THE COMPLEXITY OF THOMASON'S ALGORITHM FOR FINDING A SECOND HAMILTONIAN CYCLE

LIANG ZHONG

(Received 17 January 2018; accepted 10 February 2018; first published online 3 May 2018)

Abstract

By Smith's theorem, if a cubic graph has a Hamiltonian cycle, then it has a second Hamiltonian cycle. Thomason ['Hamilton cycles and uniquely edge-colourable graphs', Ann. Discrete Math. 3 (1978), 259-268] gave a simple algorithm to find the second cycle. Thomassen [private communication] observed that if there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in a cubic cyclically 4-edge connected graph G, then there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in any cubic graph G. In this paper we present a class of cyclically 4edge connected cubic bipartite graphs G_{i} with $16(i+1)$ vertices such that Thomason's algorithm takes $12\left(2^{i}-1\right)+3$ steps to find a second Hamiltonian cycle in G_{i}.

2010 Mathematics subject classification: primary 05C45; secondary 05C10.
Keywords and phrases: Hamiltonian cycle, lollipop method.

1. Introduction

It is well known that determining whether there is a Hamiltonian cycle in a cubic graph is an NP-complete problem [2]. Smith's theorem (see [5]) states that for any cubic graph and a given edge e, the number of Hamiltonian cycles through e is even. From Smith's theorem, if we find one Hamiltonian cycle then there must be another one. This leads to an interesting question: is finding the second Hamiltonian cycle still an NP-complete problem?

The first published proof of Smith's theorem was a beautiful but nonconstructive counting argument of Tutte [5]. Thomason [4] gave a simple constructive argument called the lollipop method to find a second Hamiltonian cycle.

Since Thomason's algorithm is the only known algorithm for finding a second Hamiltonian cycle, it is important to investigate its complexity. Krawczyk [3] presented a class of graphs on $8 n+2$ vertices, where $n \geq 1$, for which Thomason's algorithm requires at least 2^{n} steps to find a second Hamiltonian cycle. Later Cameron

[^0][1] proved a more general result showing that Thomason's algorithm is exponential on a family of cubic planar graphs.

A cyclic k-edge cut in a graph G is a k-edge cut $E^{\prime} \subset E(G)$ such that at least two of the connected components in $G-E^{\prime}$ contain cycles. A graph G is cyclically k-edge connected if and only if there is no cyclic k^{\prime}-edge cut in G with $k^{\prime}<k$.

As pointed out by Carsten Thomassen (private communication), if there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in a cubic cyclically 4 -edge connected graph G, then there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in any cubic graph G. We will give a proof of this reduction theorem in Section 2.

Since the graphs in $[1,3]$ are not cyclically 4 -edge connected, it is natural to ask for examples of cubic cyclically 4-edge connected graphs on which the complexity of Thomason's algorithm grows exponentially with the number of vertices. To this end, we prove the following theorem.

Theorem 1.1. For each $i \geq 0$, there exists a cyclically 4-edge connected cubic bipartite Hamiltonian graph G_{i} on $16(i+1)$ vertices such that Thomason's algorithm takes $12\left(2^{i}-1\right)+3$ steps to find a second Hamiltonian cycle in G_{i}.

2. The reduction to the cyclically 4 -edge connected graph

Theorem 2.1. Suppose there exists a polynomially bounded algorithm A for the following problem: given a cubic cyclically 4-edge connected graph G possibly with multiple edges, an edge e in G and a Hamiltonian cycle C containing e, find a Hamiltonian cycle which is distinct from C and which contains e. Then there also exists a polynomially bounded algorithm B for the following more general problem: given a cubic graph G possibly with multiple edges, an edge e in G and a Hamiltonian cycle C containing e, find a Hamiltonian cycle which is distinct from C and which contains e.

Proof. Suppose the complexity of algorithm A for a cubic cyclically 4-edge connected graph G with n vertices is $O\left(n^{k}\right)$ where $k \geq 4$ is a fixed constant. We will show that algorithm B exists and for any cubic graph G with n vertices the complexity of B is still $O\left(n^{k}\right)$.

Suppose that G is a cubic graph with n vertices and we have a Hamiltonian cycle C in G which contains an edge $e \in E(G)$. If G is cyclically 4-edge connected, then we just let $B=A$. Otherwise, we observe that G is 2 -edge connected, since G has a Hamiltonian cycle. Consequently, if we consider the minimum edge cut in G, there are two cases:
(1) The minimum edge cut contains two edges.
(2) The minimum edge cut contains three edges.

Case (1). In this case we can find a 2-edge cut in $O\left(n^{3}\right)$ steps by choosing all pairs of edges and checking whether the deletion of these edges disconnects G.
(Faster algorithms for solving this problem do exist, but we do not attempt to optimise the complexity here.) Let ($x_{1} x_{2}, y_{1} y_{2}$) be such a cut and let the part that does not contain the edge e in $G-x_{1} x_{2}-y_{1} y_{2}$ be G_{1}. (If neither part contains e, let G_{1} be an arbitrary part.) Suppose $x_{1} \in G_{1}, y_{1} \in G_{1}$ and $\left|V\left(G_{1}\right)\right|=n_{1}$. Note that $x_{1} \neq y_{1}$, otherwise there will be a cut edge attached to x_{1} since G is cubic. Now $G_{1}+x_{1} y_{1}$ is a cubic graph which is smaller than G and there is a Hamiltonian cycle C_{1} containing $x_{1} y_{1}$ in this graph (which arises from C). By the induction hypothesis we can use algorithm B in $O\left(n_{1}^{k}\right)$ steps to find another Hamiltonian cycle C_{1}^{\prime} in $G_{1}+x_{1} y_{1}$ that goes through $x_{1} y_{1}$. Now the cycle $C-\left(C_{1} \cap G_{1}\right)+\left(C_{1}^{\prime} \cap G_{1}\right)$ is a second Hamiltonian cycle in G which contains e, and we find it in $O\left(n_{1}^{k}\right)+O\left(n^{3}\right)=O\left(n^{k}\right)$ steps.

Case (2). In this case there must exist a cyclic 3-edge cut by the assumption that G is not cyclically 4-edge connected. We can find such a cut (e_{1}, e_{2}, e_{3}) in $O\left(n^{4}\right)$ steps by choosing all triples of edges and checking whether the deletion of these edges disconnects G and both connected components have cycles. Let G_{1} and G_{2} be the two connected components of $G-e_{1}-e_{2}-e_{3}$, let $G_{1}^{\prime}=G / G_{2}, G_{2}^{\prime}=G / G_{1}$ and let $n_{1}=\left|V\left(G_{1}^{\prime}\right)\right|, n_{2}=\left|V\left(G_{2}^{\prime}\right)\right|$. Then $n_{1}+n_{2}=n+2$. For each G_{i}^{\prime}, we have a Hamiltonian cycle C_{i} which arises from C. Without loss of generality, we can assume that C contains e_{1} and e_{2}, which means both C_{1} and C_{2} contain e_{1} and e_{2}.

If the edge e is one of the edges of the cyclic 3-edge cut, say $e=e_{1}$, by the induction hypothesis we can use algorithm B to find another Hamiltonian cycle $C_{1}^{\prime} \in G_{1}^{\prime}$ which contains e_{1} in $O\left(n_{1}^{k}\right)$ steps. If C_{1}^{\prime} contains e_{2}, then C_{1}^{\prime} together with C_{2} forms a Hamiltonian cycle that differs from C and still contains e in G, and we find it in $O\left(n_{1}^{k}\right)+O\left(n^{4}\right)=O\left(n^{k}\right)$ steps. This allows us to assume that C_{1}^{\prime} contains both e_{1} and e_{3}. Again by the induction hypothesis, we can find another Hamiltonian cycle $C_{2}^{\prime} \in G_{2}^{\prime}$ by algorithm B in $O\left(n_{2}^{k}\right)$ steps which contains e_{1}. For the same reason, C_{2}^{\prime} must contain both e_{1} and e_{3}. Now C_{1}^{\prime} together with C_{2}^{\prime} forms a Hamiltonian cycle that differs from C and still contains e in G, and we find it in $O\left(n_{1}^{k}\right)+O\left(n_{2}^{k}\right)+O\left(n^{4}\right)=O\left(n^{k}\right)$ steps.

So now we can assume that e is not in the cyclic 3-edge cut. Without loss of generality we assume that $e \in E\left(G_{1}\right)$. By the induction hypothesis we can use algorithm B to find a different Hamiltonian cycle in G_{2} which contains edge e_{1} in $O\left(n_{2}^{k}\right)$ steps. By the argument used above, this Hamiltonian cycle contains e_{1} and e_{3}. Let this Hamiltonian cycle be C_{13}. Then again by the induction hypothesis and algorithm B we can find a Hamiltonian cycle in G_{2} different from C_{2} which contains the edge e_{2} in $O\left(n_{2}^{k}\right)$ steps. Again, by the same argument as above, this Hamiltonian cycle contains e_{2} and e_{3}. Let this Hamiltonian cycle be C_{23}. Recall that C_{2} contains both e_{1} and e_{2}. Let it be the Hamiltonian cycle C_{12}. Now by the induction hypothesis we can find a new Hamiltonian cycle C^{\prime} in G_{1} which contains e by algorithm B in $O\left(n_{1}^{k}\right)$ steps. Since C^{\prime} is Hamiltonian, it must contain exactly two of the edges e_{1}, e_{2} and e_{3}, say it contains e_{i} and e_{j} with $1 \leq i<j \leq 3$. Now C^{\prime} together with $C_{i j}$ forms a Hamiltonian cycle that differs from C and still contains e in G and we find it in $O\left(n_{1}^{k}\right)+O\left(n_{2}^{k}\right)+O\left(n_{2}^{k}\right)+O\left(n^{4}\right)=O\left(n^{k}\right)$ steps. This completes the proof.

Figure 1. The graph G.

3. The construction and proof of Theorem 1.1

We start by showing how to construct the graph G_{i}. First take the graph G with 16 vertices and label the vertices as in Figure 1. This graph is cyclically 4-edge connected and bipartite and there is a Hamiltonian cycle $H_{0}=0,1, \ldots, 15$. Apply the lollipop method to this Hamiltonian cycle with starting edge $(0,1)$. The algorithm takes three steps to find the second Hamiltonian cycle in G, passing through the following three Hamiltonian paths (P_{0}^{0} is the starting Hamiltonian cycle):

$$
\begin{aligned}
& P_{0}^{0}=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \\
& P_{1}^{0}=0,1,2,3,4,5,6,7,8,9,10,11,12,15,14,13, \\
& P_{2}^{0}=0,1,2,13,14,15,12,11,10,9,8,7,6,5,4,3, \\
& P_{3}^{0}=0,3,4,5,6,7,8,9,10,11,12,15,14,13,2,1 .
\end{aligned}
$$

Put $G_{0}=G$. Take G_{0} and a new copy of G. For the sake of convenience, we use roman font to represent the vertices from G_{0} and underlined roman font to represent the vertices from the new copy of G. We delete the edges $(2,3)$ and $(6,7)$ from G_{0} and delete the edges $(\underline{10}, \underline{11})$ and $(\underline{14}, \underline{15})$ from the new copy of G, and we make four new edges $(2, \underline{11}),(3, \underline{14}),(6, \underline{15}),(7, \underline{10})$. This is the graph G_{1}. There is a Hamiltonian cycle $H_{1}=0,1,2, \underline{11}, \underline{12}, \underline{13}, \underline{14}, 3,4,5,6, \underline{15}, \underline{0}, \underline{1}, \ldots, \underline{9}, \underline{10}, 7,8, \ldots, 15$ in this graph.

For every $i \geq 2$, we construct the graph G_{i} by taking G_{i-1} and a new copy of G, deleting the edges $(2,3)$ and $(6,7)$ from the last copy of G in G_{i-1} and deleting the edges $(\underline{10}, \underline{11})$ and $(\underline{14}, \underline{15})$ from the new copy of G, then making four new edges $(2, \underline{11}),(3, \underline{14}),(6, \underline{15}),(7, \underline{10})$. Now roman font denotes vertices from G_{i-1} and underlined roman font denotes vertices from the new copy of G. We can easily find a new Hamiltonian cycle H_{i} in G_{i} by replacing two edges of the Hamiltonian cycle H_{i-1} in G_{i-1} with two paths in the new copy of G. See Figure 2 for an example.

Figure 2. The construction of G_{i}.

Apply the lollipop method to the Hamiltonian cycle H_{1} in G_{1} with starting edge $(0,1)$. The algorithm takes 15 steps to find the second Hamiltonian cycle in G_{1}, passing through the following 15 Hamiltonian paths (P_{0}^{1} is the starting Hamiltonian cycle H_{1}):

$$
\begin{aligned}
& P_{0}^{1}=0,1,2,11,12,13,14,3,4,5,6,15,0,1,2,3,4,5,6,7,8,9,10,7,8,9,10,11,12,13,14,15 \\
& P_{1}^{1}=0,1,2, \underline{11,12,13,14,3,4,5,6,15,0,1,2,3,4,5,6,7,8,9,10}, 7,8,9,10,11,12,15,14,13 \\
& P_{2}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,9,8,7,6,5,4,3,2,1,0,15,6,5,4,3,14,13,12,11} \\
& P_{3}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,9,8,7,6,5,4,11,12,13,14,3,4,5,6,15,0,1,2,3} \\
& P_{4}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,9,8,7,6,5,4,11,12,13,14,3,4,5,6,15,0,3,2,1} \\
& P_{5}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,9,8,7,6,1,2,3,0,15,6,5,4,3,14,13,12,11,4,5} \\
& P_{6}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,9,8,5,4,11,12,13,14,3,4,5,6,15,0,3,2,1,6,7} \\
& P_{7}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,1,2,3,0,15,6,5,4,3,14,13,12,11,4,5,8,9} \\
& P_{8}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,1,2,3,0,15,6,5,4,3,14,9,8,5,4,11,12,13} \\
& P_{9}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,1,2,13,12,11,4,5,8,9,14,3,4,5,6,15,0,3} \\
& P_{10}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,1,2,13,12,11,4,3,0,15,6,5,4,3,14,9,8,5} \\
& P_{11}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,5,8,9,14,3,4,5,6,15,0,3,4,11,12,13,2,1} \\
& P_{12}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,5,8,9,14,3,4,5,6, \underline{15,0,1,2,13,12,11,4,3}} \\
& P_{13}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,5,8,9,14,3,4,5,6,15,0,1,2,3,4,11,12,13} \\
& P_{14}^{1}=0,1,2,13,14,15,12,11,10,9,8,7, \underline{10,7,6,5,8,9,14,13,12,11,4,3,2,1,0,15,6,5,4,3} \\
& P_{15}^{1}=
\end{aligned}=0,3,4,5,6,15,0,1,2,3,4,11,12,13,14,9,8,5,6,7,10,7,8,9,10,11,12,15,14,13,2,11
$$

(The vertices in roman font are the vertices from G_{0} and the vertices in underlined roman font are the vertices from the new copy of G.)

We can see that after the second step of the algorithm $\left(P_{2}^{1}\right)$ the last vertex of the Hamiltonian path is in the new copy of G and it comes back to G_{0} after the 14th step. Consider the Hamiltonian paths where the last vertex is in G_{0} (that is, P_{1}^{1}, P_{14}^{1} and P_{15}^{1}). If we only focus on the vertices from G_{0} in these three paths, then we can see that they are the same as the three paths we get when we apply the lollipop method to G_{0} (that is, the part of P_{1}^{1} in roman font is the same as P_{1}^{0}, the part of P_{14}^{1} in roman font is the same as P_{2}^{0} and the part of P_{15}^{1} in roman font is the same as P_{3}^{0}). Thus these vertices appear in the same order as when we apply the lollipop method to G_{0}. The 12 extra Hamiltonian paths (from P_{2}^{1} to P_{13}^{1}) are added in between these three Hamiltonian paths. We get these 12 extra Hamiltonian paths because, when we apply the lollipop method to G_{0}, after the second step the last vertex is 3 (the last number of $\left.P_{2}^{0}\right)$, but by our construction of G_{1}, the edge $(2,3)$ disappears and it is replaced by two edges $(2, \underline{11}),(3, \underline{14})$, so the algorithm finds a new end for the Hamiltonian path in the new copy of G (the last vertex of P_{2}^{1} in underlined roman font). This is the beginning of the 12 extra Hamiltonian paths.

Then we apply the lollipop method to graph G_{2}. The algorithm takes 39 steps to find the second Hamiltonian cycle in G_{2}. The 39 Hamiltonian paths are given in the Appendix (P_{0}^{2} is the starting Hamiltonian cycle, the vertices in roman font are from first copy of G, the vertices in underlined roman font are from second copy of G and the vertices in bold italic font are from the third copy of G).

Consider the Hamiltonian paths where the last vertex is in the new copy of G. They appear in two groups, each containing 12 paths, namely $P_{9}^{2}, \ldots, P_{20}^{2}$ and $P_{25}^{2}, \ldots, P_{36}^{2}$. If we focus on the vertices that are in the last copy of G (the vertices in bold italic font) in these paths, we can see that these vertices appear in a reverse order. (The part of P_{9}^{2} in bold italic font is the same as the part of P_{36}^{2} in bold italic font, the part of P_{10}^{2} in bold italic font is the same as the part of P_{35}^{2} in bold italic font, and more generally, the part of P_{i}^{2} in bold italic font is the same as the part of P_{45-i}^{2} in bold italic font for $9 \leq i \leq 20$.) Also, if we compare the 12 extra paths when we apply the lollipop method in $G_{1}\left(P_{2}^{1}, \ldots, P_{13}^{1}\right)$ and the 24 extra paths when we apply the lollipop method in G_{2} $\left(P_{9}^{2}, \ldots, P_{20}^{2}\right.$ and $\left.P_{25}^{2}, \ldots, P_{36}^{2}\right)$, we can see that the part of P_{9}^{2} in bold italic font is the same as the part of P_{2}^{1} in underlined roman font, the part of P_{10}^{2} in bold italic font is the same as the part of P_{3}^{1} in underlined roman font, and more generally, the part of P_{i}^{2} in bold italic font is the same as the part of P_{i-7}^{1} in bold italic font for $9 \leq i \leq 20$. This means the vertices in bold italic font appear in the same order as the vertices in underlined roman font appear in G_{1}.

Next we focus on the paths where the last vertex is not in the new copy of G (namely $\left.P_{1}^{2}, \ldots, P_{8}^{2}, P_{21}^{2}, \ldots, P_{24}^{2}, P_{37}^{2}, P_{38}^{2}, P_{39}^{2}\right)$ and the vertices in the first or the second copy of G in these paths (in roman font and underlined roman font). We can see that they are the same as the paths we get when we apply the lollipop method to G_{1} (the part of P_{1}^{2} in roman and underlined roman font is the same as the part of P_{1}^{1} in roman and underlined roman font, the part of P_{2}^{2} in roman and underlined roman font is the same as the part of P_{2}^{1} in roman and underlined roman font, \ldots, the part of P_{39}^{2} in roman and
underlined roman font is the same as the part of P_{15}^{1} in roman and underlined roman font).

This pattern repeats if we continue constructing G_{i} in this way. For each G_{i}, the lollipop method takes $12 \cdot 2^{i-1}$ more steps to find the second Hamiltonian cycle than it takes in G_{i-1}. This observation completes the proof of Theorem 1.1.

Acknowledgement

The author would like to thank Carsten Thomassen for suggesting this problem, for helpful discussions and for reading the manuscript.

Appendix. The 39 Hamiltonian paths in \boldsymbol{G}_{2}

$$
\begin{aligned}
& P_{0}^{2}=0,1,2,11,12,13,14,3,4,5,6,15,0,1,2,11,12,13,14,3,4,5,6 \text {, } \\
& 15,0, \overline{1,2,3,4,5,6,7,8}, 9,10,7 \overline{, 8,9,10,7}, 8,9,10,11,12,13,14,15 \\
& P_{1}^{2}=0,1,2,11,12,13,14,3,4,5,6,15,0,1,2,11,12,13,14,3,4,5,6, \\
& \mathbf{1 5 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}, 9,10,7,8,9,10,7,8,9,10,11,12,15,14,13 \\
& P_{2}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,10,9,8,7,6,5,4, \\
& \text { 3,2,1,0,15,6,5, 4, 3,14,13,12,11,2, 1, 0, 15,6,5,4,3, 14, 13, 12, } 11 \\
& P_{3}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,10,9,8,7,6,5,4, \\
& \mathbf{3 , 2 , 1 , 0 , 1 5 , 6 , 5 , 4 , 1 1 , 1 2 , 1 3 , 1 4 , 3 , 4 , 5 , 6 , 1 5 , 0 , 1 , 2 , 1 1 , 1 2 , 1 3 , 1 4 , 3} \\
& P_{4}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,10,9,8,7,6,5,4, \\
& \text { 3,2,1,0,15,6, 5, 4, 11, 12, 13, 14,3,4,5,6, } 15,0,3,14,13,12,11,2,1 \\
& P_{5}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,7,10,9,8,7,6,5,4, \\
& 3,2,1,0,15,6,1,2,11,12,13,14,3,0,15,6,5,4,3,14,13,12,11,4,5 \\
& P_{6}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,9,8,5,4,11,12,13,14,3,4, \\
& 5,6,15,0,3,14,13,12,11,2,1,6,15,0,1,2,3,4,5,6,7,8,9,10,7 \\
& P_{7}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,3,2, \\
& 1,0,15,6,1,2,11,12,13,14,3,0,15,6,5,4,3,14,13,12,11,4,5,8,9 \\
& P_{8}^{2}=0,1,2,13,14,15,12,11,10,9, \overline{8,7,10,7}, 10,9,8, \overline{7,6,5}, 4,3,2, \\
& \mathbf{1 , 0 , 1 5 , 6 , 1 , 2 , 1 1 , 1 2 , 1 3 , 1 4 , 3 , 0 , 1 5 , 6 , 5 , 4 , 3 , 1 4 , 9 , 8 , 5 , 4 , 1 1 , 1 2 , 1 3} \\
& P_{9}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,3,2, \\
& \mathbf{1 , 0 , 1 5}, 6,1,2,13,12,11,4,5, \overline{8,9,14}, 3,4,5,6,15,0,3,14,13,12,11 \\
& P_{10}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,11,12, \\
& \mathbf{1 3 , 1 4 , 3 , 0 , 1 5 , 6 , 5 , 4 , 3 , 1 4 , 9 , 8 , 5 , 4 , 1 1 , 1 2 , 1 3 , 2 , 1 , 6 , 1 5 , 0 , 1 , 2 , 3} \\
& P_{11}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,11,12, \\
& 13,14,3,0,15,6,5,4,3,14,9,8,5,4,11,12,13,2,1,6,15,0,3,2,1 \\
& P_{12}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,1,2,3,0, \\
& 15,6,1,2,13,12,11,4,5,8,9,14,3,4,5,6,15,0,3,14,13,12,11,4,5 \\
& P_{13}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9, \overline{8,5,4,11}, 12,13,14, \\
& 3,0,15,6,5,4,3,14,9,8,5,4,11,12,13,2,1,6,15,0,3,2,1,6,7 \\
& P_{14}^{2}=\overline{0,1,2,13}, 14,15, \overline{12,11,10,9,8,7,10,7,10,7,6,1,2}, \mathbf{3}, 0,15, \underline{6},
\end{aligned}
$$

$1,2,13,12,11,4,5,8,9,14,3,4,5,6,15,0,3,14,13,12,11,4,5,8,9$ $P_{15}^{2}=\overline{0,1,2,13,14,15,12,11,10,9,8}, 7,10,7,10,7,6,1,2,3,0,15,6$, $1,2,13,12,11,4,5,8,9,14,3, \overline{4,5,6,15}, 0,3,14,9,8,5,4, \overline{1} 1,12,13$ $P_{16}^{2}=\overline{0,1,2,13,14,15,12,11,10,9,8}, 7,10,7,10,7,6,1,2,13,12,11,4$, $\mathbf{5 , 8 , 9}, 14,3,0,15,6,5,4,3,14,9, \overline{8,5,4}, 11,12,13,2,1,6,15,0,3$ $P_{17}^{2}=0,1,2,13, \overline{14,15,12}, 11,10,9,8,7,10,7,10,7,6,1,2,13,12,11,4$, $\mathbf{3 , 0 , 1 5}, 6,1,2,13,12,11,4,5,8,9,14,3,4,5,6,15,0,3,14,9,8,5$ $P_{18}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,3,0$, $15,6,5,4,3,14,9,8,5,4,11,12, \overline{13,2}, 1,6,15,0,3,4,1 \overline{1,12,13,2,1}$ $P_{19}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,3,0$, $15,6,5,4,3,14,9,8,5,4,11,12, \overline{13,2}, 1,6,15,0,1,2,1 \overline{3,12}, 11,4,3$ $P_{20}^{2}=\overline{0,1}, 2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,3,0$, $15,6,5,4,3,14,9,8,5,4,11,12, \overline{13,2}, 1,6,15,0,1,2,3, \overline{4,11}, 12,13$ $P_{21}^{2}=\overline{0,1}, 2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,13,12$, 11,4,3,2,1,0,15,6, 1, 2, 13, 12, 11, 4, 5, 8, 9, 14,3,4,5,6,15, 0, 3 $P_{22}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,13,12$, 11,4,3,2,1,0,15,6, 1, 2, 13, 12, 11, 4, 3, 0, 15,6,5,4,3,14, 9, 8, 5 $P_{23}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,13,12$, $11,4,3,2,1,0,15,6,5,8,9,14,3,4,5,6,15,0,3,4,11,12,13,2,1$ $P_{24}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,13,12$, 11,4,3,2,1,0,15,6, 5, 8, 9, 14,3, $\overline{4,5,6}, 15,0,1,2,13,12,11,4,3$ $P_{25}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,3,4$, $11,12,13,2,1,0,15,6,5,4,3,1 \overline{4,9,8}, 5,6,15,0,1,2,3, \overline{4,11}, 12,13$ $P_{26}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,3,4$, $11,12,13,2,1,0,15,6,5,4,3,1 \overline{4,9,8}, 5,6,15,0,1,2,1 \overline{3,12}, 11,4,3$ $P_{27}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,5,8,9,14,3,4$, $11,12,13,2,1,0,15,6,5,4,3,1 \overline{4,9,8}, 5,6,15,0,3,4,1 \overline{1,12}, 13,2,1$ $P_{28}^{2}=\overline{0,1,2,13,14,15,12,11}, 10,9,8,7,10,7,10,7,6,1,2,13,12,11,4$, $\mathbf{3 , 0 , 1 5}, 6,5,8,9,14,3,4,5,6,15, \overline{0,1,2}, 13,12,11,4,3,14,9,8,5$ $P_{29}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,1,2,13,12,11,4$, 5,8,9,14,3, 4, 11, 12, 13, 2, 1, 0, 15,6,5,4,3,14, 9, 8, 5, 6,15,0,3 $P_{30}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,1,2,3,0,15,6$, $5,8,9,14,3,4,5,6,15,0,1,2,13,12,11,4,3,14,9,8,5,4, \overline{1} 1,12,13$ $P_{31}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,7,6,1,2,3,0,15,6$, $5,8,9,14,3,4,5,6,15,0,1,2,13,12,11,4,3,14,13,12,1 \overline{1}, 4,5,8,9$
$P_{32}^{2}=\overline{0,1,2,13,1} 4,15,12,11,10,9,8,7,10,7,10,9,8,5,4,11,12,13,14$, $3,4,11,12,13,2,1,0,15,6,5,4,3,14,9,8,5,6,15,0,3,2,1,6,7$ $P_{33}^{2}=\overline{0,1,2,13,14,15,12,11,10,9}, 8,7,10,7,10,9,8,7,6,1,2,3,0$, $15,6,5,8,9,14,3,4,5,6,15,0,1,2,13,12,11,4,3,14,13,12,11,4,5$ $P_{34}^{2}=0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,11,12$, $\mathbf{1 3 , 1 4 , 3 , 4 , 1 1 , 1 2 , 1 3 , 2 , 1 , 0 , 1 5 , 6 , 5 , 4 , 3 , 1 4 , 9 , 8 , 5 , 6 , 1 5 , 0 , 3 , 2 , 1}$

$$
\begin{aligned}
P_{35}^{2}= & 0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,11,12, \\
& 13,14,3,4,11,12,13,2,1,0,1 \overline{5,6,5,4,3,14,9,8,5,6,15,0,1,2,3} \\
P_{36}^{2}= & 0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,3,2, \\
& 1,0,15,6,5,8,9,14,3,4,5,6,15, \overline{0,1,2,13,12,11,4,3,14,13,12,11} \\
P_{37}^{2}= & 0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,3,2, \\
& \mathbf{1 , 0 , 1 5 , 6 , 5 , 8 , 9 , 1 4 , 3 , 4 , 5 , 6 , 1 5 , \overline { 0 , 1 , 2 , 1 1 , 1 2 , 1 3 , 1 4 , 3 , 4 , 1 1 , 1 2 , 1 3 }} \underset{P_{38}^{2}=}{ } 0,1,2,13,14,15,12,11,10,9,8,7,10,7,10,9,8,7,6,5,4,3,2, \\
& \mathbf{1 , 0 , 1 5 , 6 , 5 , 8 , 9 , 1 4 , 1 3 , 1 2 , 1 1 , 4 , 3 , 1 4 , 1 3 , 1 2 , 1 1 , 2 , 1 , 0 , 1 5 , 6 , 5 , 4 , 3} \\
P_{39}^{2}= & 0,3,4,5,6,15,0,1,2,11,12,13,14,3,4,11,12,13,14,9,8,5,6, \\
& \mathbf{1 5 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}, 9,10,7,10,7,8,9,10,11,12,15,14,13,2,1
\end{aligned}
$$

References

[1] K. Cameron, 'Thomason's algorithm for finding a second hamiltonian circuit through a given edge in a cubic graph is exponential on Krawczyk's graphs', Discrete Math. 235 (2001), 69-77.
[2] R. M. Karp, 'Reducibility among combinatorial problems', in: Complexity of Computer Computations (eds. R. E. Miller, J. W. Thatcher and J. D. Bohlinger) (Plenum Press, New York, 1972), 85-103.
[3] A. Krawczyk, 'The complexity of finding a second Hamiltonian cycle in cubic graphs', J. Comput. Systems Sci. 58 (1999), 641-647.
[4] A. G. Thomason, 'Hamilton cycles and uniquely edge-colourable graphs', Ann. Discrete Math. 3 (1978), 259-268.
[5] W. T. Tutte, 'On Hamiltonian circuits', J. Lond. Math. Soc. 21 (1946), 98-101.

LIANG ZHONG, Center for Discrete Mathematics,
Fuzhou University, Fujian-Fuzhou, China
e-mail: zhongliangll@126.com

[^0]: This work was done while the author was a visiting PhD student at Technical University of Denmark supported by the China Scholarship Council.
 © 2018 Australian Mathematical Publishing Association Inc.

