
ON A DIOPHANTINE PROBLEM 

J. B. ROBERTS 

Introduction. If ax, a2, . . . , ak are relatively prime positive integers then 
the equation 
(1) aiXi + . . . + akxk = n 

always has solutions in non-negative xt lor n sufficiently large. Sylvester 
called the number of non-negative solutions of (1) the denumerant of the 
equation. We shall denote the denumerant by n(ai, . . . , ak). 

We define Nj(ai, . . . , ak) to be the smallest positive integer such that 
n(ai, . . . , ak) > j for all n > Nj(cii, . . . , ak). 

Using the known result 

n{\, 2, 3) = [{n2 + (m + 15)/12] 

we can readily show that 

,¥ ,(1,2,3) = [ V ( 1 2 ; - ( 3 ) - 2 ] . 

In general the computation of Nj(a,\, . . . , ak) is a difficult job. Our interest 
here is in N1(a1, . . . , ak). The present author has given (4) the value of 
Ni(a,i, . . . , ak) when the at are in arithmetic progression. Brauer and Seel-
binder (2; 3) have given various upper bounds for iVi(ai, . . . , ak) in the 
general case. In this paper we concern ourselves with an upper bound for 
Ni(m, m + CL, m + b) where (a, b) = 1. Our upper bound is in many cases 
best possible. We also give a theorem concerning an upper bound for 

N\{m, m + ai, . . . , m + ak) 

where ai, a2, . . . , ak are relatively prime positive integers. 

1. Three lemmas. Throughout this section 

0 < a < b, (a, b) = 1, P = (a - 1)(6 - 1). 

Since Ni(a, b) — P (1, p. 124), the equation ax + by = n is solvable in non-
negative integers for all n > P. The non-negative solution with smallest x 
is denoted by xtt, yn. If x, y is any non-negative solution of ax + by = n then 

x + y > xn + yfl. 

Also 
+ yn±b = xn + yn + 1. 
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Since (a, b) = 1, the numbers aa for 0 < a < b — 1 constitute a complete 
system of residues modulo b. Hence n = aa(mod b) has a unique solution with 
0 < a < b — 1. Denote this solution by an. 

LEMMA 1. xn = <xn, yn = in — aan)/b. 

Proof. Clearly 
aan + b((n — aan)/b) = n. 

Hence all solutions of ax + by = n are given by 

oin + bt, (n — aan)/b — at. 

For non-negative solutions we must have 

/ > - ajb > - 1. 

Hence all non-negative solutions have x > a„. 

LEMMA 2. If n > P, an = b — 1 and 1 < c < w — P then 
Xn \ Jn ^ %n—c "T~ Jn—c \ t . 

Proof. We have 

#n + y« = <*n + (n — aan)/b = (n + a»(ô — «))/* 
= (« + (6 - 1)(6 - a ) ) /6 > (« - c + a„_c(6 - a))/6 

LEMMA 3. 

max (xw + yn) < 6 - 2 + [m/b] 
ncK 

where K consists of those n satisfying P < n < P + m — 1, m > 1. 

Proof. Let J3 be the smallest integer greater than P + m — 1 which has 
a 5 = & — 1. Then 

5 > P + r a - l > w 

and therefore B — n > 1. Also J5 — w < B — P . Hence taking the n, c of 
Lemma 2 to be B, B — n respectively, we see that 

xB + yB > xB-(B-n) + yB + 1 = Xn + yw + 1. 

This is true for all n Ç. K} so 

max (xn + yn) < xB + yB ~ I = (B + aB{b - a))/b - 1. 
neK 

For arbitrary m we have 

B = P + [w/6] & - 1 + 6. 

Hence 

max (*» + yn) < (P + [ro/J] i - 1 + b + (ft - l)(ft - a))/ft - 1 
ne* = b - 2 + [m/6]. 
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2. The main theorem. 

THEOREM 1. Niim,m + a,m + b) < m(b — 2 + [m/b]) + (a — 1)(b — 1) 
where 0 < a < b, (a, b) = 1, m > 2. 

Proof. Let P , i£, xn, yn be as in §1. Define 

Q = max (xn + yn). 
neK 

Now define Xj, yj} Zj for j > P by the following : 

Xj = Xi, yj = ji for j = i (mod m), P < i < P + m — 1, 
*j = Q + [U ~ P)/m] - Xj - y j . 

Then 

W2f + (m + a)x^ + O + 6)§i = w ( ^ + Xj + y3) + axj + byj 
= mÇ + m[(j — P)/m] + ax} + by j . 

As j runs over 

P + 5m, P + sm + I, . . . , P + sm -\- m — 1 

for 5 > 0, the right side of this equation runs over 

mQ + ms + P , wQ + ws + P + 1, . . . , mQ + ms + P + m — 1. 

Hence as j runs over the integers greater than or equal to P and 5 runs over the 
integers greater than or equal to 0, the left side of (2) runs over the integers 
greater than or equal to P + mQ. Replacing Q by its upper bound from 
Lemma 3 now gives the desired result. 

Essentially the same proof yields the following : 

THEOREM 2. Ni(m, m + a1} . . . , m + afc) < P + mQ where a\, a2, . . . , aK 

are relatively prime positive integers, 

P = Ni(au . . . , ak), Q = max (xln + . . . + xkn), 
neK 

K is the set of n such that P < w < P + m — 1, and xin, . . . , xkn is a non-
negative solution of (1) with smallest sum. 

3. Special cases. Let Ni{m, m + a, m + b) denote the upper bound in 
Theorem 1. We compare Ni with Ni in a few special cases. 

(a) By the main result in (4; see also 2, Theorem 7, p. 310), 

Ni(m, m + 1, m + 2) = m[\m\ = Nx(m, m + 1, m + 2). 

(b) By a result stated in (4), 

Ni(m, m + 1, m + b) = Ni(m, m + 1, m + b) 

for 
m = - 1 (mod 6), m > 52 - 56 + 3; 
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and 

Ni(m} m -{- 1, m -{- b) = Ni(m, m : + 1, m + b) — (m — b\m/b}) 

for 
m = - 1 (mod 6), m > 6'2 - 46 + 2. 

(c) By direct evaluation it is not difficult to show 

Ni(m, m + 2, m + 3) = iVi(m, w + 2, m + 3). 

(d) By computation for 2 < m < 16 we find 

Ni(m, m + 2, m + 5) = Ni(m, m + 2, m + 5) 

for 
m = 5, 8, 10, 13, 14, 15 

and not for 
m = 2, 3, 4, 6, 7, 9, 11, 12, 16. 
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