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ON ORDER PROPERTIES OF ORDER BOUNDED 
TRANSFORMATIONS 

CHARALAMBOS D. ALIPRANTIS 

Introduction. W. A. J. Luxemburg and A. C. Zaanen in [7] and W. A. J. 
Luxemburg in [5] have studied the order properties of the order bounded 
linear functionals of a given Riesz space L. In this paper we consider the vector 
space «£f &(L, M) of the order bounded linear transformations from a given 
Riesz space L into a Dedekind complete Riesz space M. 

We study the order structure of the Dedekind complete Riesz space 
Jzf b(L, M). Integral and normal integral transformations are considered and 
the theorems of [5] and [7] about the different components of an order bounded 
linear transformation are generalized in this setting. Extensions of order 
bounded linear transformations are also considered and the theorems of [7] 
are also generalized. 

1. Prel iminar ies . For notation and basic terminology concerning Riesz 
spaces we refer the reader to [8]. Let L and M be two Riesz spaces. We shall 
denote by Jzf = ^f(L, M) the real linear space of all linear transformations 
from L into M, and by J?f 6 = -£%(£, M) the real subspace of all order bounded 
linear transformations from L into M, i.e., T is in o5f&(L, M) if T(A) is an 
order bounded subset of M, whenever A is an order bounded subset of L. 
A linear transformation T in J^ (L, M) is called positive, denoted by 6 ^ T, 
whenever 6 ^ u £ L, implies 6 ^ T{u) £ M. We write 7\ S T2, T\y T2 G 
J?? (L, M) to indicate that 6 ^ T2 — T\. The set of all positive linear trans
formations of <£(L, M) will be denoted b y i ^ + = ^+(L, M). It is easily seen 
thatif+(Z,, M) Ç ^ 6 ( L , M) and that J£+ is a positive cone forif&(L, M), 
and consequently for Jzf (L, M). Therefore, (jSf b, ££+) is a (partially) ordered 
vector space. In the particular case of M = R we denote the linear space 
j£f 6(Z,, R) by L~, i.e., ^h{L, R) = ZT, and we shall call L~ the order dual of L. 
We remark that in general ^fb(L, M) ?£ J£(L, M). (See Example 1.5 below; 
see also [6, Example (iii), p. 440] for an example of a norm bounded linear 
transformation from I2 into I2 which is not order bounded.) 

The following Lemma can be found in [13, p. 205]. 

LEMMA 1.1. Let L and M be two Riesz spaces with M Archimedean. Assume that 
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ORDER PROPERTIES 667 

T is an additive function from L+ into M+. Then T is uniquely extendable to a 
positive linear transformation from L into M. 

Note that the extension is given by T(u) = T(u+) - T(ur) for all u in L 
and that Lemma 1.1 may be false if M is not Archimedean. Indeed, l e t / be 
an additive function from R into R which is not linear, i.e., not of the form 
f(x) = ex, and let L be the lexicographic plane (see [8, Example (ii), p. 49]). 
Consider the mapping cp : R+ -» L+ by <p(x) = (x, f(x)) for all x £ R+. Note 
that (p is additive and that if <p would be extendable to a linear mapping from 
R into L then / would be linear. 

We continue with a fundamental theorem. 

THEOREM 1.2 (L. V. Kantorovich [4], F. Riesz [12]). Let L and M be two 
Riesz spaces with M Dedekind complete. Then we have: 

(i) The ordered spaced'B(L, M) (ordered by the coneJ£+(L, M)) is a Dedekind 
complete Riesz space. 

(ii) For every T Ç =^&(L, M) and for every u £ L+ we have 

T+(u) = sup {T(v) : v 6 L and 6 ^ v g u), 
T~~(u) = sup { — T(v) : v Ç L and 6 ^ v S u\, 
| r | (u) = sup j | Tv\ : v 6 L and \v\ ^ u}, 

where, T+ = T V 0, T~ = (-T) V 0 and |T| = T V ( - T ) in&b(L, M). 
(iii) 7/ {r«} ç y & ( L , M) a«d r 6 i f 6 (L , M) /Aen Ta î T in&b(L, M) if, 

and only if, Ta(u) | T(u) holds in M for all u in L+. 

For a proof we refer the reader to [11, Proposition 2.3, p. 22,] and to [2]. 

Remark. Theorem 1.2 was proved by F. Riesz in a very special case (see [12]). 
The general Theorem 1.2 as it is stated here was established by L. V. Kantoro
vich (see [4]). 

An illustration of the above theorem is given in the next example. 

Example 1.3. Let L be the Riesz space of all continuous real valued, piecewise 
linear functions, defined on [0, 1], with the pointwise ordering and let 
M = R. Define <p : L —> R by the formula: 

<p(u) = I uf(x)dx for all u £ L. 
J o 

It is easily seen that <p(u) = u(l) — u(0) for all u Ç L. Moreover, using 
Theorem 1.2 (ii), we see that 

<p+{u) = w(l), <p~(u) = M(0), and M(#) = u(l) + u(0) 

for all u Ç L+. 

The following result is a corollary of Theorem 1.2. 

COROLLARY 1.4. Let L and M be as in Theorem 1.2. Then we have: 
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KP) . (0) 
(i) Ta • T inS£\(L, M) implies Ta{u) > T(u) in M for all u £ L. 

(ii) If {Ta\ C Jfb(L, M) and \Ta\ g S € ^b(L, M) for all a and if, 

(*) 
r a ( « ) > r (w) in M for all u <E L, /ften T Ç -£%(£, Af). 

Proof, (i) This follows immediately from Theorem 1.2 (ii). 
(ii) This follows from the elementary fact: If {ua\ is a net of a Riesz space 

(o) 
such tha t ua ^ v for all a and ua > w, then u ^ v. 

The following example shows tha t the assumption \Ta\ g 5 for all a in the 
previous result is essential. 

Example 1.5. Let L be the Riesz space of all real sequences which are 
eventually constant , i.e., u 6 L if there exists a real constant w(oo ) such t ha t 
w(&) = w(oo) for all k è &o, with the pointwise ordering. Note t ha t the 
vectors en = (0, . . . , 0, 1, 0, 0, . . . ) , n = 1, 2, . . . ,e = (1, 1, . . . , 1, . . .) form 
a Hamel basis for L. Observe also t ha t the element u = (u(l), . . . , u(n), 
u(co), u(co), . . .) of L can be writ ten in the form u = (u(l) — u(co))ei + 
. . . + (u(n) — u(co ))en + u(co ) • e, with respect to the above Hamel basis. 
Let (f be the linear functional on L taking on the values cp(en) = n, n = 1, 2, 
. . . , and ip{e) = 0 on the Hamel basis. I t is easily seen tha t <p is not order 
bounded. Now let <pn be the linear functional on L taking the values <pn{ek) = k, 
k = 1, 2, . . . , n, <pn(ek) = 0, k = n + 1, n + 2, . . . , <p(e) = 0 on the Hamel 
basis. I t is not difficult to verify t ha t <pn is order bounded for all n = 1 , 2 , . . . 
and tha t <pn(u) = <p(u) for all n ^ no. This shows t ha t 

<Pn\u) > <PKU) 

in R for all u Ç L. But <p £ L~. 

The next theorem generalizes the s t a tement 1.5.8 of [3, p. 20]. T h e proof is 
similar and so we omit it. 

T H E O R E M 1.6. Let L and M be two Riesz spaces with M Dedekind complete and 
let T Ç J£b(L, M). Then for every u G L+ we have: 

sup T([d, u\) + inf T([d, u\) = T{u). 

A mapping p from a Riesz space L into another Riesz space M is called 
sublinear if p(u + v) ^ p{u) + piv) and p(\u) = \p(u) for all u, v of L 
and all X ^ 0. 

The next theorem is a generalization of the Hahn-Banach theorem. 
(See [11, Proposition 2.1, p . 78J.) 

T H E O R E M 1.7 (Hahn-Banach) . Let L and M be two Riesz spaces with M 
Dedekind complete and let p : L —» M be a sublinear mapping. Assume that T is 
a linear mapping defined on a linear subspace K of L with range in M such that 
T(u) ^ p(u) for all u in K. Then T can be extended to a linear mapping T\ of L 
into M such that Ti(u) ^ p(u) for all u in L. 

https://doi.org/10.4153/CJM-1975-075-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-075-8


ORDER PROPERTIES 669 

2. T h e s p a c e d 6 ( L , Af). In the next theorem we derive some formulas which 

are the " d u a l " formulas to those of Theorem 1.2 (ii). 

T H E O R E M 2.1. Let L and M be two Riesz spaces with M Dedekind complete. 
For every u G L and for every B ^ T G J£b(L, M) we have: 

(i) T(u+) = sup {S(u) : S G i f & ( L , M); S ^ S £ T}, 
(ii) T(u~) = sup {S(u) : 5 G i f 6 ( L , M); 6 ^ S S T}, 

(iii) T(\u\) = sup {\S(u)\ : 5 G i f 6 ( L , M ) ; | 5 | g T ) . 

Proof. We prove the third formula first. Assume u in L and define the func
tion TMon L+ into Tlf by the formula Tu(w) = sup { T(w A w|w|) : w = 1, 2, . . .} 
for all w G £ + . I t follows easily tha t the function defined by p(w) = Tu(\w\) 
for all w in L is a sublinear mapping such tha t p(w) ^ ^ ( M ) for all w in L. 
Let , now K = {Xw : X G R} and let 5 be the linear mapping from K into M 
denned by S(\u) = \p(u) for all X in R. According to Theorem 1.7 there is an 
extension Si of 5 to all of L such tha t Si(g) S p(g) for all g in L. I t follows 
easily from the last relation tha t Si G i f&(£, M) and |Si| ^ r . Hence T(\u\) S 
sup {|S(w)| : S G «if &(L, Af); |S| ^ T}. Since the other inequality it is obvious 
the proof is finished. 

For the first formula we apply the same arguments using as sublinear 
mapping p\{w) = sup {T(w+ A nu+) : n = 1, 2, . . .} for all w ^ L. The 
second formula follows from the first by noting t h a t / " = (— / ) + . 

Remarks, (i) I t can be seen easily from the above proof tha t the above 
suprema are actually maxima. 

(ii) Theorem 2.1 is a generalization of a Theorem of Luxemburg and Zaanen 
(see [7, Note VI, Theorem 19.6, p. 662]). 

We continue with a Theorem which is a kind of converse of Theorem 1.2 (i). 

T H E O R E M 2.2. Let L and M be two Riesz spaces with L~ ^ \6). Let J£\ = 
«Sf &(L, M) denote the real vector space of all order bounded linear mappings from 
L into M. Then we have: 

(i) / / the ordered vector space (j£f 6, «£f+) is a Dedekind complete Riesz space 
then M is Dedekind complete. 

(ii) / / the ordered vector space («if &, i f + ) is a super Dedekind complete Riesz 
space then M is super Dedekind complete. 

Proof, (i) Assume 6 ^ ua ] ^ u0 in M. We have to show tha t ua j u in M 
for some u in M. Let <p be a non-zero positive linear functional of L, and let 
/o G £ + be such tha t <p(fo) = 1. For each a we define a linear mapping Ta in 
i f &(L, M) as follows: 

Ta(f) = <f(f)ua for a l l / in L. 

I t is easily seen tha t 6 ^ Ta | ^ T in i ^ 6 ( L , M ) , where T G i f 6 ( L , M ) , 
^ ( / ) = ^ ( / )^o for all / in L. Since i f &(L, Af) is a Dedekind complete Riesz 
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space 9 ^ Ta Î 5 ^ T for some 5 Ç «if 6(L, M). In particular we have Ta(fo) = 
ua | ^ S(fo). We show next that S(/o) is the least upper bound of the net 
{waj in if. Suppose that ua ^ w for all a. Then we have Ta :§ Tw £ ^b(L} M) 
for all a, where r w ( / ) = <p(f)w for all / in L. Hence S ^ Tw and so 5(/0) ^ 
Tu>(fo) = w- This shows that wa f 5(/o), i.e., Af is Dedekind complete, 

(ii) The proof of (ii) is similar. 

The next example shows that Theorem 2.2 may be false if IT = {6}. 

Example 2.3f. Let L = Lp([0, 1],0 <p < 1, and let M = C[0,i]. It is known 
that Zr = {0} (see [1] and [11, p. 86]). It is not difficult to verify that~Sfb(Z,, M) 
= {#}, which is a super Dedekind complete Riesz space. Note that M is not 
even c-Dedekind complete. 

Given two Riesz spaces L and M with L~ ^ {0} and with M Dedekind 
complete we pick 6 < <p Ç L~, 0 < / 0 G L, <p(fo) = 1 and we define the mapping 
r : M —>Jzf&(L, AT) by w —> Tw, rM(*/) = (p(v)u for all v ^ L. Some properties 
of this mapping T are included in the next theorem. 

THEOREM 2.4. Le/ L and M be two Riesz spaces with L~ ^ {6} and with M 
Dedekind complete and let T : M -+J^b(L, M) be defined as above. Then we 
have: 

(i) T is a one-to-one Riesz homomorphism from M into J^b(L, M). 
(ii) T preserves arbitrary suprema and arbitrary infima, i.e., T is a normal 

Riesz homomorphism. 

Proof, (i) It is obvious that T is a positive linear mapping from M into 
o£f6(Z,, M). To see that T is one-to-one let Tu = 6 for some u 6 M. Then 
we have <p(v)u = 6 for all v £ L and so u = <p(fo)u = 6. To see that T is a 
Riesz homomorphism let u, w be in M such that u A w = 6. Then for every 
0 £ v 6 Z, we have d ^ (Tu A Tw){v) ^ Tu(v) A Tw(v) = <p(v)u A w = 6, 
i.e., Tu A Tw = 6 and this completes the proof. 

(ii) Assume that wa I 6 in Af and that TU(x ^ 5 ^ 6 for all « and some 5 in 
o5f&(L, Af). Then we have >̂(z/) • wa ^ S(p) ^ 0 for all v £ L + and this implies 
S (IF) = 0 for all w G Z,+, i.e., 5 = 6». Hence TWa j 0 inif&(L, M) and this com
pletes the proof of (ii). 

Some more properties of «Sf &(L, AT) are included in the next theorem. 

THEOREM 2.5. If L and M are two Riesz spaces with L~ ^ {6} and M Dedekind 
complete then the following hold: 

(i) If J£b(L, M) has a strong unit then M also has a strong unit. 
(ii) If ££&(L, M) is universally complete then M is also universally complete. 

|Th is example was exhibited by Professor W. A. J. Luxemburg during a discussion in a 
seminar at the California Institute of Technology. 
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Proof, (i) Let d < <p G L~ be as above, and let 0 ^ T0 G i f 6(L, Af) be a 
strong unit for J£b(L, Af). Given u £ M, determine n £ N such that Tu g 
WJTO. Hence w ^ nT0(f0). This shows that r0(/o) is a strong unit of Af. 

(ii) Let {wa} be a mutually disjoint system of M+. Then {TMa} is a mutually 
disjoint system of Jzf 6

+(Z,, M) (the proof is similar to that of Theorem 2.4 (i)). 
Hence, since «£?&(!,, M) is a universally complete Riesz space 5 = sup {TUJ 
exists in«af&(L, Af). It is easily seen now that 5(/0) = sup {wa} in Af. This 
shows that Af is universally complete and the proof is finished. 

3. Extension of order bounded linear transformations. Let L and M 
be two Riesz spaces with M Dedekind complete, and let A be an ideal of L. 
Assume that T is an order bounded linear transformation from A into Af. 
The order bounded transformation S from L into M is called an extension of T, 
if S(u) = T(u) for all u in A, i.e., S = JT on A In this case we shall call T an 
extendable transformation. It is easy to verify that if 6 ^ T £ if&(^4, Af) 
and if T is extendable, then T has a positive extension on L. Indeed, let 5 be 
an extension of T. Then if u 6 ^4+ we have 

5+(w) = gup \S(v) : v £ L; 6 ^ v ^ u} = sup { 7 » : ^ G - 4 ; 6 » ^ z ; ^ ^ } 
= T+(u) = T(u), 

i.e., 5 + is a positive extension of T. 
More generally, if 5 is an extension of T then S+ is an extension of T+ and 

S - is an extension of T~. In other words, T is extendable if and only if T+ and 
T~ are both extendable. 

It is not true that every operator of J^b(A, M) is extendable toJ£f&(L, AT). 
As an example take L = LP([0, l ] ) , 0 < p < l , A f = R and 4̂ the ideal of 
all bounded (a.e.) Lebesgue measurable functions on [0, 1]. The linear map
ping <p : A —> R defined by 

<p(u) = I u(x)dx for all w 6 L 
•/ o 

is a positive one, but ^ cannot be extended to L as an order bounded linear 
mapping, since IT = {6} (see [11, p. 86]). 

More details about extensions are included in the next theorem. 

THEOREM 3.1. Let L and M be two Riesz spaces with M Dedekind complete, 
and let A be an ideal of L. Then we have: 

(i) The set of all extendable transformations of J^b(A, Af) forms an ideal of 
^b(A} Af), which we shall denote by J£b

e(A, AT). 
(ii) For every 6 ^ T £ J^b

e(A, Af) there exists a smallest positive extension 
Tm, in the sense that for every positive extension S of T on L we have Tm ^ S in 
£?b{L, Af). Moreover 

Tn(u) — sup {T(v) : v £ A; 6 ^ v ^ u) 

for all u in L+. In particular we have Tm(u) = 6 for all u G Ad. 
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Proof, (i) It is evident that J^b
e(A, M) is a vector subspace oî^h{A, M). 

Now let 6 ^ S ^ T in i f6( i4, AT) with T G ifV(,4, AT). Without loss of 
generality we can assume that T is defined on all of L. Then we have S(u) ^ 
\S(u)\ g 5(|«|) ^ r ( |« | ) for all u in ,4, and that the function p : L^> M, 
p(u) = 7XM) is a sublinear mapping. It follows from Theorem 1.7 that S is 
extendable to all of L as a linear transformation Si satisfying Si(f) ^ T(\f\) for 
all / in L. It is easily seen that Si 6 i?&(L, M) and so 5 G ~^V04, M). The 
conclusion that ^£ b

e(A, M) is an ideal of <^b{A, AT), now follows from the 
earlier observation that T £ J£b

e(A, M) if and only if T+ and T~ are both in 
&b

e(A, AT), and so, in particular T £ -2V(i4, M) implies |T| = T+ + T" in 
^»e(A, M). 

(ii) Since T is extendable, it is easy to see that sup { T(v) : v £ A;d ^ v ^ u} 
exists in M for all u in L+. So, let Tm(u) = sup \T(v) : v £ A; d ^ v ^ u}, 
u £ Z+ . It is easily verified that Tw is an additive mapping from L+ into M+. 
Consequently, by Lemma 1.1 Tm is extendable uniquely to a positive linear 
transformation on L, which we shall denote also by Tm. Obviously Tm is a 
positive extension of T. Now let 5 be a positive extension of T, u £ L + and 
y £ 4̂ such that 6 ^ v ^ u. Then r(t/) = S(ZJ) g S(u) and so rm(w) ^ S(u), 
i«e., Tm ^ S in J£h(L, M) and this completes the proof. 

Given two Riesz spaces L and M with M Dedekind complete the Riesz 
annihilator A ° of a subset 4̂ of L is defined by 

4 ° = {T £ i f 6 ( Z , Af) : r = 0on ,4} . 

It is obvious that ^4° is a linear subspace of ££b{L, Af). The inverse Riesz 
annihilator °i? of a subset B oiJ^b(L, Af) is defined by 

°£ = {w G L : r(w) = 0 for all T £ 5 } . 

Evidently °B is a linear subspace of L. 

THEOREM 3.2. Assume that L and M are two Riesz spaces with M Dedekind 
complete. Then we have: 

(i) If A is an ideal of L, then A° is a band ofJ£b(L, M). 
(ii) / / B is an ideal ofJ^b(L, AT), th n °B is an ideal of L. 

Proof. Part (i) is a straightforward application of Theorem 1.2 and part (ii) 
follows immediately from Theorem 2.1. 

It is not difficult to see that the mapping T —» Tm from (^fb
e(A} M))+ into 

(oéf&(L, M))+ is an additive one. Indeed, given 0 g T, S £ ^b
e(A, M) we 

obviously have (T + S)m ^ Tm + Sm. On the other hand if £7 is a positive 
extension of T + 5 then £7 — Tw is a positive extension of 5 (note that 
6 ^ T ^ S in £fb(A, M) implies according to Theorem 3.1 (ii) d ^ Tm ^ Sm 

in ^fb(L} Af)) and so U — Tm ^ 5m, i.e., 5m + Tm g [7 for all positive 
extensions [7 of 5 + T. Hence Sm + Tm S (S + T)m and this shows that 
(T + S)m = r m + 5m. According to Lemma 1.1 there exists a linear extension 

https://doi.org/10.4153/CJM-1975-075-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-075-8


ORDER PROPERTIES 673 

of the above mapping from ^b
e(A, M) into J>f&(L, M), namely, T-* Tm = 

(T+)m — (T~)m. This mapping is one-to-one. Indeed, if Tm = (T+)m — 
(T~)m = 6 then (T+)m = (T~)m and hence T~ = T+ on A and this implies 
that T = r + — T~ = 6. It is also true that r -—> Tm is a Riesz homomorphism 
from £?b

e(A, M) into oSf&(L, M). Indeed, if 6 ^ T, S € «2VG4, M), then 
7"m V 5m is a positive extension of T V 5, so ( I V 5)w ^ r m V Sm. On the 
other hand if U is a positive extension of T V 5 then [7 è Tm V f/m. This 
shows that (T V 5)m ^ Tm V 5m, so (T V 5)m = Tm V 5m. Now assume T, 
S£ i f &

e ( . 4 ,M) .Thenwehave0 ^ T + 5~ + T~, S + S~ + T~ e^b
e(A,M). 

Thus 

[(T + S-+T-) V (S + S-+T~)]m 

= (T + S-+ T-)m V (S + S- + T-)n 

= [Tm + (S- + T-)m] V [Sm + (5 - + T-)m}. 
So, we get 

Tm V Sm = [Tm + (S- + T~)m V [Sm + (S- + T-)m] - (S~ + T~)m 

= [(T + S-+ T-) V (5 + S- + T-)]m - (S- + T~)m 

= (T V 5)w . 

Note also that (Tm)m = Tm for all T £ J^V(^4, M). From this observation 
and Theorem 3.2 it follows that the range of the mapping T —» Tm is the band 
(^4°)d. Hence, we have proved the following theorem: 

THEOREM 3.3. Let L and M be two Riesz spaces with M Dedekind complete 
and let A be an ideal of L. Then we have: 

(i) The mapping T —» Tm from J£b
e{A, M) into J£b{L, M) is a one-to-one 

Riesz homomorphism. 
(ii) The range of the mapping T —> Tm is the band (A°)d. 

Note. The results of the section are generalizations of the corresponding 
results for 1 near functionals due to Luxemburg and Zaanen (see [7, Note IX]). 

4. Integral and normal integral transformations. Let L be the Riesz 
space of all real valued, Lebesgue integrable functions defined on [0, 1] with 
ordering / ^ g whenever f(x) ^ g(x) for all x £ [0, 1]. Consider the linear 
functionals 

<p(u) = I u(x)dx, u G L, 
J o 

i.e., <p is the usual Lebesgue integral, and yf/{u) = u(0), u £ L. We can verify 
easily that un j 6 in Z, implies (p(un) j 0 and yp(un) J, 0 in R. Also ua [ 6 in L 
implies \p(ua) j 0 in R, but not necessarily <p(ua) [ 0 as the following example 
shows: Let ua = 1 — x«, « C [0, 1]; a finite. Then ua I 6 in L, but <p(tta) = 1 
for all a. 

In the next definition we characterize the above properties. 
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Definition 4.1. Let L and M be two given Riesz spaces. A transformation T of 

(°) 
Jzf (L, M) is called an integral (respectively, a normal integral) if T(un) > 6 in 

(o) . (o) (o) 
M (respectively T(ua) > 9 in M) whenever un > 9 in L (respectively ua > 9 
in L). 

It is evident that a normal integral is an integral but the converse is not 
always true as the example preceding the definition shows. 

The next theorem is due to T. Ogasawara [10]. A proof can be found in 
[13, Theorem VIII 3.3, p. 216]. 

THEOREM 4.2. Let L and M be two Riesz spaces with M Dedekind complete. 
Then we have: 

(i) The set of all normal integrals of ^b(L, M) forms a band of Jzfb(L, M). 
(ii) The set of all integrals of^fb(L} M) forms a band of^b(L, M). 

Given T G ^b(L} M) the ideal NT = {u 6 L : |r |( |w|) = 6} is called the 
null ideal of T and the band CT = NT

d is called the carrier of T. 

THEOREM 4.3. Let L and M be two Riesz spaces with L a-Dedekind complete 
and with M super Dedekind complete. Then we have: 

(i) For every 6 S T G ^b(L, M), the band CT is a projection band, i.e., 
{NT} © CT = L. ({NT} denotes the band generated by NT in L.) 

(ii) If T (z o£f 6(L, M) is an integral then T is a normal integral if and only if 
NT is a band of T. 

Proof. Repeat the proof of Theorem 31.15 of [7, Note X, p. 494]. 

Note: For the necessity of Theorem 4.3 (ii) we do not have to assume that L 
is (7-Dedekind complete. 

The next example shows that the above statements may be false if L is 
Archimedean but no cr-Dedekind complete. 

Example 4.4. Let L = C(Rœ), where Rœ is the one-point compactification 
of R considered with the discrete topology (see [8, Example (v), p. 140]) and 
let M — R. Consider the positive linear functional 9 ^ p G L~ defined by 

<p(u) = u(co) + 2^ -<yr~, u e L. 
n = l ^ 

Note that <p is an integral but not a normal integral. Also 

iV; = {u G L : u(n) = 0, for n = 1, 2, . . .}. 

It is easily seen that Nv is a band of L with the property N? © Q, ^ L. 

More properties about integrals and normal integrals are included in the 
next theorems. 

THEOREM 4.5. Let L and M be two Riesz spaces with M Dedekind complete, 
and let A be an ideal of L. Assume 9 fg T G ^b(A, M) is an integral (respectively 

https://doi.org/10.4153/CJM-1975-075-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-075-8


ORDER PROPERTIES 675 

a normal integral) and assume further that T is an extendable transformation. 

Then the minimal extension Tm of T, determined by Theorem 3.1 (ii) is an 

integral (respectively, a normal integral). 

Proof. Assume tha t 6 ^ un | u in L, and assume v ^ A) 6 ^ v ^ u. Then 
6 ^ v A un Î v in L, and since 4̂ is an ideal of L we have also tha t v /\ un\ u 
in A. Hence, 7 > A un) | 7 » in Af. But T(v A w„) = Tm(v A w„) ^ 
Tm(un) ^ r m (w) and this shows tha t T(y) ^ sup {Tm(wn) : n = 1, 2, . . .} ^ 
Tm(u). I t follows now from Theorem 3.1 (ii) t ha t Tm{un) j r m (w) and this shows 
tha t r m is a normal integral of J*fb(L, M). The proof for the normal integral 
is similar. 

T H E O R E M 4.6. Let L and M be two Riesz spaces with M super Dedekind com
plete. If 6 S T £ o£?&(Z,, M) is a strictly positive transformation which is an 
integral then T is a normal integral. 

Proof. Repeat the proof of Theorem 31.11 (ii), [7, Note X, p . 493]. 

A Theorem of H. Nakano [9, Theorem 20.1, p. 74] states tha t if L is a-
Dedekind complete and if <p and \p are two order bounded normal integrals 
then <p J_ \p in 17 if and only if C<p _L Q . 

This result was generalized by Luxemburg and Zaanen for Archimedean 
Riesz spaces (see [7, Note IV, Theorem 31.2 (ii), p. 373]). The following 
example due to W. A. J. Luxemburg shows tha t this Theorem cannot be 
further generalized. 

Consider L = M = Li([0, 1]). So, both L and M are super Dedekind com
plete Riesz spaces. Let 6 ^ S, T : L —> M, Su = u, 

Tu = I I u(x)dx\ -e for all u G L (e(x) = 1 for all x G [0, 1]). 

Note t ha t both 5 and T are normal integrals. Also NT = Ns — {#}• So 
CT = Cs = L. But S _1_ T as it is easily seen from Theorem 1.2 (ii). (Note 
tha t (5 A T) (e) = 6 and this implies tha t T A S = 6, since 5 A T is a 
normal integral according to Theorem 4.2.) 

Given two Riesz spaces L and M with M Dedekind complete we denote 
by (Sfb)n = ( i ^ ( L , M))n, ( i f 6 ) c = ( i f 6 (L , M))c the bands of the normal 
integrals and integrals, respectively of S£ b{L, M). 

I t follows from the fact tha t J^b(L, M) is a Dedekind complete Riesz 
space t ha t 

if6(L, M) = (<$eh)n © (ç^b)ny = &b)e © ((^,)c)
d. 

W e shall denote the bands (( i f&) n) d , (Ç^b)c)
d by (^h)sn, ( i f &)„ respectively. 

The band ( i f 6 ) 5 n C\ ( i f &)c is denoted by ( i f 6 ) W i C . I t is easily seen tha t 

i ^ ( Z , M) = (<£b)n © (i^&)sn>c © (^&)s. 
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Thus every T Ç J£&(L, M) has a unique decomposition T = Tn + r,n>c + 7\ 
(Tc = r n + Tsn<c) where the elements on the right are in (<if&)n, (££&)5n,c and 
(oêf ô) s , respectively. It is easy to see [8, Theorem 4.4 (hi)] that 

•L = * n \ •*• sn.c \ J- s i •*• = = ^ n ~ r •*• sn,c \ •*• s » 

m = \T I _L I T I _L 17" I I 2 n | r | - t s n , e | i I •*• s\ 

are the decompositions of T+
y T~ and \T\, respectively. The operator Tn is 

called the normal component of T, Tc = Tn + r s n ,c is the integral com
ponent of T, Ts is the singular integral component of T and the operator 
Tsn ~ TS7liC + Ts is called the singular normal integral component of 
T(Tsne (>*)„). 

We shall investigate next some of the properties of the different components 
of T. We start with the following Lemma. 

LEMMA 4.7. Assume that L and M are two Riesz spaces with M Dedekind 
complete and that 6 S T £ ££ h(L, M). We consider the following mappings from 
L+ into M+: 

(i) TL(u) = inf {sup {T(un)\ : 6 S un\ u], 
(ii) TL(u) = inf {sup {T(ua)\ : d S ua | u], 

(iii) T(u) = sup {inf {T(ua)} : u è ua j 0}, 
for every u £ L+. Then, TL, TL and T are additive on L+. 

Proof. The proof is a straightforward verification and so we omit it. 

THEOREM 4.8. Let L and M be as in Lemma 4.7. A ssume further that ° (Mn~) = 
{u Ç M : <p(u) = 6 for all <p £ Mn] = {d}. Then for every 6 ^ T 6 ^fb(L, M) 
and for every u Ç L+ we have: 

(i) Tc(u) = inf {sup {T(wn)} : 6 ^ un] u), 
(ii) rn(w) = inf {sup [T(ua)) : 0 ^ u*\ u), 

(iii) rsn(w) = sup {inf {T(ua)\ : u ^ ua Id}. 

Proof. According to Lemma 1.1 TL, TL and Tare extendable to the whole L. 
Let un I 6 in L. Then TL{un) [ h ^ 0 in M for some fe of Af+. We show next 
that h = 8. To this end let 0 ^ <p Ç Mn~. Note that 

(^rj(^) = ^(rL(«)) = (̂inf {suP{7>n)î -e sun]u}) 
= inf {sup {<p(T(un))\ :6 Sun] u] 

= (<poT)L(u), for all u £ L+ . 

Hence (p0TL = (<p0T) L. Now use Theorem 20.4 of [7, Note VI, p. 663] to get 
that (<poT)L = (<p0T)c, i.e., that (<p0T)L is an integral. Thus (<poTL)(un) [6. 
But we also have (<p0TL)(un) = <p(TL(un)) I <p(h). Thus <p(h) = 0 for all 
<p G Mn~ and so h = 6 and hence T^ is an integral. Now, it follows from 6 ^ 
TL ^ T that r L = ( r L ) c ^ r c . On the other hand we have Tc S T and so 
(Tc) L S TL. But from the definition of (Tc) L it follows that (Tc) L = TL, thus 
Tc ^ TL. Hence Tc = TL and the proof of the first formula is finished. For 
the other two results use the same arguments in connect on with Luxemburg's 
Theorem 57.6, of [5, Note XV, p. 441]. 
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Example 4.9. Let L\ be the Riesz space exhibited before the Definition 4.1 
and let L2 = C[0>1]. Now let L = Li X L2 and M = R. Define <p 6 L~ by 

<?(/) = I u(x)dx + I ^(x)rfx for a l l / = (w, v) £ L. 
*/ o «̂  o 

Now use the formulas of the previous theorem to get: 

<Pc(f) = I u(x)dx, <pn(f) = 0, <Psn,c(f) = ^ (/) , and 
• ^ 0 

P*(/) = I z>(#)dx, for a l l / = (u,v) G £ . 
•J o 

T H E O R E M 4.10. Let L and M be as in Lemma 4.7. Then we have: 
(i) In the formula Tc(u) = inf {sup {T(un)} : 0 ^ un\ u), the greatest lower 

bound is attained if, and only if, NTs is super order dense in L. 
(ii) In the formula Tn(u) = inf {sup {T(ua)} : 0 rg ua] u\, the greatest lower 

bound is attained if, and only if, NTsn is order dense in L(Tsn = Tsn>c + Ts). 

Proof, (i) Let 0 ^ u G L and let Tc(u) = sup {T(un)\ where 0 ^ un | u. 
Note tha t T = Tc + Ts. I t follows from this tha t Ts(un) = 0 for all n, i.e., 
t ha t {un} Ç NTs. This shows tha t 7Vrs is super order dense in L. Now let NTs 

be super order dense in L and let 0 g w £ Z,. Pick a sequence {wn} Ç 7Vrs 

such tha t 6 Sun]u. But then 7\zin) = Tc(un) j Tc(u), i.e., t ha t r c (w) = 
min {sup {T(wn)} : ^ w w | w ) . 

(ii) A similar argument proves (ii). 

T H E O R E M 4.11. Let L and M be two Riesz spaces with M Dedekind complete 
and let T £ <^b(L, M). Then the largest ideal on which T is an integral is NTs 

and the largest ideal on which T is normal is the ideal NTsn = NTs P\ NTsniC. 

Proof. Note first tha t T restricted to NTs is an integral. Now assume tha t A 
is an ideal such tha t T is an integral when restricted to A. Then Ts restricted 
to A is also an integral. But Ts restricted to A has an extension to all of L 
(namely Ts). Thus Ts has a minimal positive extension (Ts)m which according 
to Theorem 4.5 is an integral. But 0 ^ (Ts)m ^ Ts £ ((^b)c)

d, so (Ts)m £ 
((o£%)c)

d. Hence (Ts)m = 0 and this implies A Ç NTs. A similar argument 
proves the second par t . 

T H E O R E M 4.12. Let L and M be two Riesz spaces with M super Dedekind 
complete. Then we have: 

(i) For every T £ Ç^b)sn,c the null ideal NT is quasi-order dense in L. In 
particular, if L is Archimedean, NT is order dense in L. 

(ii) The largest ideal on which an integral T £ («£%)c is normal is the a-quasi 
order dense ideal NTgn<c. 

Proof, (i) Let 0 ^ T £ &b)sn,c and let NT
d ^ {0j. Then T restricted to 

NT
d is a strictly positive integral and hence it is normal on NT

d by Theorem 
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4.6. Note that the restriction of T on N T
d has a smallest positive extension Tm, 

which according to Theorem 4.5 is a normal integral of oêf6(L, M). It follows 
from 6 ^ Tm ^ T on L that Tm £ {^£h)sn and hence Tm = 0. This implies 
that T = d on TV/, i.e., NT

d = {6}, a contradiction. Thus i V / - {(9} and so 
NT

dd = L. 
(ii) If Tsn,c e Ç&b)sn,c = (oSf6),n^ («2%)o ^T5n,c is a quasi order dense 

ideal in L, according to the previous statement and since TSfliC is in {f£ h) c, 
it is evident that NTsn>c is a cr-ideal of L. Now let 0 ^ T Ç (J£?b)c and let 4̂ be 
an ideal of L on which T is normal. Write T = Tn -\- Tsn>c + 7\ and note 
that Ts = 0. Thus r = JT„ + Tsn>c and so T is normal restricted on NTsniC. 
Note also that Tsn<c = T — Tn is normal if restricted to A Theorem 4.5 
shows that the minimal extension of TSUtC (from A to L) is also normal. Since 
0 ^ (Tsn<c)m ^ rsn>c we get that (Tsn,c)m £ (=èf&)sn, i.e., (Tsn<c)m = 6. So, 
^sn.c = 0 on A, i.e., 4̂ C NTsn>c and the proof is finished. 

COROLLARY 4.13. Let L and M be as in the previous theorem. Then we have: 
(i) For every T £ (J^&)c we have NT 0 NT

d Q NTsn,c. 
(ii) If L is Archimedean, then T £ (J^b)sn,c if, and only if, T £ Ç^b)c and 

NT
d = {d}. 

Note. The last three results are generalizations of the corresponding results 
for L~ due to W. A. J. Luxemburg (see [5, pp. 417-420]). 
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