Canad. Math. Bull. Vol. 14 (3), 1971

MATHEMATICAL NOTES

Manuscripts for this Department should be sent to R. D. Bercov and A. Meir, Editors-in-Chief, Canadian Mathematical Bulletin, Department of Mathematics, University of Alberta, Edmonton 7, Alberta.

ON APPROXIMATELY CONTINUOUS AND ALMOST CONTINUOUS FUNCTIONS

BY

M. CHAIKA AND S. PERLMAN (1)

The purpose of this note is to discuss the relationship between the concepts of approximate continuity and almost continuity of real functions of a real variable.

Contrary to the papers of T. Husain [1], [2], [3], we shall show that there is little relationship between these concepts, that approximate continuity does not imply almost continuity without additional restrictions and we shall give one such restriction.

Let $N_{\epsilon}(x)$ denote an ϵ -neighborhood of x. A function f is said to be approximately continuous at x_0 if for every $\epsilon > 0$, x_0 is a point of metric density of $f^{-1}(N_{\epsilon}(f(x_0)))$. A function is said to be almost continuous at x_0 if for every $\epsilon > 0$, $f^{-1}(N_{\epsilon}(f(x_0)))$ is dense in some neighborhood of x_0 . $f|_A$ will denote the restriction of the function f to the set A.

A classic result is that a function f is approximately continuous at x_0 if and only if x_0 is a point of density of some set A and $f|_A$ is continuous at x_0 . For this and many more results on approximate continuity and metric density the reader may consult [4] or [5].

Husain and Dwivedi [2] have shown that f is almost continuous at x_0 if and only if there is a set A dense in some neighborhood of x_0 such that $f|_A$ is continuous at x_0 .

We say that an approximately continuous function is strongly approximately continuous on a set A if there is a set B so that for each x in A, x is a point of metric density of B and $f|_B$ is continuous at x.

A function is said to be a Darboux function if it has the intermediate value property.

We assert the following:

- (1) approximate continuity a.e. \rightarrow almost continuity a.e.
- (2) approximate continuity everywhere \rightarrow almost continuity everywhere
- (3) almost continuity everywhere \rightarrow measurability
 - (1) The authors were partially supported by NSF Grants GP-12320 and GP-19653.

[September

(4) strong approximate continuity a.e. \rightarrow almost continuity a.e.

(5) strong approximate continuity everywhere \rightarrow continuity

(6) strong approximate continuity a.e. and the Darboux property \rightarrow the existence of a point of continuity.

Let G_E be the characteristic function of a set E.

If E is a nowhere dense perfect set of positive measure, then l_E demonstrates assertion (1).

If E and its complement are dense nonmeasurable sets, then \mathcal{G}_E shows the truth of assertion (3). The reader may convince himself of the existence of such an E by modifying Proposition 18, p. 165, of [4].

Let *E* be a set of full measure, *f* strongly approximately continuous on *E*, *G* the set whose existence is assured by the definition of strong approximate continuity. Then *G* is dense since it has full measure. $f|_G$ is continuous on *E*. The above cited result of Husain and Dwivedi shows that *f* is almost continuous on *E*, proving assertion (4).

We now give an example of an approximately continuous function that is not almost continuous everywhere proving assertion (2).

Let $I_n = (c_n, d_n)$, n = 1, 2, 3, ..., be a sequence of intervals contained in [0, 1] such that the distance between any two of them is positive, $\frac{1}{2} \notin I_n$, n = 1, 2, 3, ..., $\lim_n c_n = \frac{1}{2} = \lim_n d_n$, and so that $\bigcup_{1}^{\infty} I_n$ has metric density one at $x = \frac{1}{2}$. Let $J_n = [a_n, b_n]$, n = 1, 2, 3, ..., be the system of contiguous intervals, and $b_n - a_n = \lambda_n$. Define

$$f(x) = \begin{cases} 0 \text{ if } x \in (c_n, d_n) \\ 0 \text{ if } x = \frac{1}{2} \\ 1 \text{ if } x \in [a_n + \lambda_n/3, b_n - \lambda_n/3] \\ \text{linear in } [a_n, a_n + \lambda_n/3] \text{ and } [b_n - \lambda_n/3, b_n]. \end{cases}$$

Then f is not almost continuous at $x = \frac{1}{2}$ but is approximately continuous on [0, 1].

We turn to assertion (5). By hypothesis, there is a set A so that $f|_A$ is continuous and the density of A at each point is one. A has full measure and is dense. Suppose $\lim_n x_n = x$. Then there is a $y_k^n \in A$ so that $\lim_k y_k^n = x_n$ and $\lim_k f(y_k^n) = f(x_n)$, $n=1, 2, 3, \ldots$

There exists a sequence of integers $k_1 < k_2 < k_3 < \cdots$ so that $|y_{k_j}^i - x_j| < 1/j$ and $|f(y_{k_j}^i) - f(x_j)| < 1/j, j = 1, 2, 3, \ldots$ The continuity of $f|_A$ with $y_{k_j}^i \in A$ and $\lim_j y_{k_j}^j = x$ imply that $\lim_j f(y_{k_j}^i) = f(x)$. But since

$$|f(x_{j}) - f(x)| \le |f(x_{j}) - f(y_{k_{j}}^{i})| + |f(y_{k_{j}}^{i}) - f(x)|$$

we see that $\lim_{i} f(x_i) = f(x)$ and our assertion (5) is proved.

To prove assertion (6) we require additional notation.

On [0, 1] we construct the Cantor middle third set which we denote by C_0^0 . This construction yields 3^o intervals, I_1^1 , of length $1/3^1$. On I_1^1 , we construct a

434

Cantor middle third set which we denote by C_1^1 . This last construction yields 3^1 intervals, I_1^2 , I_2^2 , I_3^2 , of length $1/3^2$. On each of these intervals, we construct a Cantor middle third set which we denote by C_1^2 , C_2^2 , C_3^2 . This latest construction yields 3^2 intervals, I_1^3 , I_2^3 , ..., I_9^3 , of length $1/3^3$.

We continue this process. At the *n*th stage there will be 3^{n-1} intervals I_k^n , $k=1, 2, 3, \ldots, 3^{n-1}$, of length $1/3^n$. On each of these, we construct a Cantor middle third set which we denote by C_k^n , $k=1, 2, 3, \ldots, 3^{n-1}$, respectively.

For n=1, 2, 3, ... and $k=1, 2, 3, ..., 3^{n-1}$, we call f_k^n the classical Lebesgue singular function on I_k^n having range [0, 1].

We set $F_k^n(x) = \mathbf{l}_{C_k^n}(x) f_k^n(x)$ for n = 1, 2, 3, ...,and $k = 1, 2, 3, ..., 3^{n-1}$. If

$$F(x) = \sum_{n=1}^{\infty} \sum_{k=1}^{3^{n-1}} F_k^n(x),$$

then F has no points of continuity, is Darboux, and since it is zero a.e., it is strongly approximately continuous a.e.

References

1. T. Husain, B(T)-Spaces and the closed graph theorem, Math. Ann. 153 (1964), 293-298.

2. T. Husain and T. D. Dwivedi, A characterization of real almost continuous functions, Canad. Math. Bull. (3) 10 (1967), 361-364.

3. T. Husain, Some remarks about real almost-continuous functions, Math. Mag. (5) 40 (1967). 250-254.

4. C. Goffman, Real functions, Holt, New York, 1953.

5. S. Saks, Theory of the integral, Dover, New York, 1964.

Syracuse University, Syracuse, New York