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Freyd’s Generating Hypothesis for
Groups with Periodic Cohomology

Sunil K. Chebolu, J. Daniel Christensen, and Ján Mináč

Abstract. Let G be a finite group, and let k be a field whose characteristic p divides the order of G.

Freyd’s generating hypothesis for the stable module category of G is the statement that a map between

finite-dimensional kG-modules in the thick subcategory generated by k factors through a projective if

the induced map on Tate cohomology is trivial. We show that if G has periodic cohomology, then the

generating hypothesis holds if and only if the Sylow p-subgroup of G is C2 or C3. We also give some

other conditions that are equivalent to the GH for groups with periodic cohomology.

1 Introduction

Motivated by the celebrated generating hypothesis (GH) of Peter Freyd in homotopy

theory [14] and its analogue in the derived category of a commutative ring [16, 18],

we formulated in [11] the analogue of Freyd’s GH in the stable module category

stmod(kG) of a finite p-group G, where k is a field of characteristic p. (The stable

module category is the tensor triangulated category obtained from the category of

finitely generated left kG-modules by killing the projective modules.) In this setting,

the GH is the statement that any map that induces the trivial map in Tate cohomology

is trivial in the stable module category stmod(kG) (i.e., factors through a projective).

In [5] we showed that the only non-trivial p-groups for which this is true are C2

and C3. The goal of the current project is to describe the analogue of this hypothesis

for arbitrary finite groups and determine for which groups it is true. It turns out

that the above formulation of the GH is not appropriate for arbitrary finite groups,

because, in general, a finite group G can admit a non-projective kG-module whose

Tate cohomology is trivial. Clearly the identity map on such a module will disprove

the GH, so it is unreasonable to expect Tate cohomology to detect all non-trivial

maps in stmod(kG). Instead, as we justify in Section 3.1, one has to restrict to the

thick subcategory thickG(k) generated by k in stmod(kG). (This is the smallest full

subcategory of stmod(kG) that contains k and closed under exact triangles and direct

summands.) So the modified GH for a group ring kG is the statement that Tate

cohomology detects all non-trivial maps in thickG(k), i.e., that the Tate cohomology

functor

thickG(k) −→ Ĥ
∗

(G, k)-modules, M 7−→ Ĥ
∗

(G, M),

is faithful. If G is a p-group, there is only one simple kG-module, namely the trivial

module k; consequently, thickG(k) = stmod(kG). Therefore this modified GH agrees
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with the aforementioned version of the GH for p-groups. In this paper we determine

those finite groups with periodic cohomology for which the modified GH holds. Re-

call that StMod(kG) is the stable module category obtained from the category of all

left kG-modules by killing the projective modules. Our results can be summarised as

follows.

Theorem 1.1 Let G be a non-trivial finite group that has periodic cohomology, and

let k be a field of characteristic p that divides the order of G. Then the following are

equivalent.

(i) The Sylow p-subgroup of G is either C2 or C3.

(ii) The Tate cohomology functor detects all non-trivial maps in thickG(k). That is, the

GH holds for kG.

(iii) Every module in thickG(k) is a direct sum of suspensions of k.

(iv) The Tate cohomology functor detects all non-trivial maps in the stable category

StMod(B0) of all modules in the principal block B0 of kG.

(v) Every module in StMod(B0) is a direct sum of suspensions of k.

It follows that we can make equivalent statements for any full subcategory that

lies between thickG(k) and StMod(B0), such as stmod(B0) and locG(k), the localizing

subcategory generated by k. It also follows that thickG(k) = stmod(B0) and locG(k) =

StMod(B0).

Maps of kG-modules that induce the trivial map in Tate cohomology are called

ghosts. Using this terminology, our main result (the equivalence (i) ⇔ (ii) of the

above theorem) states that there are no non-trivial ghosts in thickG(k) if and only if

the Sylow p-subgroup is C2 or C3.

It is worth pointing out that the GH for kG depends only on G and the character-

istic of k. This is clear from the equivalence (i) ⇔ (ii), but is not a priori obvious.

Although we have generalised our result for p-groups from [5], we should stress

that our proof in [5] does not generalize directly. Several obstacles and subtle issues

that arise in studying the GH for non-p-groups are illustrated in Section 3, where we

work out some examples of the GH in detail. One new additional technique used here

is block theory. In particular, we make good use of the main theorems of Brauer and

the Green correspondence along with some knowledge of the structure of modules

in the principal block for groups with a cyclic normal Sylow p-subgroup via Brauer

trees.

In their work with Carlson [7], the first and third authors disproved the GH for

groups with non-periodic cohomology using techniques from Auslander–Reiten the-

ory and support varieties, and have thus extended all results in this paper to cover the

general case, i.e., without any restrictions on the finite group G. Combined with the

results of this paper, this gives a complete classification of the group algebras of finite

groups for which the GH holds. Some related questions that are motivated by the

GH have also been studied in [10].

The paper is organised as follows. In Section 2 we recall several results from rep-

resentation theory that are used in the later sections. We also prove that (ii) and

(iii) above are equivalent. Section 3 contains a few important examples that illustrate

some issues that arise when studying the GH for non-p-groups. The main steps in
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the proof of Theorem 1.1 occupy Sections 4 and 5. In Section 4 we show that (i) im-

plies (iii), and in Section 5 we show that (iii) implies (i). The equivalence of (iv) and

(v) with the other statements is shown in Section 2. The reader who is only interested

in the proof of the main theorem may skip Sections 2 and 3, referring to Section 2

when necessary.

All groups in this paper are non-trivial finite groups, and the characteristic p of

the field always divides the order of G. We work in the stable module category of kG

and freely use standard facts about this category that can be found in [6].

2 Some Results from Representation Theory

In this section we collect some known results from representation theory which we

will need in the sequel.

2.1 Periodic Cohomology

We say that kG, or simply G when there is no confusion, has periodic cohomology

if there is a positive integer d such that Ω
dk is stably isomorphic to k. When this

is the case, the period is the smallest such d. It is a well-known fact due to Artin

and Tate [9, p. 262] that a finite group G has periodic cohomology over a field k of

characteristic p if and only if the Sylow p-subgroup of G is cyclic or a generalised

quaternion group.

We begin with a proposition that forms the backbone of our analysis.

Proposition 2.1 ([11]) Let G be a finite group with periodic cohomology. Then the

GH holds for kG if and only if every module in thickG(k) is a sum of suspensions of k.

In particular, the GH holds for kG if and only if every indecomposable non-projective

kG-module in thickG(k) is stably isomorphic to Ω
ik for some i.

Proof We sketch a proof here; more details can be found in [11]. Let M be in

thickG(k). Since the trivial representation is periodic, a ghost out of M can be con-

structed in thickG(k) using a triangle of the form

⊕
finite sum

Ω
ik −→ M

f

−→ UM .

If the GH holds for kG, then f must vanish. Thus the above triangle splits, and so M

is a retract of ⊕Ω
ik. Since M is finite-dimensional, it follows from the Krull-Schmidt

theorem that M is a sum of suspensions of k. The converse is immediate.

Thus the GH holds if and only if the number of indecomposable non-projective

kG-modules in thickG(k) is equal to the period. The next two results give us tools for

computing these quantities.

Theorem 2.2 (Swan [20]) Let G be a finite group with periodic cohomology. When

p = 2, the period is 1, 2, or 4 when the Sylow 2-subgroup is C2, C2r (2r > 2), or Q2n ,

respectively. When p is odd and the Sylow p-subgroup is C pr , the period is 2Φp, where

Φp is the number of automorphisms of C pr that are given by conjugation by elements

in G.
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Theorem 2.3 Let G be a finite group with cyclic Sylow p-subgroup of order pr, and

let s be the number of simple kG-modules. Then the number of indecomposable non-

projective kG-modules is s(pr − 1). Moreover, if B is a block of kG and e is the num-

ber of simple modules lying in B, then the number of indecomposable non-projective

kG-modules lying in B is e(pr − 1).

Proof The first statement is a simplified version of [12, Prop. 20.11]. The second

statement follows from the detailed structure given there, using the fact that a module

M lies in the block B if and only if each composition factor of M lies in B.

While Theorem 2.3 does not deal directly with thickG(k), we will use it in Section 4

to show that every kG-module in the principal block is a sum of suspensions of k.

2.2 Partial Proof of Theorem 1.1

We are now ready to prove all equivalences of Theorem 1.1 using the results of Sec-

tions 4 and 5. The implications (v) ⇒ (iv) ⇒ (ii) are clear. In Proposition 2.1 we

have seen that (ii) ⇔ (iii). In Section 5 we prove (iii) ⇒ (i). Thus it remains to prove

(i) ⇒ (v). In Section 4 we show that (i) ⇒ (iii), but we in fact show a stronger result;

that is, (i) implies that every module in stmod(B0) is a sum of suspensions of k. A

result of Ringel and Tachikawa [19] states that if G has finite representation type (i.e.,

the Sylow p-subgroups are cyclic), then every kG-module is a direct sum of finite-

dimensional kG-modules. It follows that when (i) holds, every module in StMod(B0)

is a sum of modules in stmod(B0), and so (v) follows.

We only use the assumption that G has periodic cohomology when we are ruling

out the possibility that the Sylow p-subgroup is a dihedral 2-group and in Proposi-

tion 2.1. (We use periodicity in Section 4, but there it follows from the assumption

that the Sylow p-subgroup is C2 or C3.) In the next theorem C2 is regarded as a dihe-

dral 2-group. Thus we can make the following statement without the hypothesis that

G has periodic cohomology.

Theorem 2.4 Let G be a group whose Sylow p-subgroup is not a dihedral 2-group.

Then the Sylow p-subgroup of G is C3 if and only if every module in thickG(k) is a sum

of suspensions of k.

Of course, if p is odd, then the first condition on the Sylow p-subgroup can be

omitted. The case p = 2 is completed in [7].

3 Examples

In this section we discuss some examples that will help the reader get some insight

into the GH.

3.1 Non-Trivial Identity Ghosts

It is well known (see, e.g., [18]) that the right setting for the GH in a general triangu-

lated category is the thick subcategory generated by the distinguished object (in our
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case, the trivial representation k). For the stable module category of a group algebra,

it is difficult to illustrate why this is the right choice, since our main result implies that

the GH holds in thickG(k) if and only if it holds in any full subcategory containing

thickG(k) and contained in StMod(B0), where B0 is the principal block. Moreover,

when the GH holds, we show that thickG(k) = stmod(B0). However, we can study

identity maps that are ghosts in order to get some insight into this issue.

The key point is that, in general, there can be non-projective modules with trivial

Tate cohomology. Clearly the identity map on such a module will be a non-trivial

ghost. Examples of such modules abound. For instance, if there is a non-projective

indecomposable module M that does not belong to the principal block B0, then this

gives an example. So clearly one needs to restrict to the principal block. Moreover,

if thickG(k) is a proper subcategory of stmod(B0), then the work of Benson, Carlson,

and Robinson [2, 4] shows that there is an indecomposable non-projective module

that is in stmod(B0) but outside of thickG(k) and has trivial Tate cohomology.

In contrast, we show that there are no non-trivial identity ghosts in the thick sub-

category generated by k. This gives some evidence that thickG(k) is the “right” cate-

gory in which to study the GH.

Proposition 3.1 Let M be in thickG(k). If the identity map M → M is a ghost, then

it is trivial in stmod(kG).

Proof This is a standard thick subcategory argument. Consider the full subcategory

of all modules X in stmod(kG) that have the property that Hom(ΩiX, M) = 0 for

all integers i. It is straightforward to verify that this subcategory is closed under

retractions and exact triangles. It contains the trivial representation by hypothesis.

Thus it contains the thick subcategory generated by k, and hence contains M. In

particular the identity map on M is trivial.

In some favourable cases, even when G is not a p-group, thickG(k) can be the

whole of stmod(kG). The GH for such groups can be easily attacked using the

restriction-induction technique of [5]. We illustrate this in the example of A4.

3.2 The Alternating Group A4 when p = 2

Let k be a field of characteristic 2 and consider the alternating group A4. This is a

group of order 12 and is generated by x, y, and z that satisfy the relations x2
= y2

=

(xy)2
= 1 = z3, zxz−1

= y and zyz−1
= xy. Using these relations, one can show

that the centraliser of every element of order 2 is 2-nilpotent. The work of Ben-

son, Carlson, and Robinson [2, 4] then implies that thickA4
(k) = stmod(B0). More-

over, the principal idempotent can be shown to be 1, so we in fact have thickA4
(k) =

stmod(kA4).

Now the subgroup of A4 generated by x and y is the Klein four group V4.

So the Sylow 2-subgroup is V4. By [5], we know that the GH fails for V4. So

the induction of a non-trivial ghost over kV4 will give a non-trivial ghost (see [5,

Prop. 2.1]) over kA4, thus disproving the GH for kA4.

Remark 3.2 The induction functor Ind : stmod(kH) → stmod(kG) does not in

general send thickH(k) into thickG(k). For example, if F3 is the trivial F3C3 module,

https://doi.org/10.4153/CMB-2011-090-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-090-5


6 Sunil K. Chebolu, J. Daniel Christensen, and Ján Mináč

then it can be shown that the induced F3(C2 × C3)-module F3↑
C2×C3 does not be-

long to the thick subcategory thickC2×C3
(F3). Since the right domain for the GH is

thickG(k), the above induction strategy does not generalise to arbitrary finite groups.

3.3 The Symmetric Group S3 when p = 3

In this section we prove that the GH holds in thickS3
(k) when k has characteristic 3.

The argument we give here is a model for the general argument we give in Section 4

and also illustrates Theorem 2.3.

The group S3 has presentation 〈x, y | x3
= 1 = y2, yxy−1

= x−1〉. Define

elements e1 = (1 − y)/2 and e2 = (1 + y)/2 in A = kS3. Then e1 + e2 = 1, and it is a

straightforward exercise to show that e1 and e2 are orthogonal idempotents in A, i.e.,

e2
1 = e1, e2

2 = e2 and e1e2 = 0 = e2e1. The principal indecomposable modules Ae1

and Ae2 (both 3-dimensional) have composition series of length 3:

Ae1 ) A(x − 1)e1 ) A(x − 1)2e1 ) 0

Ae2 ) A(x − 1)e2 ) A(x − 1)2e2 ) 0.

These six modules form a complete set of indecomposable kS3-modules; see [13,

§ 64]. Moreover, Ae1 and Ae2 are the indecomposable projectives over the simple

modules A(x − 1)2e1 and A(x − 1)2e2, respectively. The structure of the simples is as

follows: A(x−1)2e2 = k, the trivial representation, and A(x−1)2e1 = k−1, on which

x acts trivially and y by multiplication by −1. We now leave it as an amusing exercise

for the reader to show that

k ∼= A(x − 1)2e2, Ωk ∼= A(x − 1)e2, Ω
2k ∼= A(x − 1)2e1 (= k−1),

Ω
3k ∼= A(x − 1)e1, and Ω

4k ∼= k.

So k has period 4, which agrees with the answer we get from Swan’s formula (The-

orem 2.2): 2Φ3 = 2(2) = 4. This also shows that every indecomposable non-

projective kG-module is isomorphic to Ω
ik for some i, and so the GH holds for kS3.

This example suggests that the GH for non-p-groups is both subtle and interest-

ing.

4 Groups with Periodic Cohomology for which the GH Holds

In this section we show that if the Sylow p-subgroup of G is either C2 or C3, then

every module in stmod(B0) is a sum of suspensions of k, where B0 is the principal

block of kG. From this it follows that the GH holds for kG.

We next give some results that will be used in the proof.

4.1 Field Extensions

Lemma 4.1 Let L be an extension of k, and let G be a finite group. Then the principal

block of LG is L ⊗k B0, where B0 is the principal block of kG. Moreover, if every module
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in stmod(L ⊗k B0) is a sum of suspensions of L, then every module in stmod(B0) is a

sum of suspensions of k.

Proof The statement about the principal block of LG follows from the fact that the

principal idempotent depends only on the characteristic of the field (see, e.g., [17]).

To prove the second statement, note that the functor

L ⊗k − : StMod(kG) −→ StMod(LG)

is faithful, triangulated, and sends ghosts to ghosts. It restricts to a functor

L ⊗k − : StMod(B0) −→ StMod(L ⊗k B0).

Let M be a kG-module in stmod(B0). Consider the triangle

⊕
i∈Z

⊕
η∈Hom(Ωi k,M)

Ω
ik −→ M

ΦM

−→ UM

in StMod(B0). If every LG-module in stmod(L ⊗k B0) splits as a sum of suspensions

of L, then L ⊗k ΦM is stably trivial, and so ΦM is stably trivial. Thus, using Krull–

Schmidt, M splits as a sum of suspensions of k.

Thus we can assume that k is algebraically closed, and we do so for the remainder

of this section. This is convenient because we cite [1] in Sections 4.3 and 4.5, and that

reference makes the assumption that k is algebraically closed.

4.2 Direct Products

Lemma 4.2 Let G be a finite group that is a product of two groups: G = A × B.

Assume that p does not divide the order of B. Then the restriction functors

stmod(kG) → stmod(kA) and StMod(kG) → StMod(kA)

are tensor triangulated equivalences of categories.

This lemma is well known, but we give a proof here for the reader’s convenience.

Proof The restriction functors are easily seen to be tensor triangulated functors.

That is, they preserve suspension, cofibre sequences, and tensor products, and they

send the unit object k to the unit object k. Since any kA-module can be viewed as a

kG-module with a trivial action of B, the restriction functors are full and essentially

surjective. We only need to show that they are faithful. This is true for any subgroup

A whose index in G is invertible in k, since the composite of the restriction map

HomG(M, N) −→ HomA(M↓A, N↓A)

with the transfer map

HomA(M↓A, N↓A) −→ HomG(M, N)

is multiplication by [G : A].
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It follows that thickG(k) is equivalent to thickA(k), and one can also show that kG

and kA have isomorphic principal blocks.

Remark 4.3 This result cannot be generalised to semi-direct products. The exam-

ple to keep in mind is kS3 = k(C3 ⋊ C2), where the characteristic of k is 3. By Swan’s

formula (Theorem 2.2) or the computations in Section 3.3, the trivial representation

k has period 4 in thickS3
(k) and has period 2 in thickC3

(k). In particular,

thickS3
(k) 6∼= thickC3

(k).

So, while the point of this paper is to show that the GH is determined by the Sylow

p-subgroup, it is not because the relevant thick subcategories are equivalent.

4.3 Reduction to the Normal Case

We now use results from block theory to show that when the Sylow p-subgroup D

of G is C p, we can reduce to the case where D is normal. The relevant background

material can be found in [1, 3], for example.

Theorem 4.4 Let G be a group that has a cyclic Sylow p-subgroup D; let D1 be the

unique subgroup of D that is isomorphic to C p, and let N1 = NG(D1). Then there is a

tensor triangulated equivalence of categories stmod(B0) ∼= stmod(b0), where B0 is the

principal block of kG and b0 the principal block of kN1.

When D is C p, then D1 = D, and so D is also the Sylow p-subgroup of N1 and is

normal in N1.

Proof Recall that D is the defect group of the principal block. Since DCG(D) =

CG(D) ≤ N1, Brauer’s third main theorem says that the block bG
0 corresponding to

the principal block b0 of kN1 is the principal block B0 of kG. So by [1, pp. 124–125],

there is an equivalence of categories stmod(B0) ∼= stmod(b0).

By Theorem 4.4, we know that if the Sylow p-subgroup H of G is isomorphic to

C p, then the stable categories of the principal blocks of kG and kNG(H) are equiva-

lent. So we can assume without loss of generality that H is normal in G.

4.4 The Sylow p-Subgroup is C2

If H = C2 is normal in G, then it is actually central in G. By the Schur–Zassenhaus

Theorem it follows that G = C2 × L for some group L that has odd order. Then by

Lemma 4.2 we have that stmod(kG) is equivalent to stmod(kC2) as tensor triangu-

lated categories. By the main result of [5], every module in stmod(kC2) is a sum of

suspensions of k, so the same is true in stmod(kG). In particular, this is true for the

principal block.
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4.5 The Sylow p-Subgroup is C3

Let H = C3 be normal in G. Now consider the map

Ξ : G −→ Aut(C3) ∼= C2, g 7−→ g(−)g−1.

There are only two possibilities for the image of Ξ:

Case 1: The image of Ξ is trivial. In this case, exactly as before, G = C3 ×L for some

group L whose order is not divisible by 3. So by Lemma 4.2 we have that stmod(kG)

is equivalent to stmod(kC3) as tensor triangulated categories. By the main result

of [5], every module in stmod(kC3) is a sum of suspensions of k, so the same is true

in stmod(kG). In particular, this is true for the principal block.

Case 2: The image of Ξ is C2. Then the centraliser CG(C3) has index 2 in G. In this

case, Φ3, the number of automorphisms of C3 given by conjugation by elements of G,

is equal to 2. By Theorem 2.2, k has period 2Φ3 = 4. Thus it is enough to show that

there are exactly four indecomposable non-projective kG-modules in the principal

block. By Theorem 2.3, we know that the number of indecomposable non-projective

kG-modules in the principal block is twice the number of simple kG-modules in the

principal block. Combining these two, we just have to show that there are only two

simple kG-modules in the principal block.

Let P be the indecomposable projective module over k, that is, P/ rad(P) ∼= k.

Let W be the module rad(P)/ rad2(P). Then the set of all simple kG-modules in the

principal block is

{k, W, W ⊗W, W ⊗W ⊗W, . . . }.

This fact can be found in [1, Exercise 13.3], for instance. We will be done if we

can show that k ≇ W and W ⊗ W = k, because then we will have exactly two

simple kG-modules in the principal block, namely k and W . These two facts will

become clear once we give the explicit structure of W . Write G = C3L, where L is

a complement of C3, which exists by the Schur–Zassenhaus Theorem, and let x be a

generator of C3. It can be shown ([1, p. 37]) that W is a one-dimensional module

generated by v such that x(v) = v, and for h in L, h(v) = v if h belongs to CG(C3)

and −v if h does not belong to CG(C3). Since CG(C3) has index 2, there are elements

outside CG(C3) that do not fix v, and therefore W is not isomorphic to k. The fact

that W ⊗W ∼= k is clear, since

x(v ⊗ v) = xv ⊗ xv = v ⊗ v

h(v ⊗ v) = hv ⊗ hv = ±v ⊗±v = v ⊗ v.

This shows that there are exactly two simple kG-modules in the principal block. So

we are done.

5 Groups with Periodic Cohomology for which the GH Fails

In this section we show that for a group G that has periodic cohomology, the GH fails

whenever the Sylow p-subgroup of G is not C2 or C3. In view of Proposition 2.1, in
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order to disprove the GH for these groups we have to show that there is a module in

thickG(k) that is not stably isomorphic to a direct sum of suspensions of k. We will

show that the middle term of an almost split sequence has this property.

We recall the standard almost split sequence for the reader. Let G be any finite

group, and let P be the indecomposable projective module over k, that is, P/ rad P ∼=
k. Since kG is a symmetric algebra, we also have soc P ∼= k. The quotient rad P/ soc P

is called the heart HG of G. It occurs as a summand in the middle term of the standard

almost split sequence

0 −→ rad P −→ HG ⊕ P −→ P/ soc P −→ 0.

This sequence can also be written as

(5.1) 0 −→ Ω
1k −→ HG ⊕ P −→ Ω

−1k −→ 0.

It is a non-trivial result of Webb [21, Thm. E] that HG is an indecomposable kG-mod-

ule provided the Sylow p-subgroup of G is not a dihedral 2-group. This covers our

situation, since for a group with periodic cohomology, the only dihedral 2-group

that can arise as the Sylow p-subgroup is C2, and we are explicitly excluding this

possibility.

Theorem 5.1 Let G be a group that has periodic cohomology for which the Sylow

p-subgroup is not C2 or C3. Then the kG-module HG is an indecomposable non-pro-

jective module in thickG(k) that is not stably isomorphic to Ω
ik for any i. In particular,

there is a non-trivial ghost out of HG in thickG(k), i.e., the GH fails for kG.

Proof It is clear from the short exact sequence (5.1) that HG belongs to thickG(k).

Further, we know from Webb’s theorem stated above that HG is an indecomposable

kG-module. So we only have to show that HG is not projective and that it is not

stably isomorphic to Ω
ik for any i. Both of these statements follow easily by com-

paring dimensions. The key fact to observe is that the dimension of every projective

kG-module is divisible by pn, the order of the Sylow p-subgroup of G. (One sees

this by restricting the projective module to the Sylow p-subgroup P, over which the

restriction becomes a free kP-module.) On the other hand, from the definition of

HG, it is clear that dimk HG ≡ −2 mod pn. So if HG is projective, then pn should

divide 2, but that would mean that the Sylow p-subgroup is C2, which is a contradic-

tion. Therefore, HG has to be non-projective. Using the minimal projective resolu-

tion of k and the above fact about dimensions of projective kG-modules, one sees by

a straightforward induction on i that dimk Ω
ik ≡ 1 or −1 mod pn. If HG

∼= Ω
ik for

some i, then it follows that the Sylow p-subgroup is either trivial or C3. Both cases

are ruled out by our assumptions. Therefore, HG is not stably isomorphic to Ω
ik for

any i. The last statement follows from Proposition 2.1.

The last two sections together prove our main theorem that if G has periodic co-

homology, then the GH holds for kG if and only if the Sylow p-subgroup of G is

either C2 or C3.
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[7] J. F. Carlson, S. K. Chebolu, and J. Mináč, Freyd’s generating hypothesis with almost split sequences.
Proc. Amer. Math. Soc. 137(2009), no. 8, 2575–2580. doi:10.1090/S0002-9939-09-09826-8
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