensure that if $\tau$ is taken to be the identity map, then $X_{g} U_{i d} X_{g}^{\prime}$ will be $S^{3}$, and we use this as a "standard" Heegaard splitting of $S^{3}$. Suppose that $X_{g} U_{\mathrm{z}} X_{g}^{\prime}$ is also $S^{3}$. Then by Lemma 1 there is a homeomorphism $h$ mapping $X_{g} U_{i d} X_{g}^{\prime} \rightarrow X_{g} U_{r} X_{g}^{\prime}$ such that the restrictions $b_{1}$ and $b_{2}$ of $h$ to $T_{g}$ and $T_{g}^{\prime}$ respectively satisfy $T_{g} h_{1}=T_{g}, T_{g}^{\prime} h_{2}=T_{g}^{\prime}$. Since $h$ must preserve the boundary identification, we have

$$
\begin{equation*}
b_{1} \tau \eta=\eta b_{2}, \text { or } \tau=b_{1}^{-1} \eta b_{2} \eta^{-1} \tag{22}
\end{equation*}
$$

This gives the required product representation, since $b_{1}^{-1}$ induces an automphism $\alpha_{*}$, with $\left[\alpha_{*}\right] \in A$ and $\eta b_{2} \eta^{-1}$ induces an automorphism $\beta_{*}$ with $\left[\beta_{*}\right] \in B$.

To see that the condition of Theorem 3 is sufficient, suppose that $\left[\tau_{*}\right]=\left[\alpha_{*}\right]\left[\beta_{*}\right]$, where $\left[\alpha_{*}\right] \in A$ and $\left[\beta_{*}\right] \in B$. By the handlebody theorem [see,
for example, 15] we can select representatives $\alpha$ and $\beta$ for $\left[\alpha_{*}\right]$ and $\left[\beta_{*}\right]$ respectively in such a way that $\alpha^{-1}$ is induced by a homeomorphism $h_{1}: X_{g} \rightarrow X_{g}$, while $\eta^{-1} \beta \eta$ is induced by a homeomorphism $h_{2}: X_{g}^{\prime} \rightarrow X_{g}^{\prime}$. Using $h_{1}$ and $h_{2}$ we define a homeomorphism $h: X_{g} U_{i d} X_{g}^{\prime} \rightarrow X_{g} U_{\mathrm{r}} X_{g}^{\prime}$ by the rules $h \mid X_{g}=h_{1}$ and $h \mid X_{g}^{\prime}=h_{2}$. It is easily checked that $h$ is well-defined on $X_{g} \cap X_{g}^{\prime}$, hence $X_{g} U_{\mathfrak{r}} X_{g}^{\prime}$ is homeomorphic to $S^{3}$. This completes the proof of Theorem 3.

It is now possible to reformulate the Poincaré conjecture as a problem about the group $H\left(T_{g}\right)$.

Corollary 1. The 3-dimensional Poincaré conjecture is true if and only if the following conjecture about the group $H\left(T_{g}\right)$ is true. Let $\left[\tau_{*}\right] \in A K B \subset H\left(T_{g}\right)$. Let the action of $\tau_{*}$ be given by equation (8). Let $\pi_{1}\left(X_{g} U_{\tau} X_{g}^{\prime}\right)$ be the abstract group presented by equation (11). Then $\pi_{1}\left(X_{g} U_{\mathfrak{t}} X_{g}^{\prime}\right)=1$ only if $\left[\tau_{*}\right] \in A B$.

Proof. By Theorem 2, a necessary and sufficient condition for $X_{g} U_{\tau} X_{g}^{\prime}$ to be a homology 3-sphere is that $\left[\tau_{*}\right] \in A K B$. By Theorem 3 a necessary and sufficient condition for $X_{\theta} U_{\tau} X_{g}^{\prime}$ to be a topological 3-sphere is that $\left[\tau_{*}\right] \in A B$. Hence the Poincaré conjecture is true if and only if the subclass of $A K B$ which corresponds, in our representation, to all homotopy 3 -spheres is precisely $A B$. This proves Corollary 1.

## 5. Some algebraic questions

To try to understand the remaining questions involved in Corollary 1, we propose a series of problems whose solutions might lead to a resolution of the Poincaré conjecture. Each of these can be specialized to the case $g=2$, which is the first real case of interest, since the Poincaré conjecture is known to be true for $g=0$ and 1.

Problem 1. Among all groups which have presentations of the type given in equation (11), characterize those which define the trivial group. This seems to be an extremely difficult problem, however by Corollary 1 , we may restrict ourselves to elements $\left[\tau_{*}\right] \in A K B$, and we expect our answer to be $\left[\tau_{*}\right] \in A B$.

Problem 2. If a direct attack on Problem 1 fails, one might hope to make further progress by following an indirect path and attempting to amass further data about the group $H\left(T_{g}\right)$. Generators and defining relations are known for $H\left(T_{2}\right)$, which is a $Z_{2}$ - central extension of the homeotopy group of a 6-punctured sphere [see 2]. The latter group [see $3,7,8$ ] is, in turn, closely related to Artin's braid group [see 7]. The results in [2] generalize to a proper subgroup of $H\left(T_{g}\right)$ if $g>2$, and the problem of characterizing $H\left(T_{g}\right)$ by generators and defining relations is an open question for $g>2$. This problem is important not only for its applications to the study of 3-manifolds, but also for its potential applications
to Riemann surface theory [e.g. see 9] and for our understanding of the automorphism group of a free group.

Problem 3. Characterize the subgroup $K$ of $H\left(T_{g}\right), g \geqq 2$. Is $K$ finitely generated? Finitely presented? Very little is known, even for $g=2$. We conjecture that for $g=2$ the group $K$ is a free group of infinite rank.

Problem 4. Study the subgroups $A$ and $B$ of $H\left(T_{g}\right), g \geqq 2$. Generators are known for $A$ if $g=2$ [see 4]. Since $A$ and $B$ are conjugate subgroups, only one of these groups need be investigated. Of particular interest in connection with Corollary 1 would be double coset representatives for $A$ and $B$ in the complex $A K B$.

## Acknowledgement

The author wishes to thank Professor Ralph Tindell for many helpful discussions. Thanks are also due to the referee for pointing out a confusing inconsistency in notation.

## References

[1] J. S. Birman, 'On Siegel's modular group', Math. Ann. 191 (1971), 59-68.
[2] J. S. Birman, and H. Hilden, Mapping class groups of closed surfaces as covering spaces, Annals of Math. Studies \# 66 (1972), (Princeton Univ. Press, Princeton, New Jersey).
[3] J. S. Birman, 'A normal form in the homeotopy group of a surface of genus 2', Proc. Amer. Math. Soc., 34 (1972), 379-384.
[4] L. Goeretz, 'Die Abbildungen der Brezelfäche und der Vollbrezel vom Geschlecht 2', Hamburg Abh. 9 (1933), 244-259.
[5] L. K. Hua, and I. Reiner, 'On the generators of the symplectic modular group', Trans. Amer. Math. Soc., 65 (1949), 415-426.
[6] W. Jaco, 'Heegaard splittings and splitting homeomorphisms', Trans. Amer. Math. Soc., 144 (1969), 365-379.
[7] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory (Interscience Publishers, N. Y. (1966)).
[8] W. Magnus, 'Über Automorphismen von Fundamental-Berandeter Flächen', Math. Annalen, 109, (1935), 617-646.
[9] C. Maclachlan, 'Modulus space is simply-connected', Trans. Amer. Math. Soc., to appear.
[10] C. D. Papakyriakopoulas, 'A reduction of the Poinacré conjecture to group-theoretic conjecture's, Annals of Math., 77 (1963), 250-305.
[11] H. Poincaré, ‘Cinquième complément à l'analysis situs', Rend. Circ. Mat. Palermo 18 (1904), 45-110.
[12] S. Smale, 'Generalized Poincaré's conjecture in dimensions greater than four', Ann. of Math. 74 (1961), 391-406.
[13] J. W. Stallings, 'Polyhedral homotopy spheres', Bull. Amer. Math. Soc. 66 (1960), 485488.
[14] J. W. Stallings., How not to prove the Poincaré conjecture, Topology Seminar, Wisconsin; Annals of Math. Studies \#60, (Princeton University Press, Princeton, New Jersey 1965)
[15] R. Traub, 'Poincare's conjecture is implied by a conjecture on free groups', Jnl. of Research, Natural Bureau of Standards, B., Vol. 71 B, Nos. 2 and 3, April 1967, 53-56.
[16] F. Waldhausen, 'Heegaard-Zerlegungen der 3-Sphare', Topology 7 (1968), 195-203.

Stevens Institute of Technology
Castle Point Station
Hoboken, N. J. 07030, U. S. A.
Present address:
Columbia University
New York, 10027
U.S.A.

