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Abstract

By Smith’s theorem, if a cubic graph has a Hamiltonian cycle, then it has a second Hamiltonian cycle.
Thomason [‘Hamilton cycles and uniquely edge-colourable graphs’, Ann. Discrete Math. 3 (1978),
259–268] gave a simple algorithm to find the second cycle. Thomassen [private communication] observed
that if there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in a cubic
cyclically 4-edge connected graph G, then there exists a polynomially bounded algorithm for finding
a second Hamiltonian cycle in any cubic graph G. In this paper we present a class of cyclically 4-
edge connected cubic bipartite graphs Gi with 16(i + 1) vertices such that Thomason’s algorithm takes
12(2i − 1) + 3 steps to find a second Hamiltonian cycle in Gi.
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1. Introduction

It is well known that determining whether there is a Hamiltonian cycle in a cubic
graph is an NP-complete problem [2]. Smith’s theorem (see [5]) states that for any
cubic graph and a given edge e, the number of Hamiltonian cycles through e is even.
From Smith’s theorem, if we find one Hamiltonian cycle then there must be another
one. This leads to an interesting question: is finding the second Hamiltonian cycle still
an NP-complete problem?

The first published proof of Smith’s theorem was a beautiful but nonconstructive
counting argument of Tutte [5]. Thomason [4] gave a simple constructive argument
called the lollipop method to find a second Hamiltonian cycle.

Since Thomason’s algorithm is the only known algorithm for finding a second
Hamiltonian cycle, it is important to investigate its complexity. Krawczyk [3]
presented a class of graphs on 8n + 2 vertices, where n ≥ 1, for which Thomason’s
algorithm requires at least 2n steps to find a second Hamiltonian cycle. Later Cameron
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[1] proved a more general result showing that Thomason’s algorithm is exponential on
a family of cubic planar graphs.

A cyclic k-edge cut in a graph G is a k-edge cut E′ ⊂ E(G) such that at least two
of the connected components in G − E′ contain cycles. A graph G is cyclically k-edge
connected if and only if there is no cyclic k′-edge cut in G with k′ < k.

As pointed out by Carsten Thomassen (private communication), if there exists a
polynomially bounded algorithm for finding a second Hamiltonian cycle in a cubic
cyclically 4-edge connected graph G, then there exists a polynomially bounded
algorithm for finding a second Hamiltonian cycle in any cubic graph G. We will give
a proof of this reduction theorem in Section 2.

Since the graphs in [1, 3] are not cyclically 4-edge connected, it is natural to ask
for examples of cubic cyclically 4-edge connected graphs on which the complexity of
Thomason’s algorithm grows exponentially with the number of vertices. To this end,
we prove the following theorem.

Theorem 1.1. For each i ≥ 0, there exists a cyclically 4-edge connected cubic bipartite
Hamiltonian graph Gi on 16(i + 1) vertices such that Thomason’s algorithm takes
12(2i − 1) + 3 steps to find a second Hamiltonian cycle in Gi.

2. The reduction to the cyclically 4-edge connected graph

Theorem 2.1. Suppose there exists a polynomially bounded algorithm A for the
following problem: given a cubic cyclically 4-edge connected graph G possibly with
multiple edges, an edge e in G and a Hamiltonian cycle C containing e, find a
Hamiltonian cycle which is distinct from C and which contains e. Then there also
exists a polynomially bounded algorithm B for the following more general problem:
given a cubic graph G possibly with multiple edges, an edge e in G and a Hamiltonian
cycle C containing e, find a Hamiltonian cycle which is distinct from C and which
contains e.

Proof. Suppose the complexity of algorithm A for a cubic cyclically 4-edge connected
graph G with n vertices is O(nk) where k ≥ 4 is a fixed constant. We will show that
algorithm B exists and for any cubic graph G with n vertices the complexity of B is
still O(nk).

Suppose that G is a cubic graph with n vertices and we have a Hamiltonian cycle
C in G which contains an edge e ∈ E(G). If G is cyclically 4-edge connected, then
we just let B = A. Otherwise, we observe that G is 2-edge connected, since G has a
Hamiltonian cycle. Consequently, if we consider the minimum edge cut in G, there
are two cases:

(1) The minimum edge cut contains two edges.
(2) The minimum edge cut contains three edges.

Case (1). In this case we can find a 2-edge cut in O(n3) steps by choosing all
pairs of edges and checking whether the deletion of these edges disconnects G.
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(Faster algorithms for solving this problem do exist, but we do not attempt to optimise
the complexity here.) Let (x1x2, y1y2) be such a cut and let the part that does not contain
the edge e in G − x1x2 − y1y2 be G1. (If neither part contains e, let G1 be an arbitrary
part.) Suppose x1 ∈ G1, y1 ∈ G1 and |V(G1)| = n1. Note that x1 , y1, otherwise there
will be a cut edge attached to x1 since G is cubic. Now G1 + x1y1 is a cubic graph
which is smaller than G and there is a Hamiltonian cycle C1 containing x1y1 in this
graph (which arises from C). By the induction hypothesis we can use algorithm B in
O(nk

1) steps to find another Hamiltonian cycle C′1 in G1 + x1y1 that goes through x1y1.
Now the cycle C − (C1 ∩G1) + (C′1 ∩G1) is a second Hamiltonian cycle in G which
contains e, and we find it in O(nk

1) + O(n3) = O(nk) steps.

Case (2). In this case there must exist a cyclic 3-edge cut by the assumption that G
is not cyclically 4-edge connected. We can find such a cut (e1, e2, e3) in O(n4) steps
by choosing all triples of edges and checking whether the deletion of these edges
disconnects G and both connected components have cycles. Let G1 and G2 be the
two connected components of G − e1 − e2 − e3, let G′1 = G/G2, G′2 = G/G1 and let
n1 = |V(G′1)|, n2 = |V(G′2)|. Then n1 + n2 = n + 2. For each G′i , we have a Hamiltonian
cycle Ci which arises from C. Without loss of generality, we can assume that C
contains e1 and e2, which means both C1 and C2 contain e1 and e2.

If the edge e is one of the edges of the cyclic 3-edge cut, say e = e1, by the induction
hypothesis we can use algorithm B to find another Hamiltonian cycle C′1 ∈ G′1 which
contains e1 in O(nk

1) steps. If C′1 contains e2, then C′1 together with C2 forms a
Hamiltonian cycle that differs from C and still contains e in G, and we find it in
O(nk

1) + O(n4) = O(nk) steps. This allows us to assume that C′1 contains both e1 and e3.
Again by the induction hypothesis, we can find another Hamiltonian cycle C′2 ∈ G′2 by
algorithm B in O(nk

2) steps which contains e1. For the same reason, C′2 must contain
both e1 and e3. Now C′1 together with C′2 forms a Hamiltonian cycle that differs from
C and still contains e in G, and we find it in O(nk

1) + O(nk
2) + O(n4) = O(nk) steps.

So now we can assume that e is not in the cyclic 3-edge cut. Without loss
of generality we assume that e ∈ E(G1). By the induction hypothesis we can use
algorithm B to find a different Hamiltonian cycle in G2 which contains edge e1 in
O(nk

2) steps. By the argument used above, this Hamiltonian cycle contains e1 and
e3. Let this Hamiltonian cycle be C13. Then again by the induction hypothesis and
algorithm B we can find a Hamiltonian cycle in G2 different from C2 which contains
the edge e2 in O(nk

2) steps. Again, by the same argument as above, this Hamiltonian
cycle contains e2 and e3. Let this Hamiltonian cycle be C23. Recall that C2 contains
both e1 and e2. Let it be the Hamiltonian cycle C12. Now by the induction hypothesis
we can find a new Hamiltonian cycle C′ in G1 which contains e by algorithm B in
O(nk

1) steps. Since C′ is Hamiltonian, it must contain exactly two of the edges e1, e2

and e3, say it contains ei and e j with 1 ≤ i < j ≤ 3. Now C′ together with Ci j forms
a Hamiltonian cycle that differs from C and still contains e in G and we find it in
O(nk

1) + O(nk
2) + O(nk

2) + O(n4) = O(nk) steps. This completes the proof. �
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Figure 1. The graph G.

3. The construction and proof of Theorem 1.1

We start by showing how to construct the graph Gi. First take the graph G with 16
vertices and label the vertices as in Figure 1. This graph is cyclically 4-edge connected
and bipartite and there is a Hamiltonian cycle H0 = 0, 1, . . . , 15. Apply the lollipop
method to this Hamiltonian cycle with starting edge (0, 1). The algorithm takes three
steps to find the second Hamiltonian cycle in G, passing through the following three
Hamiltonian paths (P0

0 is the starting Hamiltonian cycle):

P0
0 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

P0
1 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 14, 13,

P0
2 = 0, 1, 2, 13, 14, 15, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3,

P0
3 = 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 14, 13, 2, 1.

Put G0 = G. Take G0 and a new copy of G. For the sake of convenience, we use
roman font to represent the vertices from G0 and underlined roman font to represent
the vertices from the new copy of G. We delete the edges (2, 3) and (6, 7) from G0

and delete the edges (10, 11) and (14, 15) from the new copy of G, and we make four
new edges (2, 11), (3, 14), (6, 15), (7, 10). This is the graph G1. There is a Hamiltonian
cycle H1 = 0, 1, 2, 11, 12, 13, 14, 3, 4, 5, 6, 15, 0, 1, . . . , 9, 10, 7, 8, . . . , 15 in this graph.

For every i ≥ 2, we construct the graph Gi by taking Gi−1 and a new copy of
G, deleting the edges (2, 3) and (6, 7) from the last copy of G in Gi−1 and deleting
the edges (10, 11) and (14, 15) from the new copy of G, then making four new
edges (2, 11), (3, 14), (6, 15), (7, 10). Now roman font denotes vertices from Gi−1 and
underlined roman font denotes vertices from the new copy of G. We can easily find a
new Hamiltonian cycle Hi in Gi by replacing two edges of the Hamiltonian cycle Hi−1

in Gi−1 with two paths in the new copy of G. See Figure 2 for an example.
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Figure 2. The construction of Gi.

Apply the lollipop method to the Hamiltonian cycle H1 in G1 with starting edge
(0,1). The algorithm takes 15 steps to find the second Hamiltonian cycle in G1, passing
through the following 15 Hamiltonian paths (P1

0 is the starting Hamiltonian cycle H1):

P1
0 = 0,1,2,11,12,13,14,3,4,5,6,15,0,1,2,3,4,5,6,7,8,9,10,7,8,9,10,11,12,13,14,15

P1
1 = 0,1,2,11,12,13,14,3,4,5,6,15,0,1,2,3,4,5,6,7,8,9,10,7,8,9,10,11,12,15,14,13

P1
2 = 0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,6,5,4,3,2,1,0,15,6,5,4,3,14,13,12,11

P1
3 = 0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,6,5,4,11,12,13,14,3,4,5,6,15,0,1,2,3

P1
4 = 0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,6,5,4,11,12,13,14,3,4,5,6,15,0,3,2,1

P1
5 = 0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,6,1,2,3,0,15,6,5,4,3,14,13,12,11,4,5

P1
6 = 0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,5,4,11,12,13,14,3,4,5,6,15,0,3,2,1,6,7

P1
7 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,1,2,3,0,15,6,5,4,3,14,13,12,11,4,5,8,9

P1
8 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,1,2,3,0,15,6,5,4,3,14,9,8,5,4,11,12,13

P1
9 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,1,2,13,12,11,4,5,8,9,14,3,4,5,6,15,0,3

P1
10 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,1,2,13,12,11,4,3,0,15,6,5,4,3,14,9,8,5

P1
11 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,5,8,9,14,3,4,5,6,15,0,3,4,11,12,13,2,1

P1
12 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,5,8,9,14,3,4,5,6,15,0,1,2,13,12,11,4,3

P1
13 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,5,8,9,14,3,4,5,6,15,0,1,2,3,4,11,12,13

P1
14 = 0,1,2,13,14,15,12,11,10,9,8,7,10,7,6,5,8,9,14,13,12,11,4,3,2,1,0,15,6,5,4,3

P1
15 = 0,3,4,5,6,15,0,1,2,3,4,11,12,13,14,9,8,5,6,7,10,7,8,9,10,11,12,15,14,13,2,1

(The vertices in roman font are the vertices from G0 and the vertices in underlined
roman font are the vertices from the new copy of G.)
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We can see that after the second step of the algorithm (P1
2) the last vertex of the

Hamiltonian path is in the new copy of G and it comes back to G0 after the 14th step.
Consider the Hamiltonian paths where the last vertex is in G0 (that is, P1

1, P1
14 and

P1
15). If we only focus on the vertices from G0 in these three paths, then we can see

that they are the same as the three paths we get when we apply the lollipop method to
G0 (that is, the part of P1

1 in roman font is the same as P0
1, the part of P1

14 in roman
font is the same as P0

2 and the part of P1
15 in roman font is the same as P0

3). Thus
these vertices appear in the same order as when we apply the lollipop method to G0.
The 12 extra Hamiltonian paths (from P1

2 to P1
13) are added in between these three

Hamiltonian paths. We get these 12 extra Hamiltonian paths because, when we apply
the lollipop method to G0, after the second step the last vertex is 3 (the last number of
P0

2), but by our construction of G1, the edge (2, 3) disappears and it is replaced by two
edges (2, 11), (3, 14), so the algorithm finds a new end for the Hamiltonian path in the
new copy of G (the last vertex of P1

2 in underlined roman font). This is the beginning
of the 12 extra Hamiltonian paths.

Then we apply the lollipop method to graph G2. The algorithm takes 39 steps to
find the second Hamiltonian cycle in G2. The 39 Hamiltonian paths are given in the
Appendix (P2

0 is the starting Hamiltonian cycle, the vertices in roman font are from
first copy of G, the vertices in underlined roman font are from second copy of G and
the vertices in bold italic font are from the third copy of G).

Consider the Hamiltonian paths where the last vertex is in the new copy of G. They
appear in two groups, each containing 12 paths, namely P2

9, . . . , P
2
20 and P2

25, . . . , P
2
36.

If we focus on the vertices that are in the last copy of G (the vertices in bold italic font)
in these paths, we can see that these vertices appear in a reverse order. (The part of
P2

9 in bold italic font is the same as the part of P2
36 in bold italic font, the part of P2

10
in bold italic font is the same as the part of P2

35 in bold italic font, and more generally,
the part of P2

i in bold italic font is the same as the part of P2
45−i in bold italic font for

9 ≤ i ≤ 20.) Also, if we compare the 12 extra paths when we apply the lollipop method
in G1 (P1

2, . . . , P
1
13) and the 24 extra paths when we apply the lollipop method in G2

(P2
9, . . . , P

2
20 and P2

25, . . . , P
2
36), we can see that the part of P2

9 in bold italic font is the
same as the part of P1

2 in underlined roman font, the part of P2
10 in bold italic font is

the same as the part of P1
3 in underlined roman font, and more generally, the part of

P2
i in bold italic font is the same as the part of P1

i−7 in bold italic font for 9 ≤ i ≤ 20.
This means the vertices in bold italic font appear in the same order as the vertices in
underlined roman font appear in G1.

Next we focus on the paths where the last vertex is not in the new copy of G (namely
P2

1, . . . , P
2
8, P

2
21, . . . , P

2
24, P

2
37, P

2
38, P

2
39) and the vertices in the first or the second copy

of G in these paths (in roman font and underlined roman font). We can see that they
are the same as the paths we get when we apply the lollipop method to G1 (the part
of P2

1 in roman and underlined roman font is the same as the part of P1
1 in roman and

underlined roman font, the part of P2
2 in roman and underlined roman font is the same

as the part of P1
2 in roman and underlined roman font, . . . , the part of P2

39 in roman and
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underlined roman font is the same as the part of P1
15 in roman and underlined roman

font).
This pattern repeats if we continue constructing Gi in this way. For each Gi, the

lollipop method takes 12 · 2i−1 more steps to find the second Hamiltonian cycle than it
takes in Gi−1. This observation completes the proof of Theorem 1.1.
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Appendix. The 39 Hamiltonian paths in G2

P2
0 = 0,1,2,11, 12, 13, 14,3,4,5,6,15, 0, 1, 2,11,12,13,14,3, 4, 5, 6,

15,0,1,2,3,4,5,6,7,8,9,10,7, 8, 9, 10,7,8,9,10,11,12,13,14,15
P2

1 = 0,1,2,11, 12, 13, 14,3,4,5,6,15, 0, 1, 2,11,12,13,14,3, 4, 5, 6,
15,0,1,2,3,4,5,6,7,8,9,10,7, 8, 9, 10,7,8,9,10,11,12,15,14,13

P2
2 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 9, 8, 7,10,9,8,7,6,5,4,

3,2,1,0,15,6, 5, 4, 3,14,13,12,11,2, 1, 0, 15,6,5,4,3,14, 13, 12, 11
P2

3 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 9, 8, 7,10,9,8,7,6,5,4,
3,2,1,0,15,6, 5, 4, 11, 12, 13, 14,3,4,5,6,15, 0, 1, 2,11,12,13,14,3

P2
4 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 9, 8, 7,10,9,8,7,6,5,4,

3,2,1,0,15,6, 5, 4, 11, 12, 13, 14,3,4,5,6,15, 0, 3,14,13,12,11,2, 1
P2

5 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 9, 8, 7,10,9,8,7,6,5,4,
3,2,1,0,15,6, 1, 2,11,12,13,14,3, 0, 15,6,5,4,3,14, 13, 12, 11, 4, 5

P2
6 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 9, 8, 5, 4, 11, 12, 13, 14,3,4,

5,6,15, 0, 3,14,13,12,11,2, 1, 6,15,0,1,2,3,4,5,6,7,8,9,10,7
P2

7 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,3,2,
1,0,15,6, 1, 2,11,12,13,14,3, 0, 15,6,5,4,3,14, 13, 12, 11, 4, 5, 8, 9

P2
8 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,3,2,

1,0,15,6, 1, 2,11,12,13,14,3, 0, 15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13
P2

9 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,3,2,
1,0,15,6, 1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3,14,13,12,11

P2
10 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,11,12,

13,14,3, 0, 15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,1,2,3
P2

11 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,11,12,
13,14,3, 0, 15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,3,2,1

P2
12 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,1,2,3,0,

15,6, 1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3,14,13,12,11,4,5
P2

13 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,5,4,11,12,13,14,
3, 0, 15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,3,2,1,6,7

P2
14 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,3,0,15,6,
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1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3,14,13,12,11,4,5,8,9
P2

15 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,3,0,15,6,
1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3,14,9,8,5,4,11,12,13

P2
16 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,13,12,11,4,

5,8,9,14,3, 0, 15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,3
P2

17 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,13,12,11,4,
3,0,15,6, 1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3,14,9,8,5

P2
18 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,3, 0,

15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,3,4,11,12,13,2,1
P2

19 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,3, 0,
15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,1,2,13,12,11,4,3

P2
20 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,3, 0,

15,6,5,4,3,14, 9, 8, 5, 4, 11, 12, 13, 2, 1, 6,15,0,1,2,3,4,11,12,13
P2

21 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,13,12,
11,4,3,2,1,0,15,6, 1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3

P2
22 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,13,12,

11,4,3,2,1,0,15,6, 1, 2, 13, 12, 11, 4, 3, 0, 15,6,5,4,3,14, 9, 8, 5
P2

23 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,13,12,
11,4,3,2,1,0,15,6, 5, 8, 9, 14,3,4,5,6,15, 0, 3, 4, 11, 12, 13, 2, 1

P2
24 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,13,12,

11,4,3,2,1,0,15,6, 5, 8, 9, 14,3,4,5,6,15, 0, 1, 2, 13, 12, 11, 4, 3
P2

25 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,3, 4,
11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,1,2,3,4,11,12,13

P2
26 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,3, 4,

11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,1,2,13,12,11,4,3
P2

27 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,5,8,9,14,3, 4,
11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,3,4,11,12,13,2,1

P2
28 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,13,12,11,4,

3,0,15,6, 5, 8, 9, 14,3,4,5,6,15, 0, 1, 2, 13, 12, 11, 4, 3,14,9,8,5
P2

29 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,13,12,11,4,
5,8,9,14,3, 4, 11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,3

P2
30 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,3,0,15,6,

5, 8, 9, 14,3,4,5,6,15, 0, 1, 2, 13, 12, 11, 4, 3,14,9,8,5,4,11,12,13
P2

31 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,7,6,1,2,3,0,15,6,
5, 8, 9, 14,3,4,5,6,15, 0, 1, 2, 13, 12, 11, 4, 3,14,13,12,11,4,5,8,9

P2
32 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,5,4,11,12,13,14,

3, 4, 11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,3,2,1,6,7
P2

33 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,1,2,3,0,
15,6, 5, 8, 9, 14,3,4,5,6,15, 0, 1, 2, 13, 12, 11, 4, 3,14,13,12,11,4,5

P2
34 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,11,12,

13,14,3, 4, 11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,3,2,1
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P2
35 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,11,12,

13,14,3, 4, 11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,1,2,3
P2

36 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,3,2,
1,0,15,6, 5, 8, 9, 14,3,4,5,6,15, 0, 1, 2, 13, 12, 11, 4, 3,14,13,12,11

P2
37 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,3,2,

1,0,15,6, 5, 8, 9, 14,3,4,5,6,15, 0, 1, 2,11,12,13,14,3, 4, 11, 12, 13
P2

38 = 0,1,2,13,14,15,12,11,10,9,8,7,10, 7,10,9,8,7,6,5,4,3,2,
1,0,15,6, 5, 8, 9, 14, 13, 12, 11, 4, 3,14,13,12,11,2, 1, 0, 15,6,5,4,3

P2
39 = 0,3,4,5,6,15, 0, 1, 2,11,12,13,14,3, 4, 11, 12, 13, 14, 9, 8, 5, 6,

15,0,1,2,3,4,5,6,7,8,9,10,7, 10,7,8,9,10,11,12,15,14,13,2,1
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